SINGULAR RIGHT FOCAL BOUNDARY VALUE PROBLEM
WITH GIVEN MAXIMAL VALUES

YU TIAN AND WEIGAO GE

Abstract. In this paper, we prove existence results for the singular problem \((−1)^{n−p}(Φ_m x^{(n−1)})′(t) = µf(t, x(t), . . . , x^{(n−1)}(t)),\)
for \(0 < t < 1, x^{(i)}(0) = 0, i = 0, 1, . . . , p − 1, x^{(i)}(1) = 0, i = p, \)
\(p + 1, . . . , n − 1, \max\{x(t) : t ∈ [0, 1]\} = A. \) The paper presents
conditions which guarantee that for any \(A > 0\) there exists \(µ_A > 0\) such that the
above problem with \(µ = µ_A\) has a solution \(x ∈ C^{n−1}([0, 1])\) which is positive
on \((0, 1).\) Here the positive Carathéodory function \(f\) may be singular at the
zero value of all its phase variables. Proofs are based on the Leray-Schauder
degree and Vitali’s convergence theorem.

1. Introduction

The right focal boundary value problems has been widely studied by a number of
authors in recent years. For details, see [1, 7, 8, 9, 10, 15] and the references therein.
However the boundary value problems treated in the above mentioned references are
not allowable to process singularity. For studies about higher-order singular boundary value
problem, we refer to [2, 3, 4, 5, 6, 17].

Agarwal, O’Regan and Lakshmikantham studied the existence of solutions for right
focal boundary value problem in [3]:
\[
\begin{align*}
(-1)^{n-p} y^{(n)} &= \phi(t)f(t, y, . . . , y^{(n-1)}), \quad n \geq 2, \ t \in (0, 1), \\
y^{(i)}(0) &= 0, \quad 0 \leq i \leq p - 1, \\
y^{(i)}(1) &= 0, \quad p \leq i \leq n - 1,
\end{align*}
\]
(1.1)
where \(f \in C([0, 1] × (0, ∞)^p, (0, ∞)), f(t, y_0, . . . , y_{n−1})\) may be singular at \(y_i = 0, 0 \leq \)
i \(p - 1, \phi \in C(0, 1)\) with \(\phi > 0\) on \((0, 1)\) and \(\phi \in L^1[0, 1], \phi\) may be singular at \(t = 0\)
and/or 1. However, by assuming that \(f\) has the following increasing condition
\[
\sum_{i=0}^{p-1} h_i(u_i) \leq f(t, u_0, . . . , u_{p-1}) \leq \sum_{i=0}^{p-1} g_i(u_i) + r(u)
\]
(1.2)
Received April 25, 2005.
2000 Mathematics Subject Classification. 34B15, 34B16, 34B18.
Key words and phrases. Singular higher-order differential equation, regularization, Vitali’s convergence theorem, right focal.
Supported by grant 10371006 from National Natural Sciences Foundation of P.R. China and grant 20050007011 from Foundation for PhD Specialities of Educational Department of P.R. China.
on \([0, 1] \times (0, \infty)^p\) with \(h_i > 0\) continuous and non-increasing on \((0, \infty)\) for each \(i = 0, \ldots, p - 1\), \(g_i > 0\) continuous and non-increasing on \((0, \infty)\) for each \(i = 0, \ldots, p - 1\), and \(r \geq 0\) continuous, nondecreasing on \([0, \infty)\), here \(|u| = \max\{u_0, u_1, \ldots, u_{n-1}\}\).

\[
\int_0^1 \phi(s) g_i(k_i s^{p-1}) ds < \infty \text{ for each } i = 0, \ldots, p - 1, \quad \text{(1.3)}
\]

here \(k_i > 0(i = 0, \ldots, p - 1)\) are constant, and

\[
\text{if } z > 0 \text{ satisfies } z \leq a_0 + b_0 r(z) \text{ for constants } a_0 \geq 0 \text{ and } b_0 \geq 0, \quad \text{(1.4)}
\]

then there exists a constant \(K\) (which may depend only on \(a_0\) and \(b_0\)) with \(z \leq K\).

The authors obtain an existence result. In fact, condition (1.4) implies the degree of variable \(u\) in the term \(r(u)\) must be smaller than 1.

In [6], the singular problem \((-1)^n x^{(2n)}(t) = \mu f(t, x, \ldots, x^{(2n-2)}), x^{(2j)}(0) = x^{(2j)}(T) = 0, (0 \leq j \leq n - 1), \max|x(t)|: 0 \leq t \leq T| = A \text{ depending on the parameter } \mu\) is considered. The existence of at least one positive solution was obtained under the assumption

\[
f(t, x_0, \ldots, x_{n-2}) \leq \phi(t) + \sum_{j=0}^{2n-2} q_j(t) \omega_j(|x_j|) + \sum_{j=0}^{2n-2} h_j(t)|x_j|^\alpha_j
\]

for a.e. \(t \in J\) and for each \((x_0, \ldots, x_{2n-2}) \in D\), where \(\phi, h_j \in L_1(J)\) and \(q_j \in L_\infty(J)\) are nonnegative, \(\omega_j: R_+ \to R_+\) are non-increasing, \(\alpha_j \in (0, 1)\).

Motivated by the above results, we consider the right focal boundary value problem in the following form

\[
(-1)^{n-p}(\Phi_m(x^{(n-1)}))' (t) = \mu f(t, x(t), \ldots, x^{(n-1)}(t)), \quad 0 < t < 1, \quad \text{(1.5)}
\]

\[
x^{(i)}(0) = 0, \quad i = 0, 1, \ldots, p - 1, \quad x^{(i)}(1) = 0, \quad i = p, p + 1, \ldots, n - 1. \quad \text{(1.6)}
\]

Together with the boundary conditions (1.6), we discuss the condition

\[
\max\{|x(t)|: t \in J\} = A, \quad \text{(1.7)}
\]

where \(\Phi_m x := |x|^{m-2}x, m > 1, \Phi_m\) is the inverse operator of \(\Phi_m\), where \(\frac{1}{m_1} + \frac{1}{m_2} = 1, n \geq 2\).

