FUGLEDE-PUTNAM THEOREM AND QUASI-NILPOTENT PART OF n-POWER NORMAL OPERATORS

J. STELLA IRENE MARY AND P. VIJAYALAKSHMI

Abstract. In this article we show that the following properties hold for n-power normal operators T:

(i) T has the Bishop's property($\bar{\beta}$).
(ii) T is isoloid.
(iii) T is invariant under tensor product.
(iv) T satisfies the Fuglede-Putnam theorem.
(v) T is of finite ascent and descent.
(vi) The Quasi-nilpotent part of T reduces T.

1. Introduction

In this introductory section, we indicate the main trend of the ideas to be developed in this paper. Let H and K be complex Hilbert spaces and T a bounded linear operator on H, whose domain, range and null space lie in H. Let $L(H)$ denote the algebra of all bounded linear operators acting on H. An operator T is said to be n-power normal if $T^* T^n = T^n T^*$ where $n \in \mathbb{N}$. The class of n-power normal operators is denoted by $[nN]$. The class $[nN]$ was introduced by A. S. Jibril [15] and he characterized several properties of class $[nN]$. One of the properties frequently used in this paper is that $T \in [nN]$ if and only if T^n is normal. The normality of T^n enable us to study several properties of class $[nN]$. For example, in section 2 we give matrix representation for T and prove property($\bar{\beta}$).

Definition 1.1. An operator $T \in B(H)$ is said to have the property($\bar{\beta}$) at $\lambda \in \mathbb{C}$ if the following assertion holds:-

If $D \subset \mathbb{C}$ is an open neighbourhood of λ and if $f_n : D \to H(n = 1, 2, \ldots)$ are vector valued analytic functions such that $(T - \mu)f_n(\mu) \to 0$ uniformly on every compact subset of D, then $f_n(\mu) \to 0$, again uniformly on every compact subset of D, for all $\mu \in D$.
Property(β) has been proved for several operators such as hyponormal operators [21], (p,k)-quasi-hyponormal operators [26], class A operators [5], class $A(k)$ operators [19], paranormal operators [27], $*$-paranormal operators [7] and k-quasi-M-hyponormal operators [24].

Definition 1.2. An operator $T \in L(H)$ is said to be isoloid if every isolated point of $\sigma(T)$ is an eigen value of T.

Throughout this paper, the range, null space and the closure of the range of a bounded linear operator T, are denoted by ran T, ker T and $\overline{\text{ran}T}$ respectively. For convenience we write $(T - \lambda)$ in the place of $(T - \lambda I)$.

Two important subspaces in local spectral theory are $\chi_T(F)$, the glocal spectral subspace and $\chi_T(C - \{\lambda\})$.

Definition 1.3. For $T \in B(H)$ and a closed subset F of C the glocal spectral subspace $\chi_T(F)$ is defined as the set of all $x \in H$ such that there is an analytic H-valued function $f : C\setminus F \to H$ for which $(T - \lambda)f(\lambda) = x$ for all $\lambda \in C\setminus F$.

The quasinilpotent part of $(T - \lambda)$ is denoted by $H_0(T - \lambda)$ and defined as follows:

Definition 1.4.

$$H_0(T - \lambda) = \left\{ x \in H : \lim_{n \to \infty} \| (T - \lambda)^n x \|^{\frac{1}{n}} = 0 \right\}.$$

Note that the subspace $\chi_T(\{\lambda\})$ coincides with the quasinilpotent part of $(T - \lambda)$ while $\chi_T(C - \{0\})$ coincides with the analytic core $K(T)$ defined as the set $K(T - \lambda)$ of all $x \in H$ such that there exists $c > 0$ and a sequence $\{x_n\} \in H$ for which $(T - \lambda)x_1 = x, (T - \lambda)x_{n+1} = x_n$ and $\|x_n\| \leq c^n \|x\|$ for all $n \in \mathbb{N}$.

Vrbova’ [28] introduced the subspace $K(T)$ which is the analytic counterpart of the algebraic core $C(T)$. Saphar [25] introduced the subspace $C(T)$ in purely algebraic terms.

Definition 1.5. Let T be a linear operator on H. The algebraic core $C(T)$ is defined to be the greatest subspace M of H for which $T(M) = M$.

We note that $T^n(M) = M$ for all $n \in \mathbb{N}$.

The class of all upper semi-Fredholm operators is denoted by $\Phi_+(H)$ and is defined as,

$$\Phi_+(H) = \{ T \in L(H) : \alpha(T) < \infty \text{ and } T(H) \text{ is closed} \}$$

and the class of all lower semi-Fredholm operators is denoted by $\Phi_-(H)$ and is defined as,

$$\Phi_-(H) = \{ T \in L(H) : \beta(T) < \infty \}$$
where \(\alpha(T) \) and \(\beta(T) \) denote the dimension of the kernel of \(T \) and the codimension of the range of \(T \). The class of all semi-Fredholm operators is denoted by \(\Phi_{\pm}(H) \) and is defined as \(\Phi_{\pm}(H) = \Phi_{+}(H) \cup \Phi_{-}(H) \) and the class of Fredholm operators is denoted by \(\Phi(H) \) and is defined as \(\Phi(H) = \Phi_{+}(H) \cap \Phi_{-}(H) \).

