ON THE ARITHMETIC–GEOMETRIC MEAN INEQUALITY

MEHDI HASSANI

Abstract. We obtain some refinements of the Arithmetic–Geometric mean inequality. As an application, we find the maximum value of a multi-variable function.

1. Introduction

We assume that \(a_1, a_2, \ldots, a_n \) are \(n \) positive real numbers, and as usual, we define their arithmetic and geometric means, respectively by

\[
A = \frac{1}{n} \sum_{i=1}^{n} a_i, \quad \text{and} \quad G = \left(\prod_{i=1}^{n} a_i \right)^{\frac{1}{n}}.
\]

We consider the functions \(g(x) = e^x - x^e \) and \(h(x) = x^{1/x} \) over \((0, \infty)\). The function \(h \) has an absolute maximum at \(x = e \). Thus, if \(x > 0 \) then \(e^{1/e} \geq x^{1/x} \), or equivalently \(g(x) \geq 0 \), with equality if and only if \(x = e \). For \(i = 1, 2, \ldots, n \), we take \(x = a_i/e \) in \(e^x \geq x^e \), and then we multiply the resulting inequalities to get

\[
e^{\frac{a_i}{e}} \geq \left(\prod_{i=1}^{n} \frac{a_i}{G} \right)^{\frac{1}{n}} = \left(e^n G^n \right)^{\frac{1}{n e}} = e^{n e},
\]

from which we obtain \(A \geq G \), with equality if and only if \(a_i/e = e \) for \(i = 1, 2, \ldots, n \), or equivalently for when \(a_1 = a_2 = \cdots = a_n \).

The above argument for obtaining the Arithmetic–Geometric mean inequality is due to Schaumberger [1]. In this note we replace \(g(x) \) by a smaller positive function to get some refinements of the this inequality. More precisely, we obtain the following result.

Theorem 1.1. Assume that \(a_1, a_2, \ldots, a_n \) are \(n \) positive real numbers with arithmetic and geometric means \(A \) and \(G \), respectively. Then, we have

\[
A \geq G + \mathcal{R} \geq G,
\]

Received May 15, 2013, accepted July 16, 2013.
Communicated by Chung-Tsun Shieh.
2010 Mathematics Subject Classification. 26D15.
Key words and phrases. Arithmetic–Geometric mean inequality.
where
\[R = \frac{G}{ne} \log \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right) \geq 0, \]
with equality if and only if \(a_1 = a_2 = \cdots = a_n \).

2. Proof of Theorem 1.1

Lemma 2.1. For \(x > 0 \) we define
\[f(x) = e^x - x^e - \frac{1}{e^2} (x - e)^2. \]
The inequality \(f(x) \geq 0 \) is valid for \(x > 0 \), with equality if and only if \(x = e \). Moreover, \(\frac{1}{e^2} \) is the best possible constant for which the above inequality is valid.

Proof. As Figure 1 shows, \(f(x) \) takes its minimum value equal to 0 at \(x = e \). Also, we have \(\lim_{x \to 0^+} f(x) = 0 \), which proves optimal choose of the constant \(\frac{1}{e^2} \). This completes the proof. □

![Graphs of functions](image)

Figure 1: Graphs of the functions \(f(x) = e^x - x^e - \frac{1}{e^2} (x - e)^2 \) and \(g(x) = e^x - x^e \) over the intervals \((0, 3)\) and \((0, 5)\).

Proof of Theorem 1.1. We apply Lemma 2.1 by taking \(x = a_i e / G \) in \(f(x) \), from which we obtain
\[e^{\sum_{i=1}^{n} a_i} \geq \left(\frac{a_i e}{G} \right)^e + \frac{1}{e^2} \left(\frac{a_i e}{G} - e \right)^2 = \left(\frac{a_i e}{G} \right)^e + \left(\frac{a_i}{G} - 1 \right)^2 \quad \text{(for } i = 1, 2, \ldots, n). \]

We multiply these inequalities to get
\[e^{\sum_{i=1}^{n} a_i A} = e^{\sum_{i=1}^{n} \frac{a_i e}{G}} \geq \left(\prod_{i=1}^{n} \frac{a_i e}{G} \right)^e + \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 = e^{ne} + \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2. \]

Thus, we have
\[e^{\sum_{i=1}^{n} a_i A} \geq e^{ne} \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right). \]
Finally, we take logarithm and we divide the resulting inequality by ne to obtain
\[
\frac{A}{G} \geq 1 + \frac{1}{ne} \log \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right),
\]
with equality if and only if $a_1 = a_2 = \cdots = a_n$. This completes the proof. \qed

3. Some applications

One may rewrite the Arithmetic–Geometric mean inequality in the forms
\[
A - G \geq 0, \quad \text{and} \quad \frac{A}{G} - 1 \geq 0.
\]
As the first application of Theorem 1.1, we obtain the following refinement of the above mentioned inequalities.

Theorem 3.1. Assume that a_1, a_2, \ldots, a_n are n positive real numbers which are not simultaneously equal, with arithmetic and geometric means A and G, respectively. Then, we have
\[
A - G \geq \frac{Ge^{ne(\frac{A}{G} - 1)}}{ne(e^{ne(\frac{A}{G} - 1)} - e^{ne})} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \geq 0,
\]
or equivalently
\[
\frac{A}{G} - 1 \geq \frac{e^{ne(\frac{A}{G} - 1)}}{ne^{ne+1}(e^{ne(\frac{A}{G} - 1)} - 1)} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \geq 0.
\]

Proof. Assume that a_1, a_2, \ldots, a_n are n positive real numbers which are not simultaneously equal, so that $A > G$. By using the result of Theorem 1.1, we have $R \leq A - G$, which is equivalent to
\[
\frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \leq e^{ne(\frac{A}{G} - 1)} - 1.
\]
On the other hand, for $0 \leq x \leq \beta$, we have $\log(1 + x) \geq \frac{\log(1 + \beta)}{\beta} x$ because $\frac{\log(1+x)}{x}$ is decreasing on $(0, \beta]$. We use this inequality by putting $x = \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \geq 0$ and $\beta = e^{ne(\frac{A}{G} - 1)} - 1$ to get
\[
R = \frac{G}{ne} \log \left(1 + \frac{1}{e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right) \geq \frac{G}{ne} \left(\frac{e^{ne(\frac{A}{G} - 1)}}{e^{ne(\frac{A}{G} - 1)} - e^{ne}} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right).
\]
This completes the proof. \qed

As the second application of Theorem 1.1, we observe that it allows us to find the maximum value of a multi-variable function, without using partial derivative tests.
Theorem 3.2. We have

$$\max_{a_i > 0} \frac{G}{n} e \log \left(1 + \frac{1}{e^n} \prod_{i=1}^{n} \left(\frac{a_i}{G} - 1 \right)^2 \right) = A - G.$$

Remark 3.3. We assume that $a_i > 0$, and then we replace a_i by $1/a_i$, from which the inequality $A \geq G$ implies validity of the well-known Geometric-Harmonic mean inequality, asserting that $G \geq H$, where H refers to the harmonic mean of the positive real numbers a_1, a_2, \ldots, a_n. We observe that the replacement $a_i \rightarrow 1/a_i$ gives the replacements $A \rightarrow 1/H$ and $G \rightarrow 1/G$. By applying this fact, one may rewrite all of the above results concerning the means A and G, to obtain similar results concerning the means G and H.

Acknowledgement

I express my gratitude to the referee for giving useful comments.

References

Department of Mathematics, University of Zanjan, University Blvd., 45371-38791, Zanjan.

E-mail: mehdi.hassani@znu.ac.ir