Let \(J = [0, 1], R_- = (-\infty, 0), R_+ = (0, \infty), R_0 = R \setminus \{0\},\)

\[
D = \begin{cases}
\prod_{i=0}^{p} R_+ \times \cdots \times R_+ \times R_- \times \cdots \times R_+, & n - p = 2k + 1, \\
\prod_{i=0}^{p} R_+ \times \cdots \times R_+ \times R_- \times \cdots \times R_-, & n - p = 2k.
\end{cases}
\]

Nonlinearity term \(f\) satisfies local Carathéodory conditions on \(J \times D(f \in \text{Car}(J \times D))\) and may be singular at the zero value of all its phase variables. By using Leray-Schauder
Let $A \in \mathbb{R}^+$. By a solution of BVP (1.5)-(1.7) we understand a function $x \in AC^{n-1}(J)$ (i.e., x has an absolutely continuous $(n-1)$st derivative on J) such that
(i) $x^{(i)}(t) > 0$ on $(0,1)$ for $i = 0,\ldots,p-1$ and $(-1)^{2n-p-1}x^{(i)}(t) > 0$ on $[0,1)$ for $i = p,\ldots,n-1$.
(ii) x satisfies boundary conditions (1.6), (1.7),
(iii) there exists $\mu_A \in R_+$ such that x fulfills (1.5) with $\mu = \mu_A$ for a.e. $t \in J$.

By a solution of BVP (1.5), (1.6) we understand a function $x \in AC^{2n-1}(J)$ such that $x^{(i)}(t) > 0$ on $(0,1)$ for $i = 0,\ldots,p-1$ and $(-1)^{n-i+1}x^{(2n-p-1)}(t) > 0$ on $[0,1)$ for $i = p,\ldots,n-1$, x satisfies boundary conditions (1.6) and (1.5) holds a.e. $t \in J$.

The purpose of this paper is to give conditions which guarantee the existence of a solution of BVP (1.5)-(1.7) for each given $A \in R_+$.

From now on, $\|x\| = \max\{|x(t)| : t \in J\}$, $\|x\|_1 = \int_0^1 |x(t)|dt$ and $\|x\|_\infty = ess \sup\{ |x(t)| : 0 \leq t \leq 1\}$ stands for the norm in $C^0(J)$, $L_1(J)$, and $L_\infty(J)$, respectively. For any measurable set $M \subset R$, $\mu(M)$ denotes the Lebesgue measure of M.

The assumptions imposed upon the function f in (1.5) are listed as follows:

(H1) $f \in Car(J \times D)$ and there exists nonnegative functions $\phi \in L_1(J), q_i \in L_\infty(J)$, and continuous functions $g_i : [0,1] \times R^n \rightarrow R^+$ $(i = 0,\ldots,n-1)$ and non-increasing nonnegative continuous function $\omega_i : R_+ \rightarrow R_+$ such that for $(t,x) \in J \times D$,
\[
f(t,x_0,\ldots,x_{n-1}) = \phi(t) + \sum_{i=0}^{n-1} q_i(t)\omega_i(|x_i|) + \sum_{i=0}^{n-1} g_i(t,x_i),
\]
where
\[
\lim_{|x_i| \to -\infty} \sup_{t \in [0,1]} \frac{g_i(t,x_i)}{(\Phi_m(|x_i|))^{k_i}} = \alpha_i \geq 0, \quad k_i \text{ are any constants in } (0,1), i = 0,\ldots,p-1,
\]
and
\[
\lim_{|x_i| \to -\infty} \sup_{t \in [0,1]} \frac{g_i(t,x_i)}{(\Phi_m(|x_i|))^{k_i}} = \beta_i \geq 0, \quad i = p,\ldots,n-1,
\]
and ω_i satisfies
\[
\int_0^1 \omega_i(s^{p-i})ds < \infty, \quad 0 \leq i \leq p-1, \quad \int_0^1 \omega_i(P_i(s))ds < \infty, \quad p \leq i \leq n-1,
\]
where
\[
P_i(t) = \frac{1}{(n-2-i)!} \int_0^1 (\theta - t)^{n-2-i} \Phi_{m'} \left(\int_0^1 \phi(r)dr \right) d\theta,
\]
and there exists $\lambda > 0$ such that
\[
\omega_i(xy) \leq \lambda \omega_i(x)\omega_i(y) \text{ for } x, y \in (0,\infty).
\]
The paper is organized as follows. Section 2 presents the \(\textit{priori} \) bound of BVP (1.5)-(1.7). Besides, we prove that some sets of functions containing solutions of our auxiliary regular BVPs are uniformly absolutely continuous on \(J \). Section 3 deals with auxiliary regular BVPs of problem (1.5), (1.6), (1.7). First we prove the existence of solution by applying the Borsuk antipodal theorem and the Leray-Schauder degree (see, e.g. [12]). Then we prove the existence of solution for problem (1.5), (1.6), (1.7). Proof is based on the Arzelà-Ascoli theorem and the Vitali’s convergence theorem, see, e.g. [11, 12, 14].

2. Auxiliary Results

Lemma 2.1. If \(y \) is a solution of BVP (1.5), (1.6), then \(y(t) \) is a fixed point of the operator

\[
(Ty)(t) = (-1)^{n-p-1} \int_0^1 G(t,s) \Phi_m' \left(\int_s^1 f(\theta, y(\theta), \ldots, y^{(n-1)}(\theta)) \, d\theta \right) \, ds, \tag{2.1}
\]

where \(G(t,s) \) is the Green’s function of the following BVP

\[
\begin{aligned}
& x^{(n-1)}(t) = 0, \quad t \in (0,1), \\
& x^{(i)}(0) = 0, \quad i = 0, \ldots, p-1, \quad x^{(i)}(1) = 0, \quad i = p, \ldots, n-2,
\end{aligned}
\]

and \(G(t,s) \) can be expressed as

\[
G(t,s) = \frac{1}{(n-2)!} \begin{cases}
\sum_{i=0}^{p-1} \binom{n-2}{i} t^i (-s)^{n-i-2}, & 0 \leq s \leq t \leq 1; \\
- \sum_{i=p}^{n-2} \binom{n-2}{i} t^i (-s)^{n-i-2}, & 0 \leq t \leq s \leq 1.
\end{cases}
\]

Furthermore,

\[
(-1)^{n-p-1} \frac{\partial^i}{\partial t^i} G(t,s) \geq 0, \quad i = 0, \ldots, p-1,
\]

\[
(-1)^{n-i-1} \frac{\partial^i}{\partial t^i} G(t,s) \geq 0, \quad i = p, \ldots, n-2, \quad (t,s) \in J \times J. \tag{2.2}
\]

Proof. By integrating the equation in (1.5) from \(t \in [0,1) \) to 1 and using \(x^{(n-1)}(1) = 0 \), we obtain that

\[
(-1)^{n-p} \Phi_m \left(y^{(n-1)}(t) \right) = - \int_t^1 f(\theta, y(\theta), \ldots, y^{(n-1)}(\theta)) \, d\theta,
\]

i.e.

\[
y^{(n-1)}(t) = (-1)^{n-p} \Phi_m' \left(\int_t^1 f(\theta, y(\theta), \ldots, y^{(n-1)}(\theta)) \, d\theta \right).
\]
By [15] we have the result is true.