Recall that the ascent \(p(T) \) of an operator \(T \) is the smallest non-negative integer \(p \) such that \(\ker T^p = \ker T^{p+1} \) and if such an integer does not exist then we put \(p(T) = \infty \). Analogously, descent \(q(T) \) of the operator \(T \) is the smallest non-negative integer \(q \) such that \(\operatorname{ran} T^q = \operatorname{ran} T^{q+1} \) and if such an integer does not exist then we put \(q(T) = \infty \). If \(p(T) \) and \(q(T) \) are finite then \(p(T) = q(T) \) \cite{12, Proposition 38.3}.

The class of all Weyl operators denoted by \(W(H) \) is defined by,

\[
W(H) = \{ T \in \Phi(H) : \operatorname{ind} T = 0 \text{ where } \operatorname{ind} T = \alpha(T) - \beta(T) \}.
\]

2. Main results

We begin with the matrix representation for \(T \in [nN] \).

Lemma 2.1 \cite{15}. \(T \in [nN] \) if and only if \(T^n \) is normal.

Lemma 2.2. Suppose \(T \in [nN] \) then \(\operatorname{ran} T^n \) reduces \(T \).

Proof. Since \(T \in [nN], T^n T^* = T^* T^n \). \(\operatorname{ran} T^n \) is invariant under \(T \) is obvious. We shall show that \(\operatorname{ran} T^n \) is invariant under \(T^* \). Let \(x \in \operatorname{ran} T^n \). Then \(x = T^n y \) for some \(y \in H \) and \(T^* x = T^* T^n y = T^n T^* y \in \operatorname{ran} T^n \).

Suppose \(z \) is a limit point of \(\operatorname{ran} T^n \), then there is a sequence \(\{ z_n \} \) in \(\operatorname{ran}(T^n) \) such that \(z_n \to z \). Since \(\{ z_n \} \) is a sequence in \(\operatorname{ran} T^n, z_n = T^n x_n, n = 1, 2, \ldots, n \in \mathbb{N}, x_n \in H \). \(T^* z_n = T^* T^n x_n = T^n T^* x_n \in \operatorname{ran} T^n \).

So \(\{ T^* z_n \} \) is a sequence in \(\operatorname{ran} T^n \). By the continuity of \(T^* \), the sequence \(\{ T^* z_n \} \to T^* z \in [\operatorname{ran} T^n] \). Thus \([\operatorname{ran} T^n] \) is invariant under \(T^* \) and \([\operatorname{ran} T^n] \) reduces \(T \).

Theorem 2.3. If \(T \) is \(n \)-power normal then \(T \) has the following matrix representation, \(T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix} \) on \(H = [\operatorname{ran} T^n] \oplus \ker T^* \) where \(T_1 = T|_{\operatorname{ran} T^n} \) is also an \(n \)-power normal operator and \(T_2 \) is a nilpotent operator with nilpotency \(n \). Furthermore \(\sigma(T) = \sigma(T_1) \cup \{0\} \).

Proof. By Lemma 2.2, \([\operatorname{ran} T^n] \) reduces \(T \). Hence \(T \) has the matrix representation, \(T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix} \) on \(H = [\operatorname{ran} T^n] \oplus \ker T^* \). Let \(P \) be the orthogonal projection onto \([\operatorname{ran} T^n]\). Then
\[
\begin{pmatrix}
T_1 & 0 \\
0 & 0
\end{pmatrix} = TP = PT = PTP.
\]

\[
P(T^n T^*) P = \begin{pmatrix}
T_1^n T_1^* & 0 \\
0 & 0
\end{pmatrix}.
\]

Also \(P(T^* T^n) P = \begin{pmatrix}
T_1^* T_1^n & 0 \\
0 & 0
\end{pmatrix}\).

Since \(T \in [nN]\), \(P(T^n T^*) P = P(T^* T^n) P\), implying \(T_1^n T_1^* = T_1^* T_1^n\). Hence \(T_1 \in [nN]\).

For any \(z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in H\),
\[
\langle T_2^n z_2, z_2 \rangle = \langle T^n (I - P) z, (I - P) z \rangle = \langle (I - P) z, T^{*n}(I - P) z \rangle = 0.
\]

Therefore \(T_2^n = 0\). Since \([ran T^n]\) reduces \(T\), \(\sigma(T) = \sigma(T_1) \cup \sigma(T_2) = \sigma(T_1) \cup \{0\}\). \(\square\)

Lemma 2.4. If \(T\) is an \(n\)-power normal operator and \(M\) is a reducing subspace of \(T\) then \(T|_M\) is also an \(n\)-power normal operator.

