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MONOTONICITY OF SEQUENCES INVOLVING GENERALIZED
CONVEXITY FUNCTION AND SEQUENCES

NGUYEN NGOC HUE AND DUONG QUOC HUY

Abstract. In this paper, by using the theory of generalized convexity functions we intro-
duce and prove monotonicity of sequences of the forms{(

n∏
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f

(
ak

an

))1/n}
,
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k=1
f

(
φ(k)

φ(n)

))1/φ(n)}
,

{
1

n

n∑
k=1

f

(
an

ak

)}
or

{
1

φ(n)

n∑
k=1

f

(
φ(n)

φ(k)

)}
,

where f belongs to the classes of AG-convex (concave), H A-convex (concave), or HG-
convex (concave) functions defined on suitable intervals, {an} is a given sequence and
φ is a given function that satisfy some preset conditions. As a consequence, we obtain
some generalizations of Alzer type inequalities.

1. Introduction

Let f be a real-valued function defined on [a,b] ⊂R. The function f is called convex if

f (λx + (1−λ)y) ≤λ f (x)+ (1−λ) f (y). (1.1)

for all x, y ∈ [a,b] and λ ∈ [0,1]. If (1.1) is strict for all x ̸= y and λ ∈ (0,1), then f is said to

be strictly convex. If the inequality in (1.1) is reversed, then f is said to be concave. If the

inequality (1.1) is reversed and strict for all x ̸= y and λ ∈ (0,1), then f is said to be strictly

concave.

Suppose that I is a subinterval of (0,∞). A function f : I → (0,∞) is called multiplicatively

convex if for all x, y ∈ I and λ ∈ [0,1],

f (xλy1−λ) ≤ f (x)λ f (y)1−λ. (1.2)
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If (1.2) is strict for all x ̸= y and λ ∈ (0,1), then f is said to be strictly multiplicatively convex.

If the inequality in (1.2) is reversed, then f is said to be multiplicatively concave. If inequality

(1.2) is reversed and strict for all x ̸= y and λ ∈ (0,1), then f is said to be strictly multiplicatively

concave.

In [3], F. Qi and B.-N. Guo proved the following theorems:

Theorem 1.1 ([3]). Let f be an increasing, convex (concave, respectively) function defined on

[0,1], {an} an increasing, positive sequence such that {n
( an

an+1
−1

)
} decreases (the sequence {n

( an+1
an

−
1
)
} increses, respectively), then

1

n

n∑
k=1

f

(
ak

an

)
≥ 1

n +1

n+1∑
k=1

f

(
ak

an+1

)
≥

∫ 1

0
f (x)d x (1.3)

and

Theorem 1.2 ([3]). Let f be an increasing convex (or concave) positive function defined on

[0,1], φ be an increasing convex positive function defined on (0,∞) such that {φ(k)
( φ(k)
φ(k+1) −1

)
}

decreases, then
1

φ(n)

n∑
k=1

f

(
φ(k)

φ(n)

)
≥ 1

φ(n +1)

n+1∑
k=1

f

(
φ(k)

φ(n +1)

)
. (1.4)

Jiding Liao and Kaizhong Guan [2] proved the following theorems:

Theorem 1.3 ([2]). Let f be a positive function defined in (0,1]. Suppose that {an} is an increas-

ing positive sequence such that the sequence {
( an+1

an

)n} increases.

(1) If f is an increasing and multiplicatively convex (concave) function, then(
n∏

k=1
f

(
ak

an

))1/n

≥
(

n+1∏
k=1

f

(
ak

an+1

))1/(n+1)

. (1.5)

(2) If f is an decreasing and multiplicatively convex (concave) function, then(
n∏

k=1
f

(
ak

an

))1/n

≤
(

n+1∏
k=1

f

(
ak

an+1

))1/(n+1)

. (1.6)

and

Theorem 1.4 ([2]). Let f : (0,1] → [1,+∞) be a real-valued function and {an} an increasing

positive sequence such that the sequence {
( an+1

an

)an } increases. Then the following statements

are valid.
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(1) If f is an increasing and multiplicatively convex (concave) function and {an} is convex

sequence, i.e., an−1 +an+1 ≥ 2an , (n = 1,2, . . .) where a0 = 0, then(
n∏

k=1
f

(
ak

an

))1/an

≥
(

n+1∏
k=1

f

(
ak

an+1

))1/an+1

. (1.7)

(2) If f is an decreasing and multiplicatively convex (concave) function and {an} is concave

sequence, i.e., an−1 +an+1 ≤ 2an , (n = 1,2, . . .) where a0 = 0, then(
n∏

k=1
f

(
ak

an

))1/an

≤
(

n+1∏
k=1

f

(
ak

an+1

))1/an+1

. (1.8)

The above results are valid for the convex (concave) function and multiplicatively convex

(concave) function. In [1], the authors introduced the class of mean function and generalized

convexity. The class related directly to convex (concave) function.