Remark 2.1. It follows from (2.1) (2.2) that
\[
\begin{cases}
y^{(i)}(t) > 0, & i = 0, \ldots, p - 1, \ t \in (0, 1) \\
-(-1)^{i-p}y^{(i)}(t) > 0, & i = p, \ldots, n - 1, \ t \in [0, 1).
\end{cases}
\tag{2.3}
\]

As in [5], for each \(m \in \mathbb{N} \), define \(X_m, \varphi_m \in C^0(\mathbb{R}), R_m \subset \mathbb{R} \) and \(f_m \in \text{Car}(J \times \mathbb{R}^n) \) by the formulas
\[
X_m(u) = \begin{cases}
u, & \text{for } u \geq \frac{1}{m}, \\
\frac{1}{m}, & \text{for } u < \frac{1}{m},
\end{cases}
\quad \varphi_m(u) = \begin{cases}-\frac{1}{m}, & \text{for } u > -\frac{1}{m}, \\
u, & \text{for } u \leq -\frac{1}{m},
\end{cases}
\]
\[
\tau_m(u) = \begin{cases}X_m(u), & \text{for } n - p = 2k + 1, \\
\varphi_m(u), & \text{for } n - p = 2k,
\end{cases}
\]
and
\[
f_m(t, x_0, \ldots, x_{n-1}) = \phi(t) + \sum_{i=0}^{p-1} q_i(t)\omega_i(|X_m(x_i)|) + q_p(t)\omega_p(|X_m(x_p)|) + q_{p+1}(t)\omega_{p+1}(|\varphi_m(x_{p+1})|)
\]
\[+ \cdots + q_{n-1}(t)\omega_{n-1}(|\tau_m(x_{n-1})|) + \sum_{i=0}^{n-1} g_i(t, x_i)
\]
for \((t, x_0, \ldots, x_{n-1}) \in J \times \mathbb{R}^n\). Hence
\[
0 < \phi(t) \leq f_m(t, x_0, \ldots, x_{n-1})
\leq \phi(t) + \sum_{i=0}^{n-1} q_i(t)\omega_i(|x_i|) + \sum_{i=0}^{n-1} g_i(t, x_i)
\tag{2.4}
\]
for a.e. \(t \in J \) and each \((x_0, \ldots, x_{n-1}) \in \mathbb{R}^n\).

Consider auxiliary regular differential equation
\[
(\Phi_m x^{(n-1)})'(t) = \mu f_m(t, x(t), \ldots, x^{(n-1)}(t))
\tag{2.5}
\]
depending on the parameters \(\mu \in \mathbb{R} \) and \(m \in \mathbb{N} \).

Lemma 2.2. Let \(m \in \mathbb{N} \), then
\[
x^{(i)}(t) \geq t^{p-i-1}\Gamma, \ i = 0, \ldots, p - 1; \quad (-1)^{2n-p-i}x^{(i)}(t) \geq P_i(t), \ i = p, \ldots, n - 1, \tag{2.6}
\]
on \(J \) for any solution \(x \) of BVP (2.6), (1.6), where \(\Gamma = (-1)^{n-p-1} \int_0^1 G(1, s)\Phi_m \left(\int_s^1 \phi(\theta)d\theta \right) ds \).
Proof. By [2] we have
\[x^{(i)}(t) \geq t^{p-i}x^{(1)}(1) \text{ for } t \in J, \ i = 0, \ldots, p - 1. \]
(2.7)

Applying the inequality \(\|x^{(i)}\| \geq \|x\|, i = 0, \ldots, n - 1 \), and (2.1), (2.2) to (2.7) we get
\[x^{(i)}(t) \geq t^{p-i}x(1) \geq -(1)^{n-p-1}t^{p-i} \int_0^1 G(1, s)\Phi_{m'} \left(\int_s^1 \mu \phi(\theta)d\theta \right) ds \]
\[= \Phi_{m'}(\mu) t^{p-i} \Gamma \]
for \(t \in J, \ i = 0, \ldots, p - 1 \).

On the other hand, by (2.3) we have \((-1)^{n-p}x^{(n)}(t) \geq \phi(t), t \in J\). Integrating the above inequality from \(t \) to 1, we get step by step
\[(-1)^{2n-p-1}x^{(i)}(1) \geq \int_t^1 \frac{(\theta - t)^{n-i-2} \Phi_{m'} \left(\int_0^1 \phi(r)dr \right) d\theta}{(n - i - 2)!} = P_i(t), \ i = p, \ldots, n - 1. \]

Lemma 2.3. Suppose that assumption \((H_1)\) is satisfied, \(m \in \mathbb{N} \) and \(A \in \mathbb{R}^+ \). Denote \(\mu_* = \Phi_m \left(\frac{1}{\Gamma} \right) \). Then there is no solution in BVP (2.5), (1.6), (1.7) for \(\mu > \mu_* \).

Proof. Suppose \(x(t) \) is a solution of BVP (2.5), (1.6), (1.7). By (2.1) and (2.4) we have
\[x(t) = (-1)^{n-p-1} \int_0^1 G(t, s)\Phi_{m'} \left(\mu \int_s^1 f_m(r, x(r), \ldots, x_{n-1}(r))dr \right) ds \]
\[\geq (-1)^{n-p-1} \int_0^1 G(t, s)\Phi_{m'} \left(\mu \int_s^1 \phi(r)dr \right) ds, \]
i.e.
\[\max \{x(t) : t \in J\} \geq (-1)^{n-p-1} \Phi_{m'}(\mu) \max_{t \in J} \int_0^1 G(t, s)\Phi_{m'} \left(\int_s^1 \phi(r)dr \right) ds \]
\[> (-1)^{n-p-1} \Phi_{m'}(\mu_*) \int_0^1 G(1, s)\Phi_{m'} \left(\int_s^1 \phi(r)dr \right) ds \]
\[= \Phi_{m'}(\mu_*) \Gamma = A, \]
which contradicts to (1.7).

