A STRENGTHENED SCHWARZ-PICK INEQUALITY FOR DERIVATIVES OF THE HYPERBOLIC METRIC*

WENFA YUAN, DONGLI CHEN AND PINGAN WANG

Abstract. This paper is to investigate the Schwarz-Pick inequality for the hyperbolic derivative. Our result is not only a contraction but also a contraction minus a positive constant and this improves Beardon's theorem greatly.

1. Introduction

In the open unit disk $D \subset C$ (where C is the complex plane), the hyperbolic metric ρ is defined by

$$\rho(z, w) = \frac{1}{2} \log \frac{1 + |\varphi_w(z)|}{1 - |\varphi_w(z)|},$$

where $\tau \in D$, $\varphi_{\tau} \in Aut(D)$, Aut(D) denotes the automorphism on D given by

$$\varphi_{\tau}(\lambda) = \frac{\tau - \lambda}{1 - \overline{\tau}\lambda}.$$

The Schwarz-Pick Lemma says that any analytic function $f: D \to D$ is nonincreasing under ρ , equivalently

$$\rho(f(z), f(w)) \le \rho(z, w), \quad \forall \ z, w \in D.$$

Mercer^{[4],[5]} proved a strengthened Schwarz-Pick inequality:

Lemma 1. Let $f: D \to D$ be analytic and $\tau \in D$. Then

$$\rho(f(z), f(w)) \le \rho(z, w) - B, \qquad (B \ge 0) \tag{1}$$

i.e.

$$\rho(f(z), f(w)) \le \rho(z, w) + \frac{1}{2} \log \left[1 - (1 - A) \frac{2|\varphi_z(w)|}{(1 + |\varphi_z(w)|)^2} \right], \quad \forall \ z, w \in D$$

Received November 22, 2004; revised March 11, 2005.

2000 Mathematics Subject Classification. 30C10.

Key words and phrases. Hyperbolic metric, derivative, analytic functions, Schwarz-Pick inequality.

Supported by the Special Science Foundation of the Educational Committee of Shaanxi Province (03JK065).

where

$$B = -\frac{1}{2} \log \left[1 - (1 - A) \frac{2|\varphi_z(w)|}{(1 + |\varphi_z(w)|)^2} \right]$$
(2)

and

$$A = \begin{cases} \frac{\alpha + |\varphi_{\tau}(w)|}{1 + \alpha |\varphi_{\tau}(w)|} & \text{if } \rho(z, \tau) \leq \rho(z, w), \\ \frac{\alpha + |\varphi_{\tau}(z)|}{1 - \alpha |\varphi_{\tau}(z)|} & \text{if } \rho(\tau, w) \leq \rho(z, w), \\ \frac{(|\varphi_w(z)| - \alpha)(u^2 + 1) + 2u(\alpha |\varphi_w(z)| - 1)}{2u(\varphi_w(z) - \alpha) + (\alpha \varphi_w(z) - 1)(u^2 + 1)} & \text{otherwise } (u = \max\{|\varphi_{\tau}(z)|, |\varphi_{\tau}(w)|\}). \end{cases}$$

Note that $A = \varphi_{\alpha}(-2u/(u^2+1))$ in the last line and hence $0 \le A \le 1$ in all cases, where $a = \varphi_{\alpha}(|\varphi_w(z)|)$.

 $Dieudone^{[3]}$ proved the following *result*:

Lemma 2. If $f: D \to D$ is analytic and f(0) = 0, then

$$|f'(z)| \leq \begin{cases} 1 & \text{if } |z| \leq \sqrt{2} - 1, \\ \\ \frac{(1+|z|^2)^2}{4|z|(1-|z|^2)} & \text{if } |z| > \sqrt{2} - 1; \end{cases}$$

Later he pointd out that the above inequality, i.e., the so-called Schwarz Lemma for the derivative of f is best possible for each value of $z \in D$.

The dick D is endowed with the hyperbolic metric $ds^* = 2dz/(1-|z|^2)$, and the hyperbolic derivative $f^*(z)$ of f at z is given by

$$f^*(z) = \left(\frac{1-|z|^2}{1-|f(z)|^2}\right)f'(z).$$

Beardon^{[1],[2]} obtained a Schwarz-Pick Lemma for derivatives, i.e.

Lemma 3. If $f: D \to D$ is analytic but not a conformal automorphism of D with f(0) = 0, then

$$\rho(f^*(0), f^*(z)) \le 2\rho(0, z). \tag{4}$$

Furthermore, "=" holds for each z if $f(z) = z^2$. Below we use *Mercer*'s result to improve *Beardon*'s.