Definition 1.1 ([1]). A function M : (0,∞)× (0,∞) → (0,∞) is called a mean function if

(1) M(x, y) = M(y, x);

(2) M(x, x) = x;

(3) x < M(x, y) < y, whenever x < y ;

(4) M(ax, ay) = aM(x, y) for all a > 0.

Some familiar mean functions such as Arithmetic Mean, Geometric Mean, Harmonic

Mean, Logarithmic Mean, Identric Mean and denoted by A,G , H ,L, I , respectively. For details

concerning mean functions A,G , H ,L, I we refer to the papers [1] and [5].

Definition 1.2 ([1]). Let f : I → (0,∞) be continuous, where I is a subinterval of (0,∞). Let M

and N be any two mean functions. We say f is M N -convex (concave) if

f (M(x, y)) ≤ (≥) N ( f (x), f (y)), (1.9)

for all x, y ∈ I .

From Definition 1.2, the inequalities (1.1) and (1.2) can be rewritten under the simple

forms

f (A(x, y)) ≤ A( f (x), f (y)) and f (G(x, y)) ≤G( f (x), f (y)).

More precisely, f is A A-convex for the first case and GG-convex for the second case.

Our main purpose of this paper is to present some inequalities which are similar to the

results in [2] and [3] for some generalized convexity functions such as AG-convex (concave),

H A-convex (concave) and HG-convex (concave).
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2. The main results

In this section, we investigate the monotonicity of some sequences involving AG , H A,

HG- convex (concave) function and convex sequence.

Theorem 2.1. Let f be an increasing, AG-convex (concave, respectively) function defined on

(0,1].

(1) If {an} is an increasing, positive sequence such that {n
( an

an+1
−1

)
} decreases (the sequence

{n
( an+1

an
−1

)
} increses, respectively), then(

n∏
k=1

f

(
ak

an

))1/n

≥
(

n+1∏
k=1

f

(
ak

an+1

))1/(n+1)

. (2.1)

(2) If φ is an increasing convex positive function defined on (0,∞) such that {φ(k)
( φ(k)
φ(k+1) −

1
)
} decreases, then (

n∏
k=1

f

(
φ(k)

φ(n)

))1/φ(n)

≥
(

n+1∏
k=1

f

(
φ(k)

φ(n +1)

))1/φ(n+1)

. (2.2)

Proof. Here we only give the proof of the AG-convex, since that the AG-concave is similar and

we omit it.

By Theorem 2.4 in [1], the function f is AG-convex (concave) if and only if ln f is convex

(concave). Obviously, ln f increases by the increase of f . Hence, applying Theorem 1.1 for

ln f , we have
1

n

n∑
k=1

ln f

(
ak

an

)
≥ 1

n +1

n+1∑
k=1

ln f

(
ak

an+1

)
.

It is equivalent to

ln
n∏

k=1
f

(
ak

an

)1/n

≥ ln
n+1∏
k=1

f

(
ak

an+1

)1/(n+1)

⇔
(

n∏
k=1

f

(
ak

an

))1/n

≥
(

n+1∏
k=1

f

(
ak

an+1

))1/(n+1)

.

So, the proof of (2.1) is complete.

Analogously, if applying Theorem 1.2 for ln f , then

1

φ(n)

n∑
k=1

ln f

(
φ(k)

φ(n)

)
≥ 1

φ(n +1)
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(
φ(k)

φ(n +1)

)
.

Equivalently,
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f

(
φ(k)

φ(n)

)1/φ(n)

≥ ln
n+1∏
k=1

f

(
φ(k)

φ(n)

)1/φ(n+1)

⇔
(

n∏
k=1

f

(
φ(k)

φ(n)

))1/φ(n)

≥
(

n+1∏
k=1

f

(
φ(k)

φ(n +1)

))1/φ(n+1)

.

Hence, the inequality (2.2) is completely proved. ���
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Theorem 2.2. Let f be a decreasing, H A-convex (concave, respectively) function defined on

[1,+∞).

(1) If {an} an increasing, positive sequence such that {n
( an

an+1
−1

)
} decreases (the sequence

{n
( an+1

an
−1

)
} increses, respectively), then

1

n

n∑
k=1

f

(
an

ak

)
≥ 1

n +1

n+1∑
k=1

f

(
an+1

ak

)
. (2.3)

(2) If φ be an increasing convex positive function defined on (0,∞) such that {φ(k)
( φ(k)
φ(k+1) −

1
)
} decreases, then

1

φ(n)

n∑
k=1

f

(
φ(n)

φ(k)

)
≥ 1

φ(n +1)

n+1∑
k=1

f

(
φ(n +1)

φ(k)

)
. (2.4)

Proof. Here we only give the proof of (2), since that (1) is similar and we omit it.