Lemma 2.4. Suppose \(0 < u \in L^1[0, T], 0 \leq \psi \in L^\infty[0, T] \) and
\[u(t) \leq K + \int_t^T u(s)\psi(s)ds, t \in [0, T], K > 0. \]

Then \(u(t) \leq K \exp \int_t^T \psi(s)ds, \forall t \in [0, T]. \)
Proof. Let $G(t) = K + \int_t^T u(s) \psi(s) ds$, then $G'(t) = -u(t)\psi(t) \geq -\psi(t)G(t)$, i.e.

\[
\frac{G'(t)}{G(t)} \geq -\psi(t).
\]

Integrating the above inequality from t to T we have

\[
\ln K - \ln G(t) \geq -\int_t^T \psi(s) ds,
\]

i.e. $G(t) \leq K \exp \int_t^T \psi(s) ds$. Then

\[
u(t) \leq G(t) \leq K \exp \int_t^T \psi(s) ds.
\]

Lemma 2.5. Let assumption (H_1) be satisfied and $A \in \mathbb{R}^+$. Then there exists a positive constant P depending only on A such that for any solution x of BVP (2.5), (1.6) with a $\mu \in \mathbb{R}^+ \supseteq \Phi_m(\lambda)\mu_*$ and so $\mu \leq \mu_*$.

Following we will show $\|x^{(j)}\| \leq P$, $j = 0, \ldots, n - 1$. We finish the proof by three steps.

Step 1. It follows from boundary condition that

\[
x^{(i)}(t) = \int_0^t \frac{(t-s)^{p-i-1}}{(p-i-1)!} \left(\int_s^1 \frac{(\theta-s)^{n-p-2}}{(n-p-2)!} |x^{(n-1)}(\theta)| d\theta \right) ds, \quad i = 0, \ldots, p - 1. (2.10)
\]

\[
(-1)^2n-p-i x^{(i)}(t) = \int_t^1 \frac{(\theta-t)^{n-i-2}}{(n-i-2)!} |x^{(n-1)}(\theta)| d\theta, \quad i = p, \ldots, n - 2. (2.11)
\]

It follows from (2.11) that

\[
|x^{(i)}(t)| \leq \frac{(1-t)^{n-i-1}}{(n-i-1)!} |x^{(n-1)}(t)|, \quad i = p, \ldots, n - 1. (2.12)
\]

From (2.10) we have

\[
\|x^{(i)}\| \leq \frac{1}{(p-i-1)!(n-p-1)!} \|x^{(n-1)}\|, \quad i = 0, \ldots, p - 1. (2.13)
\]

Step 2. Prove $|x^{(n-1)}(t)| \leq P$, $t \in [0, 1]$.

\[
\mu \leq \mu_* \text{ and } \|x^{(j)}\| \leq P \text{ for } 0 \leq j \leq n - 1, (2.9)
\]

where μ_* is defined in Lemma 2.3.
For any small $\varepsilon > 0$, there is $\delta > 0$ so that
\[|g_i(t, x_i)| < (\alpha_i + \varepsilon)(\Phi_m(|x_i|))^{k_i} \]
uniformly for $t \in [0, 1]$, $k_i \in (0, 1)$ and $|x_i| > \delta, i = 0, \ldots, p - 1$,
and
\[|g_i(t, x_i)| < (\beta_i + \varepsilon)\Phi_m(|x_i|) \]
uniformly for $t \in [0, 1]$, and $|x_i| > \delta, i = p, \ldots, n - 1$.

Let, for $i = 0, \ldots, n - 1$,
\[
\Delta_{1,i} = \{ t : t \in [0, 1], |x_i(t)| \leq \delta \},
\]
\[
\Delta_{2,i} = \{ t : t \in [0, 1], |x_i(t)| > \delta \},
\]
\[g_{\delta,i} = \max_{t \in [0, 1], |x_i(t)| \leq \delta} g_i(t, x_i). \]

For some $m > 0, t \in [0, 1],$
\[
(-1)^{n-p}(\Phi_m x^{(n-1)}(t)) = \mu f_m(t, x(t), \ldots, x_{n-1}(t)). \number{2.14}
\]

Integrating the above equality from t to 1, noticing Lemma 2.2, (1.9), (1.10), (2.4) and (2.12) (2.13) we have
\[
\Phi_m(|x^{(n-1)}(t)|) \leq \mu* \int_0^1 \left[\phi(s) + \sum_{i=0}^{p-1} q_i(s)\omega_i(s^{p-1}\Gamma) + \sum_{i=p}^{n-1} q_i(s)\omega_i(P_i(s)) \right] ds
\]
\[+ \sum_{i=0}^{n-1} \int_{\delta_i, i \cap [0,1]} g_i(s, x(s))ds + \sum_{i=0}^{n-1} \int_{\delta_i, i \cap [0,1]} g_i(s, x^{(i)}(s))ds \]
\[\leq \mu* \left[A + \sum_{i=0}^{n-1} g_{\delta,i} + \sum_{i=0}^{n-1} \int_{\delta_i, i \cap [0,1]} g_i(s, x^{(i)}(s))ds \right] \]
\[\leq \mu* \left[A + \sum_{i=0}^{n-1} g_{\delta,i} + \sum_{i=0}^{p-1} (\alpha_i + \varepsilon) \left(\Phi_m \left(\frac{|x^{(n-1)}(0)|}{(p-i-1)!(n-p-1)!} \right) \right)^{k_i} \right. \]
\[+ \int_0^1 \sum_{i=p}^{n-1} (\beta_i + \varepsilon)\Phi_m \left(\left(\frac{1-s}{n-i-1} \right)^{n-i-1} \right) \Phi_m(|x^{(n-1)}(s)|)ds \]
\[\left. + \int_0^1 \sum_{i=0}^{p-1} ||q_i||_{\infty} \lambda_i (s^{p-1}) \omega_i(\Gamma) + \sum_{i=p}^{n-1} ||q_i||_{\infty} \omega_i(P_i(s)) \right] ds, \]
i.e.
\[
|\Phi_m(x^{(n-1)}(t))| \leq \left(C + D \left(\Phi_m(|x^{(n-1)}(0)|) \right)^{k_i} \right) + \int_0^1 E(s)\Phi_m(|x^{(n-1)}(s)|)ds.
\]

where
\[
\Lambda = \int_0^1 \left[\phi(s) + \sum_{i=0}^{p-1} ||q_i||_{\infty} \lambda_i (s^{p-1}) \omega_i(\Gamma) + \sum_{i=p}^{n-1} ||q_i||_{\infty} \omega_i(P_i(s)) \right] ds,
\]
\[C = 2\mu_* \left[\Lambda + \sum_{i=0}^{n-1} g_\delta,i \right], \]

\[D = 2\mu_* \sum_{i=0}^{p-1} (\alpha_i + \varepsilon) \left(\Phi_m \left(\frac{1}{(p-i-1)!(n-p-1)!} \right) \right)^{k_i}, \]

\[E(t) = 2\mu_* \sum_{i=p}^{n-1} (\beta_i + \varepsilon) \Phi_m \left(\frac{(1-t)^{n-i-1}}{(n-i-1)!} \right). \]

By Lemma 2.4 and keep in mind \(k_i \in (0, 1) \), so there exists \(P \) (which does not independent on \(\lambda \)) such that \[|x^{(n-1)}(0)| = \|x^{(n-1)}\| \leq P. \]

Step 3. Prove \(\|x^{(i)}\| \leq P \) for \(i = 0, 1, \ldots, n - 1 \).