Proof. Since \(M\) is a reducing subspace of \(T\), it has the matrix representation, \(T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}\) on \(H = M \oplus M^\perp\). Let \(P\) be the orthogonal projection onto \(M\). Then \(\begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix} = TP = PT = PTP\).

\[
P(T^n T^*) P = \begin{pmatrix}
T_1^n T_1^* & 0 \\
0 & 0
\end{pmatrix}, \quad P(T^* T^n) P = \begin{pmatrix}
T_1^* T_1^n & 0 \\
0 & 0
\end{pmatrix}.
\]

Since \(T \in [nN]\), \(T_1^n T_1^* = T_1^* T_1^n\). Therefore \(T_1 \in [nN]\). Hence \(T|_M\) is \(n\)-power normal. \(\square\)

Theorem 2.5. If \(T \in [nN]\) then \(T\) has the property(\(\beta\)).

Proof. Consider an open neighbourhood \(D \subset \mathbb{C}\) of \(\lambda \in \mathbb{C}\) and \(f_m(m = 1, 2, \ldots)\), the vector valued analytic functions on \(D\) such that \((T - \mu)f_m(\mu) \to 0\) uniformly on every compact subset of \(D\).

Decompose \(H\) as \(H = [ran T^n] \oplus ker T^{*n}\), by Theorem 2.3, \(T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}\) where \(T_1 \in [nN]\) and \(T_2\) is a nilpotent operator with nilpotency \(n\).

\((T - \mu)f_m(\mu) \to 0\) implies,
\[
\begin{pmatrix}
T_1 - \mu & 0 \\
0 & T_2 - \mu
\end{pmatrix} \begin{pmatrix} f_{m_1}(\mu) \\ f_{m_2}(\mu) \end{pmatrix} = \begin{pmatrix} (T_1 - \mu)f_{m_1}(\mu) \\ (T_2 - \mu)f_{m_2}(\mu) \end{pmatrix} \to 0.
\]

Since \(T_2\) is nilpotent, it has property(\(\beta\)) and therefore \(f_{m_2}(\mu) \to 0\).
Also since T_1^n is normal, it has property(β) and therefore by Theorem 3.39 [17], T has property(β).

Corollary 2.6. If $T \in [nN]$ then T has the single-valued extension property.

The following two Examples show that for a n-power normal operator T, the corresponding eigenspaces need not be reducing subspaces of T.

Example 2.7. $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Clearly T is a 2-power normal operator and the eigenspace of T is \(\begin{pmatrix} x \\ 0 \end{pmatrix} \) but it is not a reducing subspace of T.

Example 2.8. $T = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$. Here T is a 2-power normal operator and the corresponding eigenspaces of T are \(\begin{pmatrix} x \\ 0 \end{pmatrix} \) and \(\begin{pmatrix} x \\ -x \end{pmatrix} \) but these are not reducing subspaces of T.

Also the n-power normal operators are not semiregular. For example consider the multiplication operator T defined by \((Tf)(t) = tf(t)\) for $f \in L^2[0,1]$ and $t \in [0,1]$. Then T is normal, injective and has dense range. Since the range of T is not closed, T is not semiregular.

Lemma 2.9. Let $T \in [nN]$ and $\lambda \in \sigma(T)$ be an isolated point. Then λ^n is an isolated point of $\sigma(T^n)$.

Proof. Since $\lambda \in \sigma(T)$ is an isolated point there is a neighbourhood V of λ with radius δ which contains no point of $\sigma(T)$ other than λ. By Spectral mapping Theorem, $\lambda^n \in \sigma(T^n)$. Suppose $\lambda^n \in \sigma(T^n)$ is not an isolated point of $\sigma(T^n)$, then every neighbourhood of λ^n contains atleast one point of $\sigma(T^n)$ other than λ^n. Consequently, let μ_n in $\sigma(T^n)$ be a point in a neighbourhood V_n of λ^n with radius $\frac{\delta}{2} \rho$ where $\rho = |\sum_{k=0}^{n-1} \lambda^{n-k-1} \mu^k|$. It follows from Spectral mapping Theorem that $\mu \in \sigma(T)$. Then

$$|\lambda^n - \mu^n| \leq \frac{\delta}{2} \rho \tag{2.1}$$

$$|\lambda^n - \mu^n| = |\lambda - \mu| \left| \sum_{k=0}^{n-1} \lambda^{n-k-1} \mu^k \right|$$

$$= |\lambda - \mu| \rho$$

Consequently, $|\lambda - \mu| \leq \frac{\delta}{2}$ by (2.1).

This shows that $\mu \neq \lambda$ is a point in V, contradicting the hypothesis that λ is an isolated point of $\sigma(T)$. Thus, λ^n is an isolated point of $\sigma(T^n)$. \qed
Lemma 2.10. Let \(T \in \{nN\} \) then \(T \) is isoloid.