By Theorem 2.4 in [1], the function f is H A-convex (concave) if and only if f
(
1/x

)
is

convex (concave). It’s easy to see that g (x) := f (1/x) increases by the decrease of f . Hence,

applying Theorem 1.2 for g , we have

1

φ(n)

n∑
k=1

g

(
φ(k)

φ(n)

)
≥ 1

φ(n +1)

n+1∑
k=1

g

(
φ(k)

φ(n +1)

)
.

Noting that, in the above inequality, g
(φ(k)
φ(n)

) = f
(φ(n)
φ(k)

)
for all k = 1,2, . . . ,n and g

( φ(k)
φ(n+1)

) =
f
(φ(n+1)

φ(k)

)
for all k = 1,2, . . . ,n +1, and so the proof of the inequality (2.4) is complete. ���

Theorem 2.3. Let f be a decreasing, HG-convex (concave, respectively) function defined on

[1,+∞).

(1) If {an} an increasing, positive sequence such that {n
( an

an+1
−1

)
} decreases (the sequence

{n
( an+1

an
−1

)
} increses, respectively), then

(
n∏

k=1
f

(
an

ak

))1/n

≥
(

n+1∏
k=1

f

(
an+1

ak

))1/(n+1)

. (2.5)

(2) If φ be an increasing convex positive function defined on (0,∞) such that {φ(k)
( φ(k)
φ(k+1) −

1
)
} decreases, then (

n∏
k=1

f

(
φ(n)

φ(k)

))1/φ(n)

≥
(

n+1∏
k=1

f

(
φ(n +1)

φ(k)

))1/φ(n+1)

. (2.6)

Proof. The proof runs as in the proof of Theorem 2.1. Here, the increase of ln f (1/x) is de-

duced from the decrease of f . ���
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Remark 2.4. In Theorem 1.1, if we replace f increasing with decreasing, then the inequality

(1.3) is reversed. That is

1

n

n∑
k=1

f

(
ak

an

)
≤ 1

n +1

n+1∑
k=1

f

(
ak

an+1

)
≤

∫ 1

0
f (x)d x (2.7)

Indeed, by the decrease of f on [0,1] we have − f is increasing. Therefore, applying directly

Theorem 1.1 for this function we obtain the inequality (2.7). This implies the inequality (2.1)

is reversed whenever f decreasing and the inequalities (2.3), (2.5) are reversed whenever f

increasing.

3. Corollaries

From these theorems, we can obtain many new inequalities related to Alzer’s inequality

and others or, similar inequalities to those in [3].

Corollary 3.1. Let φ be an increasing convex positive function defined on (0,∞) such that

{φ(k)
( φ(k)
φ(k+1) −1

)
} decreases, then

φ(n)
√∏n

k=1φ(k)

φ(n+1)
√∏n+1

k=1 φ(k)
≥ φ(n)n/φ(n)

φ(n +1)(n+1)/φ(n+1)
. (3.1)

Proof. Taking f (x) = x is an increasing function on (0,1]. Moreover, we have f ′(x)
f (x) = 1

x is a

decreasing function on (0,1]. By Corollary 2.5 in [1], f is AG-concave. So, applying Theorem

2.1 for this function we get the inequality (3.1). ���

Corollary 3.2. Let r > 0 and φ be an increasing convex positive function defined on (0,∞) such

that {φ(k)
( φ(k)
φ(k+1) −1

)
} decreases, then

1

φ(n)

n∑
k=1

φ(k)r

φ(n)r ≥ 1

φ(n +1)

n+1∑
k=1

φ(k)r

φ(n +1)r . (3.2)

Proof. Taking f (x) = 1/xr where r > 0 for x ∈ [1,+∞). Obviously, f is decreasing on [1,+∞).

Moreover, we have

g (x) := (x2 f ′(x))′ = (−r x1−r )′ = r (r −1)x−r , ∀x ∈ (1,+∞).

It’s easy to see that g (x) > 0 whenever r > 1 and g (x) < 0 whenever 0 < r < 1. So, by Corollary

2.5 in [1], f is H A-convex (concave) whenever r > 1 (0 < r < 1, respectively). So, applying

Theorem 2.2 for this function we get the inequality (3.2). ���
If taking f (x) = x1/x e1/x for x ∈ [1,+∞), then f is decreasing. And, we have x2 f ′(x)/ f (x) =

− ln x is a decreasing function on (1,+∞). Hence, by Corollary 2.5 in [1], f is HG-concave. By

applying direct Theorem 2.3, we obtain
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Corollary 3.3. For all natural number n, the following inequality is valid

n(n+1)/2n

(n +1)(n+2)/2(n+1)
e1/[2n(n+1)] ≥

n2
√∏n

k=1 kk

(n+1)2
√∏n+1

k=1 kk
. (3.3)
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