By (2.12) (2.15) and Step 2, we have

\[\|x^{(i)}\| \leq \frac{P}{(n-i-1)!} \leq P, \quad \text{for} \quad i = p, \ldots, n - 2, \]

\[\|x^{(i)}\| \leq \frac{P}{(n-p-1)!(p-i-1)!} \leq P, \quad \text{for} \quad i = 0, \ldots, p - 1. \]

Thus \(\|x^{(i)}\| \leq P \) for \(i = 0, 1, \ldots, n - 1 \).

Lemma 2.6. Let assumption \((H_1) \) be satisfied and \(A \in R_+ \). Let BVP (2.5), (1.6), (1.7) has a solution \(x_m \) for each \(m \in N \) with \(\mu = \mu_m \) in (2.5). Then the sequence \[\{\mu_m f_m(t, x_m(t), \ldots, x_m^{(n-1)}(t))\} \subset L_1(J) \]

is uniformly absolutely continuous on \(J \), that is for each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[\mu_m \int_{\mathcal{M}} f_m(t, x_m(t), \ldots, x_m^{(n-1)}(t))dt < \varepsilon \]

for any measurable set \(\mathcal{M} \subset J, \mu(\mathcal{M}) < \delta. \)

Proof. With respect to (2.5) and properties of measurable sets, it is sufficient to verify that for every \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that for any at most countable set \(\{(a_j, b_j)\}_{j \in J} \) of mutually disjoint intervals \(\{(a_j, b_j)\}_{j \in J} \) with \(\sum_{j \in J} (b_j - a_j) < \delta \), we have for each \(m \in N \),

\[\sum_{j \in J} \int_{a_j}^{b_j} \left[\phi(t) + \sum_{i=0}^{n-1} q_i(t)\omega_i(|x_m^{(i)}|) + \sum_{i=0}^{n-1} g_i(t, x_m^{(i)}(t)) \right] dt < \varepsilon. \quad (2.15) \]

By Lemma 2.2 we have

\[x_m^{(i)}(t) \geq t^{p-i-1} \Phi(t), \quad i = 0, \ldots, p - 1, \quad t \in J, \]

\[|x_m^{(i)}(t)| \geq P_i(t), \quad i = p, \ldots, n - 1, \quad t \in J. \quad (2.16) \]
In addition by Lemma 2.4
\[\|x_m^{(j)}\| \leq P, \quad i = 0, \ldots, p - 1. \] (2.17)

From (1.12), (2.16), (2.17) we have
\[\sum_{j \in J} \int_{a_j}^{b_j} \left[\phi(t) + \sum_{i=0}^{n-1} q_i(t) \omega_i(|x_m^{(j)}|) + \sum_{i=0}^{n-1} g_i(t, x^{(i)}(t)) \right] dt \]
\[\leq \sum_{j \in J} \int_{a_j}^{b_j} \left[\phi(t) + \sum_{i=0}^{p-1} q_i(t) \omega_i(t^{p-i}) \omega_i(\Gamma) + \sum_{i=p}^{n-1} q_i(t) \omega_i(P_i(t)) + \sup_{(t,x) \in [0,1] \times [0,P]} g_i(t, x_i) \right] dt. \]

By (H_1), we know that \(\phi, h_j \in L_1(J), q_i \in L_\infty(J), \int_0^1 \omega_i(t^{p-i}) dt < \infty, i = 0, \ldots, p - 1, \int_0^1 \omega_i(P_j(s)) ds < \infty, j = p, \ldots, n - 1. \) Consequently, for each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any at most countable set \(\{(a_j, b_j)\} \in J \) of mutually disjoint intervals \((a_j, b_j) \subset J \) with \(\sum_{j \in J} (b_j - a_j) < \delta. \) So (2.17) holds.

3. Existence results

Theorem 3.1. Suppose that the assumption (H_1) is satisfied and \(A \in R_+. \) Then for each \(m \in N \) there exists a solution \(x_m \) of BVP (2.5), (1.6), (1.7) with \(\mu = \mu_m \) in (2.5), and
\[\|x_m^{(j)}\| \leq P \quad \text{for } m \in N, j = 0, \ldots, n - 1 \] (3.1)
and
\[0 < \mu_m \leq \mu*. \] (3.2)

Proof. Fix \(m \in N. \) Set
\[\Omega = \{(x, \mu) : (x, \mu) \in C^n(J) \times R, \|x^{(j)}\| < P + 1 \text{ for } j = 0, \ldots, n - 1, |\mu| < \mu* + 1\}. \]

Then \(\Omega \) is a bounded, open and symmetric with respect to \((0,0)\) subset of the Banach space \(C^n(J) \times R \) endowed with the norm \(\|(x, \mu)\| = \sum_{i=0}^{n-1} \|x^{(i)}\| + |\mu|. \) Define the operator \(F_1 : \Omega \rightarrow C^n(R) \times R \) by
\[F_1(x, \mu) = \left((-1)^{n-p-1} \int_0^1 G(t, s) \Phi_m' \left(\mu \int_s^1 f_m(r, x(r), \ldots, x^{(n-1)}(r)) dr \right) ds, \right. \]
\[\left. \max\{x(t) : t \in J\} + \min\{x(t) : t \in J\} + \mu, \right) \]
where \(G \) is defined in Lemma 2.1. We first show that
\[D(I - F_1, \Omega, 0) \neq 0, \] (3.3)
where D stands for the Leray-Schauder degree and I is the identity operator on $C^n(J) \times R$. To prove (3.3) we define the operator $H : [0, 1] \times \overline{\Omega} \rightarrow C^{n-1}(J) \times R$,

$$H(\lambda, x, \mu) = \left(-1 \right)^{n-p-1} \int_0^1 G(t, s) \Phi_{m'} \left[\mu(1-\lambda) + \mu \lambda \int_s^1 f_m(r, x(r), \ldots, x^{(n-1)}(r))dr \right] ds,$$

$$\lambda \left[\max \{x(t) : t \in J\} + \min \{x(t) : t \in J\} \right] + (1 - \lambda)x(1/2) + \mu.$$