Proof. Let \(\lambda \in \sigma(T) \) be an isolated point. By Lemma 2.9, \(\lambda^n \) is an isolated point of \(\sigma(T^n) \). Since \(T^n \) is normal, it is isoloid. Therefore \(\lambda^n \) is in the point spectrum of \(T^n \). This implies that \((\lambda^n - T^n)^{-1} \) does not exist.

\[
(\lambda^n - T^n)^{-1} = \frac{1}{\lambda^n} \left(I - \frac{T^n}{\lambda^n}\right)^{-1} = \mu^n (I - \mu^n T^n)^{-1} \quad \text{where} \quad \mu = \frac{1}{\lambda}.
\]

Recall the identity,

\[
(I - \mu^n T^n)^{-1} = \frac{1}{n} [(I - \mu T)^{-1} + (I - \mu w T)^{-1} + (I - \mu w^2 T)^{-1} + \cdots + (I - \mu w^{n-1} T)^{-1}]
\]

\[
(I - \mu^n T^n)^{-1} = \frac{1}{n} [(I - \mu T)^{-1} + \sum_{k=1}^{n-1} (I - \mu w^k T)^{-1}] \tag{2.2}
\]

where \(w \) is the primitive root of unity. Since \((I - \mu^n T^n)^{-1} \) does not exist, at least one term of the expression on the right-hand side of (2.2) does not exist. Hence there exist two cases.

Case(i):
Suppose \((I - \mu T)^{-1} \) does not exist. Since \(\mu = \frac{1}{\lambda} \), \((\lambda I - T)^{-1} \) does not exist, which implies \(\lambda \in P_\sigma(T) \).

Case(ii):
Suppose \((I - \mu w^k T)^{-1} \) does not exist for some \(k = 1, 2, 3, \ldots, n - 1 \). From (2.2),

\[
n(I - \mu^n T^n)^{-1} - (I - \mu w^k T)^{-1} = (I - \mu T)^{-1} + \cdots + (I - \mu w^{k-1} T)^{-1} + (I - \mu w^{k+1} T)^{-1} + \cdots + (I - \mu w^{n-1} T)^{-1}.
\]

Since \(n(I - \mu^n T^n)^{-1} - (I - \mu w^k T)^{-1} \) does not exist the expression on the other side also does not exist. In that expression, at least one term does not exist. On repeating a similar argument as above, we arrive at a stage where \((I - \mu T)^{-1} \) does not exist. That is \(\frac{1}{\lambda} (\lambda I - T)^{-1} \) does not exist, hence \(\lambda \in P_\sigma(T) \). It follows that \(T \) is isoloid. \(\square \)

Tensor product of class[nN] operators

For \(A, B \in L(H) \), a number of authors have considered variously, the tensor product \(A \otimes B \), on the product space \(H \otimes H \). The operation of taking tensor products \(A \otimes B \) preserves many a property of \(A, B \in L(H) \), but by no means all of them. For instance the normaloid property is invariant under tensor products, whereas the spectroloid property is not [23, pp.623 and 631]. H. Jinchuan [16] proved that \(A \otimes B \) is normal if and only if \(A \) and \(B \) are so, where \(A \) and \(B \) are non-zero operators. Similar results were proved for subnormal operators [18], hyponormal operators [13], \(p \)-hyponormal operators [6], class \(A \) operators [14] and \(p \)-quasihyponormal operators [9]. But there exists paranormal operators \(A \) and \(B \) such that \(A \otimes B \) is not paranormal [3]. We show that if \(A \) and \(B \) are of class n-power normal then \(A \otimes B \) is also of the class n-power normal.
Lemma 2.11 ([13]). If $A \in L(H)$ and $B \in L(K)$ are non-zero operators, then $A \otimes B$ is normal if and only if so are A and B.

Theorem 2.12. $T_1 \otimes T_2$ is an n-power normal operator if and only if T_1 and T_2 are so.

Proof. First we begin with the observations that $(T_1 \otimes T_2)^*(T_1 \otimes T_2) = T_1^* T_1 \otimes T_2^* T_2$ and $(T_1 \otimes T_2)^n = T_1^n \otimes T_2^n$. Suppose T_1 and T_2 are n-power normal operators, then

$$(T_1 \otimes T_2)^n(T_1 \otimes T_2)^* = T_1^n T_1^* \otimes T_2^n T_2^*$$
$$= T_1^* T_1^n \otimes T_2^* T_2^n$$
$$= (T_1 \otimes T_2)^*(T_1 \otimes T_2)^n.$$ Therefore $T_1 \otimes T_2$ is an n-power normal operator. Conversely, suppose $T_1 \otimes T_2$ is an n-power normal operator, then $(T_1 \otimes T_2)^n$ is normal. By Lemma 2.11, we have T_1^n and T_2^n are normal. Then by Lemma 2.1, T_1 and T_2 are n-power normal operators.

