A NOT ON $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ SUMMABILITY FACTORS OF INFINITE SERIES

POORVI SINHA AND HIRDESH KUMAR

Abstract. In this paper a general theorem on $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability factors which generalizes a theorem of Bor [4] on for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

1. Definition and notion

Let $\sum a_{n}$ be a given infinte series with partial sums $\left(s_{n}\right)$. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \text { as } n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right)
$$

The sequence-to-sequence transformation

$$
u_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(u_{n}\right)$ of the $\left(\bar{N}, p_{n}\right)$ means of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficient $\left(p_{n}\right)$ [6].

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$ if [1]

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|u_{n}-u_{n-1}\right|^{k}<\infty
$$

and it is said to be summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if [2]

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k+k-1}\left|u_{n}-u_{n-1}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

In the special case when $\delta=0$ (resp. $p_{n}=1$ for all values of n) $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}\left(\right.$ resp. $\left.|C, 1 ; \delta|_{k}\right)$ summability.

Leindler [7] has generalized the notion of $|C, \alpha ; \delta|_{k}$ summability replacing the function n^{δ} by a positive non-decreasing function $\delta(n) .(1<n<\infty)$.

Received November 20, 2006.
Key words and phrases. Absolute summability, summability factors, infinite series.

Leindler [7] A series $\sum a_{n}$ is summable $|C, \alpha ; \delta(n)|_{k}$ if the series

$$
\sum_{n=1}^{\infty} \delta(n)^{k} n^{(k-1)}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}
$$

converges, where σ_{n}^{α} is the $n^{t h}$ Cesáro mean of order α of $\sum a_{n}$.
With $\delta(n)=n^{\delta}$, it follows that above definition reduces to that of Flett [5].
The equation (1.1) will be

$$
\begin{equation*}
\sum_{n=0}^{\infty} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|u_{n}-u_{n-1}\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

2. Quite recently Bor [3] proved the following theorem for $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

Theorem A. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \text { as } n \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

Let $\left(X_{n}\right)$ be a positive non-decreasing sequence and suppose that there exists sequences $\left(\lambda_{n}\right)$ and $\left(\beta_{n}\right)$ such that

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \beta_{n} ; \tag{2.2}\\
\beta_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.3}\\
\sum_{n=1}^{\infty} n|\Delta \beta| X_{n}<\infty \tag{2.4}\\
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty \tag{2.5}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \text { as } m \rightarrow \infty \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v} \tag{2.7}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.
The aim of this paper is to generalize Theorem A for $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability. Now, we shall prove the following theorem.

3. Theorem

Let (X_{n}) be a positive non-decreasing sequence and the sequence $\left(\lambda_{n}\right)$ and (β_{n}) be such that condition (2.2) - (2.5) of Theorem A are satisfied. If $\left(p_{n}\right)$ is a sequence such that condition (1.1) of Theorem A is satisfied and

$$
\begin{align*}
\sum_{n=v+1}^{\infty} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right) \frac{1}{P_{n-1}} & =O\left\{\delta\left(\frac{P_{v}}{p_{v}}\right)^{k} \frac{1}{P_{v}}\right\} \tag{3.1}\\
\sum_{n=1}^{m} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right)\left|t_{n}\right|^{k} & =O\left(X_{m}\right) \text { as } m \rightarrow \infty \tag{3.2}
\end{align*}
$$

where $\left(t_{n}\right)$ is as in (2.7), then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ for $k \geq 1$, and $0 \leq \delta<\frac{1}{k}$.
Remark. It may be noted that, if we take $\delta=0$ in this theorem, then we get Theorem A. In this case condition (3.2) reduces to condition (2.6) and condition (3.1) reduces to

$$
\sum_{n=\nu+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\frac{1}{P_{v}}\right)
$$

which always holds.
We need the following lemma for the proof of our theorem.
Lemma. ([6]) If the condition (2.2)-(2.5) on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ are satisfied, then

$$
\begin{gather*}
n \beta_{n} X_{n}=O(1) \text { as } m \rightarrow \infty, \tag{3.3}\\
\sum_{n=1}^{\infty} \beta_{n} X_{n}<\infty \tag{3.4}
\end{gather*}
$$

4. Proof of the theorem

Let $\left(T_{n}\right)$ be the sequence of $\left(\bar{N}, p_{n}\right)$ means of the series $\sum a_{n} \lambda_{n}$. Then by definition, we have

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} \sum_{i=0}^{v} a_{i} \lambda_{i}=\frac{1}{P_{n}} \sum_{\nu=0}^{n}\left(P_{n}-P_{v-1}\right) a_{v} \lambda_{v}
$$

Then, for $n \geq 1$, we have

$$
T_{n}-T_{n-1}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} P_{v-1} a_{v} \lambda_{v}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n} \frac{P_{v-1} \lambda_{v}}{v} v a_{v}
$$

Using Abel's transformation, we get

$$
\begin{aligned}
T_{n}-T_{n-1}= & \frac{n+1}{n P_{n}} p_{n} t_{n} \lambda_{n}-\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} p_{v} t_{\nu} \lambda_{v} \frac{v+1}{v} \\
& +\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{v} \Delta \lambda_{\nu} t_{v} \frac{v+1}{v}+\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} P_{\nu} t_{v} \lambda_{v+1} \frac{1}{v}
\end{aligned}
$$

$$
=T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}, \text { say. }
$$

Since

$$
\left|T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha}+T_{n, 4}^{\alpha}\right|^{k} \leq 4^{k}\left(\left|T_{n, 1}^{\alpha}\right|^{k}+\left|T_{n, 2}^{\alpha}\right|^{k}+\left|T_{n, 3}^{\alpha}\right|^{k}+\left|T_{n, 4}^{\alpha}\right|^{k}\right)
$$

to complete the proof of the theorem, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } r=1,2,3,4
$$