Then

$$H(0, -x, -\mu) = \left(-1 \right)^{n-p-1} \int_0^1 G(t, s) \Phi_{m'}(\mu)ds, -x(1/2) - \mu = -H(0, x, \mu)$$

for $(x, \mu) \in \overline{\Omega}$ and so H is an odd operator. Due to the fact that $f_m \in Car(J \times R^{n-1})$, H is a compact operator. Assume that $H(\lambda_0, x_0, \mu_0) = (x_0, \mu_0)$ for some $\lambda_0 \in [0, 1]$ and $(x_0, \mu_0) \in \partial\Omega$. Then

$$x_0(t) = (-1)^{n-p-1} \int_0^1 G(t, s) \Phi_{m'} \left[\mu(1-\lambda_0) + \mu \lambda_0 \int_s^1 f_m(r, x_0(r), \ldots, x_0^{(n-1)}(r))dr \right] ds$$

for $t \in J$ and

$$\lambda_0 \left[\max \{x_0(t) : t \in J\} + \min \{x_0(t) : t \in J\} \right] + (1 - \lambda_0)x_0(1/2) = 0. \quad (3.5)$$

Also from (2.3) it follows that

$$x_0(0) = 0, x'_0(t) \geq 0, t \in J.$$

So $x_0(t) > 0$ for $t \in (0, 1)$ and $\min \{x_0(t) : t \in J\} = 0$. Therefore

$$\lambda_0 \left[\max \{x_0(t) : t \in J\} + \min \{x_0(t) : t \in J\} \right] + (1 - \lambda_0)x_0(1/2)$$

$$= \lambda_0 \max \{x_0(t) : t \in J\} + (1 - \lambda_0)x_0(1/2) > 0,$$

contrary to (3.5). If $\mu_0 < 0$, then $x_0(t) < 0$ for $t \in (0, 1)$. By (2.3) $x_0(0) = 0, x'_0(0) \leq 0, t \in J$, so $\max \{x_0(t) : t \in J\} = 0$. Hence

$$\lambda_0 \left[\max \{x_0(t) : t \in J\} + \min \{x_0(t) : t \in J\} \right] + (1 - \lambda_0)x_0(1/2)$$

$$= \lambda_0 \min \{x_0(t) : t \in J\} + (1 - \lambda_0)x_0(1/2) < 0,$$

contrary to (3.5). If $\mu_0 = 0$ and then (3.4) gives $x_0 = 0$. Consequently, $(x_0, \mu_0) = (0, 0)$, contrary to $(x_0, \mu_0) \in \partial\Omega$. The Borsuk antipodal theorem and the Leray-Schauder degree theory lead to $D(I - H(0, \cdot, \cdot), \Omega, 0) \neq 0$ and

$$D(I - F_1, \Omega, 0) = D(I - H(1, \cdot, \cdot), \Omega, 0) = D(I - H(0, \cdot, \cdot), \Omega, 0)$$

which implies (3.3).
Finally, let $\mathcal{F} : \overline{\Omega} \to C^n(J) \times R$ be defined by the formula

$$\mathcal{F}(x, \mu) = \left((-1)^{n-p-1} \int_0^1 G(t, s) \Phi_{m'} \left[\mu \int_s^1 f_m(r, x(r), \ldots, x^{(n-1)}(r)) \, dr \right] ds, \right.$$

$$\left. \max\{x(t) : t \in J\} + \min\{x(t) : t \in J\} - A + \mu \right).$$

We claim that to prove our theorem it is sufficient to verify:

$$D(I - \mathcal{F}, \Omega, 0) \neq 0.$$ \hfill (3.6)

In fact, if (3.6) is true, then there exists a fixed point $(\hat{x}, \hat{\mu}) \in \Omega$ of the operator \mathcal{F}. Hence

$$\hat{x}(t) = (-1)^{n-p-1} \int_0^1 G(t, s) \Phi_{m'} \left[\hat{\mu} \int_s^1 f_m(r, \hat{x}(r), \ldots, x^{(n-1)}(r)) \, dr \right] ds$$

for $t \in J$ and

$$\max\{\hat{x}(t) : t \in J\} + \min\{\hat{x}(t) : t \in J\} = A.$$ \hfill (3.8)

Moreover, $\hat{\mu} > 0$ since in the case of $\hat{\mu} \leq 0$ (3.7) and Lemma 2.1 gives for $\hat{x}(t) \leq 0$ for $t \in J$, so $\max\{\hat{x}(t) : t \in J\} = 0$, contrary to (3.8). Therefore (see (3.7)) \hat{x} is a solution of BVP (2.4), (1.6) with $\mu = \hat{\mu}$ in (2.4), and for $t \in (0, 1)$. So $\min\{\hat{x}(t) : t \in J\} = 0$. Then, by (3.8), $\max\{\hat{x}(t) : t \in J\} = A$, and we see that \hat{x} is a solution of BVP (2.4), (1.6), (1.7).

In order to prove (3.6) we consider the operator $\mathcal{H} : [0, 1] \times \overline{\Omega} \to C^n(J) \times R$,

$$\mathcal{H}(\lambda, x, \mu) = \left((-1)^{n-p-1} \int_0^1 G(t, s) \Phi_{m'} \left[\mu \int_s^1 f_m(r, x(r), \ldots, x^{(n-1)}(r)) \, dr \right] ds, \right.$$

$$\left. \max\{x(t) : t \in J\} + \min\{x(t) : t \in J\} - \lambda A + \mu \right).$$

Then, $\mathcal{H}(1, \cdot, \cdot) = \mathcal{F}$, $\mathcal{H}(0, \cdot, \cdot) = \mathcal{F}_1$ and, by (3.3),

$$D(I - \mathcal{H}(0, \cdot, \cdot), \Omega, 0) \neq 0.$$ \hfill (3.9)