Fuglede-Putnam Theorem for n-power normal operators

Fuglede-Putnam Theorem is well known in operator theory. It affirms that if A and B are normal operators and $AX = XB$ for some operator X then $A^* X = X B^*$. First, Fuglede [10] proved it in the case when $A = B$ and then Putnam [22] proved it in a general case. There exists many generalizations of this Theorem of which most of them go into unwinding the normality of A and B (see [11, 20] and some of the references cited in these papers).

Berbarian [4] unwinds the hypothesis on A and B by assuming A and B^* are hyponormal operators and X to be a Hilbert-Schmidt class. The operators in H which are of Hilbert-Schmidt class form an ideal \mathcal{H} in the algebra $L(H)$ of all operators in H. \mathcal{H} itself is a Hilbert space for the inner product

$$\langle X, Y \rangle = \sum \langle X e_i, Y e_i \rangle = Tr(Y^* X) = Tr(X Y^*),$$

where $\{e_i\}$ is any orthonormal basis of H. For each pair of operators $A, B \in L(H)$, there is an operator Γ defined on $L(\mathcal{H})$ via the formula $\Gamma(X) = AXB$ as in [4]. Obviously, $\|\Gamma\| \leq \|A\| \|B\|$. The adjoint of Γ is given by the formula $\Gamma^*(X) = A^* X B^*$. Also if $A \geq 0, B \geq 0$ then $\Gamma \geq 0$ [4].

Lemma 2.13. If A and B^* are of class $[nN]$ then the operator Γ is of class $[nN]$.

Proof. By hypothesis, $A^* A^n = A^n A^*, B B^* = B^* B$. Since, $\Gamma(X) = AXB$ and $\Gamma^*(X) = A^* X B^*$ for any pair $A, B \in L(H)$,

$$\Gamma^* \Gamma - \Gamma \Gamma^* = \Gamma^* \Gamma^n X - \Gamma^n \Gamma^* X$$
$$= \Gamma^*(A^n X B^*) - \Gamma^n(A^* X B)$$
\[\begin{align*}
A^* A^n X B^{*n} B &= A^* A^n X B B^{*n} B \\
A^* A^n X B^{*n} B - A^* A^n X B B^{*n} B &= 0.
\end{align*} \]

The above equality shows that \(\Gamma \in [nN] \).

\[\Box \]

Lemma 2.14. If \(A \in [nN] \) and \(A \) is invertible, then \(A^{-1} \in [nN] \).

Proof. By hypothesis \(A^* A^n = A^n A^* \), we need to prove that \(A^{-1} A^{-1} = A^{-1} A^{-1} \).

\[A^{-1} A^{-1} = (A^n A^*)^{-1} = (A^* A^n)^{-1} = A^{-1} A^{-1}. \]

Hence \(A^{-1} \in \text{class}[nN] \).

\[\Box \]

Lemma 2.15 (15). Let \(T \in L(H) \) such that \(T \in [2N] \cap [3N] \), then \(T \in [nN] \) for all positive integers \(n \geq 4 \).

Theorem 2.16. Let \(A \) and \(B^* \) be in class \([2N \cap 3N]\) such that \(B^* \) is invertible and \(X \) be a Hilbert-Schmidt operator. Suppose that \(AX = XB \) then \(A^* X = XB^* \).

Proof. Let \(\Gamma \) be the Hilbert-Schmidt operator defined by, \(\Gamma Y = AY B^{-1} \), where \(Y \in L(H) \). By hypothesis \(A \) and \(B^* \) are of class \([nN]\), by Lemma 2.14 \((B^*)^{-1} \) is of class \([nN]\). Since \((B^*)^{-1} = (B^{-1})^* \), it follows by Lemma 2.13 that \(\Gamma \) is of class \([nN]\). The hypothesis \(AX = XB \) implies that \(\Gamma X = X \) and also by Lemma 2.15, \(T \in [nN] \) for all \(n \geq 2 \), it follows that,

\[\| \Gamma^* X \|^2 = \langle \Gamma^* X, \Gamma^* X \rangle = \| X \|^2. \]

The above equality gives,

\[\| \Gamma^* X - X \|^2 = \langle \Gamma^* X - X, \Gamma^* X - X \rangle = \langle \Gamma^* X - X, \Gamma^* X - X \rangle = \| \Gamma^* X \|^2 - \langle X, \Gamma X \rangle - \langle \Gamma X, X \rangle + \| X \|^2 \]

\[= \| X \|^2 - \langle X, X \rangle - \langle X, X \rangle + \| X \|^2 \]
= 0.

Therefore $\Gamma^* X = X$ and hence $A^* X = X B^*$.