2. Main Result and Its Proof

Let w = 0, then from (2) and (3), we get

$$B_0 = -\frac{1}{2} \log \left[1 - (1 - A_0) \frac{2|z|}{(1 + |z|)^2} \right],\tag{5}$$

where

$$A_{0} = \begin{cases} \frac{\alpha + |\tau|}{1 + \alpha |\tau|} & \text{if } \rho(z, \tau) \leq \rho(z, 0), \\ \frac{\alpha + |\varphi_{\tau}(z)|}{1 + \alpha |\varphi_{\tau}(z)|} & \text{if } \rho(\tau, 0) \leq \rho(z, 0), \\ \frac{(|z| - \alpha)(u^{2} + 1) + 2u(\alpha |z| - 1)}{2u(|z| - \alpha) + (\alpha |z| - 1)(u^{2} + 1)} & \text{otherwise } u = \max\{|\varphi_{\tau}(z)|, |\tau|\}. \end{cases}$$
(6)

We have as a consequence:

Theorem. If $f : D \to D$ is analytic but not a conformal automorphism of D with $f(0) = 0, z \in D$, then

$$\rho(f^*(0), f^*(z)) \le 2\rho(0, z) - 2B_0, \tag{7}$$

where B_0 and A_0 are defined as in (5) and (6), and $f^*(z) = \frac{1-|z|^2}{1-|f(z)|^2} \cdot f'(z)$ is the hyperbolic derivative. Furthermore, "=" holds for each z if $f(z) = z^2$.

We begin with a preliminary Lemma:

Lemma 4. Let $z_0, w_0 \in D$ and $|w_0| < |z_0|$. If $f : D \to D$ is analytic with f(0) = 0, $f(z_0) = w_0$, then both $f^*(0)$ and $f^*(z_0)$ lie in the closed hypertolic disc $D = \{z | \rho(z, w_0/z_0) \le \rho(0, z_0) - B_0\}$.

Proof. As in [1], we are given z_0 and w_0 in D, so we define maps $h: D \to D$ and $g: D \to D$ by

$$h = \frac{f(z)}{z}, \quad \frac{f(z) - f(z_0)}{1 - f(z) \cdot \overline{f(\overline{z}_0)}} = g(z)(\frac{z - z_0}{1 - \overline{z}_0 z}),$$

Then

$$h(0) = f'(0) = f^*(0), \quad h(z_0) = \frac{w_0}{z_0}, \quad g(0) = \frac{w_0}{z_0}, \quad g(z_0) = f^*(z_0).$$

Using (1) and (5), then we get

$$\rho(f^*(0), w_0/z_0) = \rho(h(0), h(z_0)) \le \rho(0, z_0) - B_0
\rho(f^*(z_0), w_0/z_0) = \rho(g(0), g(z_0)) \le \rho(0, z_0) - B_0$$
(8)

This completes the proof of Lemma 4.

Proof of Theorem.

From the Lemma, we have

$$\rho(f^*(0), f^*(z_0)) \le \rho(f^*(0), \frac{w_0}{z_0}) + \rho(f^*(z_0), \frac{w_0}{z_0}) \le \rho(0, z_0) - B_0 + \rho(0, z_0) - B_0$$

= $2\rho(0, z_0) - 2B_0$,

where B_0 and A_0 are given by (5) and (6) respectively. If $f(z) = z^2$, then $f^*(0) = 0$, $f^*(z) = \frac{2z}{1+|z|^2}$, and $B_0 = 0$. Therefore $\rho(0, z) = \log \frac{1+|z|}{1-|z|}$ and this completes the proof.

References

- A. F. Beardon. The Schwarz-Pick lemma for derivatives, Pro. Amer. Math. Soc. 125 (1997), 3255-3256.
- [2] A. F. Beardon and T. K. Came. A strengthening of the Schwarz-Pick inequality, Amer. Math. Monthly 99 (1992), 216-217.
- [3] J. Dieudone. Recherches sur quelques problem relatifs aux polynomes et aux functions bornees d'une variable complexe, Ann. Sci. Ecole Norm. Sup. 48 (1931), 247-358.
- [4] P. R. Mercer. On a strengthened Schwarz-Pick inequality, J. Math. Anal. and Appl. 234 (1999), 735-759.
- [5] P. R. Mercer. Sharpened versions of the Schwarz lemma, J. Math. Anal. and Appl. 205 (1997), 508-511.

College of Science, Xi'an University of Architecture & Technology, Xi'an Shaanxi 710055, P. R. China.