Assume that $\mathcal{H}(\lambda_1, x_1, \mu_1) = (x_1, \mu_1)$ for some $\lambda_1 \in [0, 1]$ and $(x_1, \mu_1) \in \partial \Omega$. If $\mu_1 = 0$ then from the equality

$$x_1(t) = (-1)^{n-p-1} \int_0^1 G(t, s) \Phi_{m'} \left[\mu_1 \int_s^1 f_m(r, x_1(r), \ldots, x_1^{(n-1)}(r)) \, dr \right] ds, \quad (3.10)$$

for $t \in J$, we get $x_1 = 0$, contrary to $(x_1, \mu_1) = (0, 0) \in \partial \Omega$. let $\mu_1 < 0$. Then (see (3.10)) $x_1(t) < 0$ on $(0, 1)$, and $\max\{x_1(t) : t \in J\} = 0$, contrary to $\max\{x_1(t) : t \in J\} + \min\{x_1(t) : t \in J\} = \lambda_1 A$. hence $\mu_1 > 0$ and then x_1 is a solution of BVP (2.5), (1.6) with $\max\{x(t) : t \in J\} = \lambda A$. Moreover, by Lemma 2.5, $\|x_1^{(j)}\| \leq P$ for $0 \leq j \leq n-1$ and $0 < \mu \leq \mu_*$. Consequently, $(x_1, \mu_1) \notin \partial \Omega$, a contradiction. we have proved $\mathcal{F}(\lambda, x, \mu) \neq (x, \mu)$ for each $\lambda \in [0, 1]$ and $(x, \mu) \in \partial \Omega$, and since \mathcal{H} is a compact homotopy,

$$D(I - \mathcal{F}, \Omega, 0) = D(I - \mathcal{H}(1, \cdot, \cdot), \Omega, 0) = D(I - \mathcal{H}(0, \cdot, \cdot), \Omega, 0).$$
and then (3.9) gives (3.6), which finishes our proof.

Theorem 3.2. Suppose the assumptions (H_1) be satisfied and $A \in R^+$. Then there exists a solution of BVP (1.5), (1.6), (1.7) for each $A \in R^+$.

Proof. For each $m \in N$, there exists a solution x_m of BVP (2.5), (1.6), (1.7) with a $\mu = \mu_m$ by Theorem 3.1. Consider the sequence $\{x_m\}, \{\mu_m\}$. By Lemma 2.2, Lemma 2.5, $\{x_m^{(i)}\}, \{\mu_m\}$ are bounded for $i = 0, \ldots, n - 1$.

For $t_1, t_2 \in J, t_2 < t_1$,

$$|x_m^{(n-1)}(t_1) - x_m^{(n-1)}(t_2)| = \Phi_m' \left(\left| \int_0^{t_1} \mu_m f_m(t, x_m(t), \ldots, x_m^{(n-1)}(t)) dt \right| \right) - \Phi_m' \left(\left| \int_0^{t_2} \mu_m f_m(t, x_m(t), \ldots, x_m^{(n-1)}(t)) dt \right| \right).$$

We can use Lemma 2.6 and obtain that the sequence $\mu_m f_m(t, x_m(t), \ldots, x_m^{(n-1)}(t))$ is uniformly absolutely continuous on J. Moreover by the continuity of Φ_m' we have $\{x_m^{(n-1)}\}_m$ is equi-continuous on J. The Arzalà-Ascoli theorem guarantees the existence of a subsequence, such that $\{x_{m_k}\}, \{\mu_{m_k}\}$ is convergent in $C^0(J)$ and R respectively. Let $\lim_{k \to \infty} x_{m_k} = x, \lim_{k \to \infty} \mu_{m_k} = \hat{\mu}$, then $x \in C^{n-1}(J), x$ satisfies boundary condition (1.6), (1.7) and $0 \leq \hat{\mu} \leq \mu$.

We now prove $(-1)^{n-p}x^{(n-1)}(t) > 0, t \in [0, 1]$. If not, there exists $t_1 \in (0, 1)$ such that

$$(-1)^{n-p}x^{(n-1)}(t) > 0, t \in [t_1, 1), \quad (-1)^{n-p}x^{(n-1)}(t) = 0, t \in (0, t_1] \quad (3.11)$$

From (2.3) we obtain $x^{(i)}$ has at most one zero ξ_j on $[0, t_1]$ for $i = 0, \ldots, p - 1$. Now from the construction of $f_{m_k} \in Car(J \times R^{n-1})$ it follows that there exists a set $A \in J, \mu(A) = 0$ such that $f_{m_k}(t, \ldots, s)$ are continuous on R^{n-1} for each $t \in J \setminus A$ which implies that

$$\lim_{k \to \infty} \mu_{m_k} f_{m_k}(t, x_{m_k}(t), \ldots, x_{m_k}^{(n-1)}(t)) = \hat{\mu} f(t, x(t), \ldots, x^{(n-1)}(t))$$

for $t \in [0, t_1] \setminus A$. By Lemma 2.6 $\{\mu_{m_k} f_{m_k}(t, x_{m_k}(t), \ldots, x_{m_k}^{(n-1)}(t))\}$ is uniformly absolutely continuous on $[0, t_1]$. Then $\hat{\mu} f(t, x(t), \ldots, x^{(n-1)}(t)) \in L^1[0, t_1]$ and

$$\lim_{k \to \infty} \mu_{m_k} \int_t^{t_1} f_{m_k}(s, x_{m_k}(s), \ldots, x_{m_k}^{(n-1)}(s)) ds = \hat{\mu} \int_t^{t_1} f(s, x(s), \ldots, x^{(n-1)}(s)) ds$$

for $t \in [0, t_1]$ by Vitali’s convergence theorem. Noticing $x_{m_k}^{(n-1)}(t_1)$ is bounded, we assume it is convergent, and let $\lim_{k \to \infty} x_{m_k}^{(n-1)}(t_1) = d$. Taking the limit as $k \to \infty$ in the equality

$$x_{m_k}^{(n-1)}(t) = x_{m_k}^{(n-1)}(t_1) - (-1)^{n-k} \Phi_m' \left(\mu_{m_k} \int_t^{t_1} f_{m_k}(au, x_{m_k}(au), \ldots, x_{m_k}^{(n-1)}(\tau)) d\tau \right)$$
we get
\[x^{(n-1)}(t) = d - (-1)^n k \Phi_m \left(\mu \int_t^{t_1} f(\tau, x(\tau), \ldots, x^{(n-1)}(\tau)) d\tau \right) \]