Since

$$
\lambda_{n}=O\left(\frac{1}{X_{n}}\right)=O(1) \text {, by (2.5) we get that }
$$

$$
\begin{aligned}
\sum_{n=2}^{m+1} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 1}\right|^{k}= & O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right| \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right)\left|t_{n}\right|^{k} \\
= & O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right)\left|t_{n}\right|^{k} \\
= & O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \delta\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right)\left|t_{v}\right|^{k} \\
& +O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right)\left|t_{n}\right|^{k} \\
= & O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1) \text { as } m \rightarrow \infty, \text { by (2.2), (3.2) and (3.4). }
\end{aligned}
$$

Now applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 2}\right|^{k}= & O(1) \sum_{n=2}^{m+1} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right) \frac{1}{P_{n-1}} \\
& \times\left\{\sum_{\nu=1}^{n-1} p_{v}\left|t_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{\nu=1}^{n-1} p_{v}\right\}^{k-1} \\
= & O(1) \sum_{\nu=1}^{m} p_{v}\left|\lambda_{\nu}\right|^{k-1}\left|\lambda_{\nu}\right|\left|t_{\nu}\right|^{k} \sum_{n=v+1}^{m+1} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right) \frac{1}{P_{n-1}} \\
= & O(1) \sum_{\nu=1}^{m}\left|\lambda_{\nu}\right| \delta\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\frac{p_{v}}{P_{\nu}}\right)\left|t_{\nu}\right|^{k} \\
= & O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

using the fact that $P_{v}=O\left(\nu p_{v}\right)$, by (2.1) and $n \beta_{n}=O\left(\frac{1}{X_{n}}\right)=O(1)$, by (3.3), we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 3}\right|^{k}= & O(1) \sum_{n=2}^{m+1} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{p_{n}}{P_{n}}\right) \frac{1}{P_{n-1}} \\
& \times\left\{\sum_{\nu=1}^{n-1}\left(\nu \beta_{v}\right)^{k} p_{v}\left|t_{v}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_{v}\right\}^{k-1} \\
= & O(1) \sum_{\nu=1}^{m}\left(v \beta_{v}\right)\left(v \beta_{v}\right)^{k-1} p_{v}\left|t_{v}\right|^{k} \sum_{n=v+1}^{\infty} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k} \times\left(\frac{p_{n}}{P_{n} P_{n-1}}\right) \\
= & O(1) \sum_{\nu=1}^{m}\left(v \beta_{v}\right) \delta\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right)\left|t_{\nu}\right|^{k} \\
= & O(1) \sum_{\nu=1}^{m-1} \Delta\left(v \beta_{\nu}\right) \sum_{i=1}^{\nu} \delta\left(\frac{P_{i}}{p_{i}}\right)^{k}\left(\frac{p_{i}}{P_{i}}\right)\left|t_{i}\right|^{k} \\
& +O(1) m \beta_{m} \sum_{\nu=1}^{m} \delta\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right)\left|t_{v}\right|^{k} \\
= & O(1) \sum_{\nu=1}^{m-1}\left|\Delta\left(v \beta_{v}\right)\right| X_{v}+O(1) m \beta_{m} X_{m} \\
= & O(1) \sum_{v=1}^{m-1} v X_{\nu}\left|\Delta \beta_{v}\right|+O(1) \sum_{v=1}^{m-1} \beta_{v+1} X_{\nu}+O(1) m \beta_{m} X_{m} \\
= & O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by (2.2), (2.4), (3.1), (3.2), (3.3) and (3.4).
Finally, using the fact that $P_{v}=O\left(v p_{v}\right)$, by (2.1), as in $T_{n, 1}$ and $T_{n, 2}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, 4}\right|^{k} & =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \delta\left(\frac{P_{v}}{p_{v}}\right)^{k}\left(\frac{p_{v}}{P_{v}}\right)\left|t_{v}\right|^{k} \\
& =O(1) \text { as } m \rightarrow \infty .
\end{aligned}
$$

Therefore, we get that

$$
\sum_{n=1}^{m} \delta\left(\frac{P_{n}}{p_{n}}\right)^{k}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|T_{n, r}\right|^{k}=O(1) \text { as } m \rightarrow \infty, \quad \text { for } r=1,2,3,4
$$

This completes the proof of the theorem.
If we take $p_{n}=1$ for all values of n in this theorem, then we get a result concerning the $|C, 1 ; \delta|_{k}$ summability methods.

Acknowledgement

Authors are thankful to Dr. Rajiv Sinha, Dept. of Mathematics S.M.P.G. College Chandausi, for suggesting the problem and for encouragement to this work.

References

[1] H. Bor, On two summability methods, Math. Proc. Cambridge Phil. Soc. 97(1985), 147-149.
[2] H. Bor, On the local property of $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability offactored Fourier series, J. Math. Anal. Appl. 179(1993), 644-649.
[3] H. Bor, On $\left|\bar{N}, p_{n}\right|_{k}$ Summability factors, Kuwait J. Sci. \& Eng. 23(1996), 1-5.
[4] H. Bor, On $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ Summability factors of infinite series, Taiwanese Journal of Mathematics, 1(1997), 327-332.
[5] T. M. Flett, Proc. London Math. Soc. 7(1957), 113-141.
[6] G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1949.
[7] L. Leindler, Acta Math. Hungar 64(1994), 269-283.
[8] K. N. Mishra, On the absolute Nörlund summability factors of infinite series, Indian J. Pure Appl. Math. (1983), 40-43.

Department of Mathematics, S.M.P.G College, Chandausi (Moradabad), U.P. (202412).
Department of Mathematics, S.M.P.G College, Chandausi (Moradabad), U.P. (202412).