\section*{Ascent and Descent}

The non-negative integers $p(T)$ and $q(T)$ known as the ascent and descent of T respectively play a vital role to generate several classes of Browder operators and related spectrum. So we may anticipate if an n-power normal operator T have finite ascent(descent) or not. Infact, T^n has finite ascent since it is normal. Indeed, the following Lemma shows that the ascent and descent of $T \in [n\mathbb{N}]$ are finite.

\begin{lemma}
For any operator $T \in L(H)$ with T^n normal, the following assertions hold:

(i) $p(T) = q(T) \leq n$.

(ii) $N^\infty(T) = \ker T^n$ and $T^\infty(H) = \mathrm{ran} T^n$, where $N^\infty(T) = \bigcup_{k \in \mathbb{N}} \ker T^k$ and $T^\infty(H) = \bigcap_{k \in \mathbb{N}} T^k(H)$ are the hyper kernel and hyper range respectively.
\end{lemma}

\begin{proof}
(i) It is well known that, for any normal operator A, $\ker A^2 = \ker A$ and $[\mathrm{ran} A^2] = [\mathrm{ran} A]$.

Since T^n is normal, $\ker T^{2n} = \ker T^n$ and $[\mathrm{ran} T^{2n}] = [\mathrm{ran} T^n]$. Consequently, from the chain relations $\ker T \subseteq \ker T^2 \subseteq \cdots \subseteq \ker T^n \subseteq \ker T^{n+1} \subseteq \cdots \subseteq \ker T^{2n} = \ker T^n \subseteq \ker T^{2n+1} \cdots$ and $\cdots [\mathrm{ran} T^n] = [\mathrm{ran} T^{2n}] \subseteq [\mathrm{ran} T^{2n-1}] \subseteq \cdots \subseteq [\mathrm{ran} T^n] \subseteq [\mathrm{ran} T^{n+1}] \subseteq \cdots \subseteq [\mathrm{ran} T]$; we obtain, $\ker T^n = \ker T^{n+1}$ and $\mathrm{ran} T^n = \mathrm{ran} T^{n+1}$. By the definition of $p(T)$ and $q(T)$, we have $p(T) \leq n$ and $q(T) \leq n$. Since both are finite $p(T) = q(T)$ [12].

(ii) Also

$N^\infty(T) = \bigcup_{k \in \mathbb{N}} \ker T^k = \ker T^n$, $T^\infty(H) = \bigcap_{k \in \mathbb{N}} T^k(H) = \mathrm{ran} T^n$.
\end{proof}

\section*{Nullity and Deficiency}

The role of nullity $\alpha(T)$ and deficiency $\beta(T)$ of an operator T are crucial in the class of Fredholm operators and Weyl operators. The following Theorem concerning $\alpha(T)$ and $\beta(T)$ is useful to explore if $T \in [n\mathbb{N}]$ fit into the class of Weyl operators or not. Infact, Aiena [1] proved a Theorem connecting ascent and descent with nullity and deficiency, which is stated below.

\begin{theorem}[1, Theorem 3.4]
If T is a linear operator on a vector space X and if $p(T) = q(T) < \infty$ then $\alpha(T) = \beta(T)$ (possibly infinity).
\end{theorem}

\begin{theorem}
Suppose $T \in [n\mathbb{N}]$ such that $\alpha(T)$ or $\beta(T)$ is finite and $T(H)$ is closed then T is a Weyl operator.
\end{theorem}
Proof. We have $p(T) = q(T) \leq n$ by Lemma 2.17. It immediately follows from Theorem 2.18 that $\alpha(T) = \beta(T) < \infty$.

Consequently T is a Fredholm operator with ind $T = 0$ and hence Weyl. □

Theorem 2.20. Suppose that $C(T)$ is the algebraic core of $T \in [nN]$ then the following assertions hold:

(i) $C(T)$ is invariant under T^*n.

(ii) $T^*(C(T)) \subseteq C(T^n)$.

Proof. (i) Since $T \in [nN]$, $T^*T^n = T^nT^*$ or $T^*nT = T^nT^*$. Also by the definition of algebraic core of T, $T(C(T)) = C(T)$ or $T^n(C(T)) = C(T)$ for all $n \in \mathbb{N}$. $T^*nT = T^nT^*$ implies $T^*nT(C(T)) = T^nT^*(C(T))$ or $T^*n(C(T)) = T^nT^*(C(T))$.

$C(T)$ being the greatest subspace satisfying $T(C(T)) = C(T)$, we have $T^*n(C(T)) \subseteq C(T)$. Thus $C(T)$ is invariant under T^*n.

(ii) $T \in [nN]$ implies $T^*nC(T) = T^nT^*C(T)$ or $T^*(C(T)) = T^nT^*(C(T))$. It follows that $T^*(C(T)) \subseteq C(T^n)$, the algebraic core of T^n. □

A. S. Jibril [15] proved that if $T \in [2N] \cap [3N]$, then $T \in [nN]$ for all positive integers $n \geq 4$.

Theorem 2.21. If $T \in [2N] \cap [3N]$, then

(i) $H_0(T)$ is a reducing subspace of T.