There are two cases to consider:
Case(i) If \(\hat{\mu} = 0, x^{(n-1)}(t) = 0 \) for \(t \in [0, t_1] \), and the equality \(x^{(n-1)}(t_1) = 0 \) yields \(d = 0 \). Hence \(x^{(n-1)}(t) = 0 \) for \(t \in J \), contrary to (3.10).
Case(ii) If \(\hat{\mu} > 0 \). By (2.4), we have
\[|x^{(n-1)}(\tau)| \geq \Phi_m \left(\mu_m \int_0^1 f(\theta) d\theta \right), \quad k \in \mathbb{N} \]
(3.12)

Letting \(k \to \infty \) in (3.11) we have
\[|x^{(n-1)}(t)| \geq \Phi_m \left(\mu \int_0^1 f(\theta) d\theta \right), \quad t \in J \]

Hence \(|x^{(n-1)}(t)| > 0 \) for \(t \in [0, 1] \), contrary to (3.11). Thus \(|x^{(n-1)}(t)| > 0 \) for \(t \in [0, 1) \). So \(x^{(i)}(t) > 0, 0 \leq i \leq p-1 \) on \((0, 1) \), \((-1)^{n-p-1}x^{(i)}(t) > 0, p \leq i \leq n-1 \) on \([0, 1)\). Noticing \(\{x^{(n-1)}(0)\} \) is convergent. Let \(\lim_{k \to \infty} x^{(n-1)}(0) = \hat{d} \). Since \(\{\mu_m J_{m_k} (t, x_{m_k}(t), \ldots, x^{(n-1)}_{m_k})\} \) is uniformly absolutely continuous on \(J \) and
\[\lim_{k \to \infty} \mu_m J_{m_k} (t, x_{m_k}(t), \ldots, x^{(n-1)}_{m_k}) = \mu f(t, x(t), \ldots, x^{(n-1)}(t)). \]

By the Vitali’s Convergence theorem to get \(\hat{\mu} f(t, x(t), \ldots, x^{(n-1)}(t)) \in L_1(J) \) and letting \(k \to \infty \) in the equality
\[x^{(n-1)}_{m_k}(t) = x^{(n-1)}_{m_k}(0) + (-1)^n k \Phi_m \left(\mu_m \int_0^t f_{m_k}(s, x_{m_k}(s), \ldots, x^{n-1}_{m_k}(s)) ds \right), \quad t \in J \]

we get
\[x^{(n-1)}(t) = \hat{d} + (-1)^n k \Phi_m \left(\mu \int_0^t f(s, x(s), \ldots, x^{n-1}(s)) ds \right), \quad t \in J. \]
(3.13)

If \(\hat{\mu} = 0, x^{(n-1)}(t) = \hat{d} \) for \(t \in J \) and condition \(x^{(n-1)}(1) = 0 \) gives \(\hat{d} = 0 \). So \(x^{(n-1)}(t) = 0 \) for \(t \in J \). Without loss of generality, we suppose \(\|x^{(i)}\| = x(\xi) \).
\[\|x^{(i)}\| > \frac{x(i-1)(\xi_{i-1}) - x^{(i-1)}(0)}{\xi_{i-1}} > \|x^{(i-1)}\|, \quad 0 \leq i \leq p-1 \]

and
\[\|x^{(i)}\| > \frac{x^{(i-1)}(1) - x^{(i-1)}(\xi_{i-1})}{1 - \xi_{i-1}} > \|x^{(i-1)}\|, \quad p \leq i \leq n-1 \]

Thus \(\|x^{(i)}\| > \|x^{(i-1)}\| \) for \(0 \leq i \leq n-1 \). The fact \(x^{(n-1)}(t) = 0 \) for \(t \in J \) contradicts \(\|x^{(n-1)}\| > A \).
If $\hat{\mu} > 0$ and from (3.13) we see that $x \in AC^{n-1}(J)$ and x satisfies (1.5) a.e. on J. We have proved that x is a solution of BVP (1.5)-(1.7) with $\mu = \hat{\mu}$ in (1.5).

4. Example

Example 4.1. Let us consider the following fourth-order boundary value problem

$$\begin{aligned}
(f(y^{(3)}(t)))' &= \mu \left[1 - t + \frac{3}{i=0} q_i(t) y_i^{-\frac{1}{4}} + g_0(t) \sin(\Phi_3(y_0))^\frac{3}{2} + \frac{3}{i=1} g_i(t) \Phi_3(y_i) \right], \\
y(0) &= 0, \quad y'(1) = y''(1) = y^{(3)}(1) = 0,
\end{aligned}$$

with $\max\{y(t) : t \in [0, 1]\} = A, q_i \in L_\infty([0, 1]), g_i \in C[0, 1], m = 3, p = 1$ for $i = 0, 1, 2, 3$.

Corresponding to BVP (1.5)-(1.7) we have

$$f(t, y_0, y_1, y_2, y_3) = 1 - t + \frac{3}{i=0} q_i(t) y_i^{-\frac{1}{4}} + g_0(t) \sin(\Phi_3(y_0))^\frac{3}{2} + \frac{3}{i=1} g_i(t) \Phi_3(y_i)$$

where $\phi(t) = 1 - t, \omega_i(|y_i|) = |y_i|^{-\frac{1}{4}}, i = 0, 1, 2, 3, g_0(t, y_0) = g_0(t) \sin(\Phi_3(y_0))^\frac{1}{2}, g_i(t, y_i) = g_i(t) \Phi_3(y_i), i = 1, 2, 3$.

Then for any $A > 0$, there exists $\mu_A < \mu_* = \Phi_3\left(\frac{A}{T}\right)$ such that BVP (4.1) has a solution $y \in AC^3([0, 1])$.

To see (4.1) has a solution $y \in AC^3([0, 1])$, we apply theorem 3.2, It is easy to verify (H_1)

$$\lim_{|y_0| \to \infty} \sup_{t \in [0, 1]} \frac{g_0(t, y_0)}{(\Phi_3(|y_0|)))^{1/2}} = 0,$$

$$\lim_{|y_0| \to \infty} \sup_{t \in [0, 1]} \frac{g_i(t, y_i)}{(\Phi_3(|y_i|)))^{1/2}} = \sup_{t \in [0, 1]} g_i(t) \geq 0,$$

$$\int_0^1 \omega_0(s)ds < \infty,$$

$$\int_0^1 \omega_i(P_i(s))ds < \infty, \quad i = 1, 2, 3$$

hold. So applying Theorem 3.2, for any $A > 0$, there exists μ_A such that BVP (4.1) has a solution $y \in AC^3([0, 1])$.

References

School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China.

Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China.

E-mail: tianyu2992@163.com

Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, P.R. China.

E-mail: gew@bit.edu.cn