(ii) $x \in H_0(T)$ if and only if $T^*x \in H_0(T)$ where

$$H_0(T) = \left\{ x \in H : \lim_{n \to \infty} \| T^n x \|^{\frac{1}{n}} = 0 \right\}.$$

(iii) $\ker(T - \lambda) \cap H_0(T) = \{0\}$ for every $\lambda \neq 0$.

Proof. (i) Let $F \subset C$ be a closed set. The glocal spectral subspace $\chi_T(F)$ is defined as, $\chi_T(F) = \{ x \in H : \exists \text{ analytic } f(z) : (T - z)f(z) = x \text{ on } C \setminus F \}$. By Theorem 2.20 [1], we have $H_0(T - \lambda) = \chi_T((\lambda))$. By Theorem 2.5, T has property(β). Also by Proposition 1.2.19 [17], $\chi_T(F)$ is closed and $\sigma(T|_{\chi_T(F)}) \subset F$. Hence $H_0(T - \lambda)$ is closed for $\lambda \in C$, which implies $H_0(T)$ is closed. If $x \in H_0(T)$ then from the inequality $\| T^n T x \| \leq \| T \| \| T^n x \|$, it is easily seen that $T x \in H_0(T)$ and $H_0(T)$ is invariant under T.

$$\| T^n T^* x \|^2 = \langle T^n T^* x, T^n T^* x \rangle$$
$$= \langle T^{n+1} T^* x, T^{n+1} x \rangle = \| T^{n+1} x \|^2$$ since T^{n+1} is normal

$$\| T^n T^* x \| = \| T^{n+1} x \|$$ (2.3)
If \(x \in H_0(T) \) then, \(\| T^n T^* x \|^{\frac{1}{n+1}} = \left(\| T^{n+1} x \|^{\frac{1}{n+1}} \right)^{\frac{n+1}{n}} \) by (2.3). It follows that \(T^* x \in H_0(T) \) and \(H_0(T) \) is invariant under \(T^* \).

(ii) \(x \in H_0(T) \) implies \(T^* x \in H_0(T) \) follows by (i). Conversely let \(T^* x \in H_0(T) \). Since by (2.3) \(\| T^{n+1} x \| = \| T^n T^* x \| \),

\[
\lim_{n \to \infty} \| T^{n+1} x \|^{\frac{1}{n+1}} = \lim_{n \to \infty} \left(\| T^n T^* x \|^{\frac{1}{n}} \right)^{\frac{n}{n+1}} = 0.
\]

Thus \(x \in H_0(T) \).

(iii) Suppose \(x \neq 0 \in ker(T - \lambda) \cap H_0(T) \). Then \(x \in ker(T - \lambda) \) implies,

\[
(T - \lambda)x = 0 \Rightarrow Tx = \lambda x \Rightarrow T^n x = \lambda^n x.
\]

By (ii) \(x \in H_0(T) \) if and only if \(T^*(x) \in H_0(T) \) and hence,

\[
0 = \lim_{n \to \infty} \| T^n T^* x \|^{\frac{1}{n}} = \lim_{n \to \infty} \| T^* T^n x \|^{\frac{1}{n}} = \lim_{n \to \infty} \| T^* \lambda^n x \|^{\frac{1}{n}} = \lim_{n \to \infty} |\lambda| \| T^* x \|^{\frac{1}{n}} = |\lambda| \lim_{n \to \infty} \| T^* x \|^{\frac{1}{n}} = |\lambda|.
\]

Which is a contradiction and therefore \(T^* x \notin H_0(T) \Rightarrow x \notin H_0(T) \). Hence \(ker(T - \lambda) \cap H_0(T) = \{0\} \) for every \(\lambda \neq 0 \). \(\square \)

Remark 2.22. For \(T \in [nN] \) the restriction \(T^n|_M \) of \(T^n \) to a closed invariant subspace \(M \) is a hyponormal operator, since \(T^n|_M \) is subnormal.

Theorem 2.23. Suppose \(T \in [2N] \cap [3N] \), then for every \(m \geq 2, m \in \mathbb{N} \) the following properties hold:

(i) \(H_0(T^m - \lambda) \) is a reducing subspace of \(T \).
(ii) \(H_0(T^m - \lambda) = ker(T^m - \lambda) = ker(T^* m - \lambda) \). In particular \(H_0(T^m) = ker T^m = ker T^* m \).
(iii) If \(M \) is an invariant subspace of \(T \) and \(T_1 = T|_M \) on \(H = M \oplus M^\perp \) then \(H_0(T_1^m - \lambda) = ker(T_1^m - \lambda) \subseteq ker(T^m - \lambda) \).
(iv) \(H_0(T^m - \lambda^m) \supset H_0(T - \lambda) \) and \(H_0(T^m - \lambda^m) = H_0(T - \lambda) \) if \(S = T^{m-1} + \lambda T^{m-2} + \cdots + \lambda^{m-2} T + \lambda^{m-1} \) is invertible.
(v) \(H_0(T - \lambda) \subset ker(T^m - \lambda^m) \) and \(H_0(T - \lambda) = ker(T - \lambda) \) if \(S \) is invertible.
Proof. (i)

\[H_0(T^m - \lambda) = \left\{ x \in H : \lim_{n \to \infty} \left\| (T^m - \lambda)^n x \right\|^\frac{1}{n} = 0 \right\}. \]

Since \(T \in [2N] \cap [3N] \), \(T \) is n-power normal for all \(n \geq 2 \). Therefore \((T^m)^n T^* = T^*(T^m)^n \) for all \(m \geq 2, n \geq 1 \). Consequently, \((T^m - \lambda)^n T^* = T^*(T^m - \lambda)^n \) and hence for \(x \in H_0(T^m - \lambda) \), we have

\[
\lim_{n \to \infty} \left\| (T^m - \lambda)^n x \right\|^\frac{1}{n} = \lim_{n \to \infty} \left\| T^*(T^m - \lambda)^n x \right\|^\frac{1}{n} \leq \lim_{n \to \infty} \left\| T^* \right\|^\frac{1}{n} \lim_{n \to \infty} \left\| (T^m - \lambda)^n x \right\|^\frac{1}{n} = 0.
\]

Thus \(T^* x \in H_0(T^m - \lambda) \). That \(Tx \in H_0(T^m - \lambda) \) is obvious.

(ii) It is well known that for a totally paranormal operator \(T \), \(H_0(T - \lambda) = ker(T - \lambda) \) for all \(\lambda \in \mathbb{C} \) [2]. The class of totally paranormal operators includes the class of hyponormal operators and hence normal operators. Since \(T^m \) is normal for all \(m \geq 2 \), we have

\[H_0(T^m - \lambda) = ker(T^m - \lambda) = ker(T^m - \lambda)^*. \]

For \(\lambda = 0 \), \(H_0(T^m) = ker(T^m) = ker(T^{*m}) \).

(iii) By Remark 2.22, \(T_1^m = T^m|_M \) is hyponormal and hence \(H_0(T_1^m - \lambda) = ker(T_1^m - \lambda) \subseteq ker(T^m_1 - \lambda)^* \).

(iv) Let \(x \in H_0(T - \lambda) \) then

\[
\lim_{n \to \infty} \left\| (T - \lambda)^n x \right\|^\frac{1}{n} = 0.
\]

Since \(T^m - \lambda^m = (T - \lambda)(T^{m-1} + \lambda T^{m-2} + \cdots + \lambda m^{-2} T + \lambda m^{-1}) = (T - \lambda)S \), where \(S = (T^{m-1} + \lambda T^{m-2} + \cdots + \lambda m^{-2} T + \lambda m^{-1}) \), we have,

\[
\lim_{n \to \infty} \left\| (T^m - \lambda^m)^n x \right\|^\frac{1}{n} = \lim_{n \to \infty} \left\| (T - \lambda)^n S^n x \right\|^\frac{1}{n} \leq \lim_{n \to \infty} \left\| S^n \right\|^\frac{1}{n} \lim_{n \to \infty} \left\| (T - \lambda)^n x \right\|^\frac{1}{n} \leq \left\| S \right\| \lim_{n \to \infty} \left\| (T - \lambda)^n x \right\|^\frac{1}{n} = 0.
\]

Therefore \(x \in H_0(T^m - \lambda^m) \) and \(H_0(T - \lambda) \subseteq H_0(T^m - \lambda^m) \).
On the other hand if S is invertible then $(T - \lambda) = S^{-1}(T^m - \lambda^m)$. For $x \in H_0(T^m - \lambda^m)$, we have,

$$\lim_{n \to \infty} \| (T - \lambda)^n x \|^{\frac{1}{n}} = \lim_{n \to \infty} \| S^{-n}(T^m - \lambda^m)^n x \|^{\frac{1}{n}}$$

$$\leq \| S^{-1} \| \lim_{n \to \infty} \| (T^m - \lambda^m)^n x \|^{\frac{1}{n}}$$

$$= 0.$$

Consequently, $H_0(T^m - \lambda^m) = H_0(T - \lambda)$ for all $m \geq 2$.

(v) $H_0(T - \lambda) \subset \ker(T^m - \lambda^m)$ follows from (ii) and (iv).

That S is invertible yields $\ker(T^m - \lambda^m) = \ker(T - \lambda)$. Again by (ii) and (iv) $H_0(T - \lambda) = \ker(T - \lambda)$. \hfill \Box

In general $T \in [nN]$ is not translation invariant.

Example 2.24. It is easily seen that, for $T = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in [3N],$

$$(T - i)^3(T - i)^* = \begin{pmatrix} -6i - 8 & -4i + 7 \\ 10i - 1 & -4i - 7 \end{pmatrix}. $$

$$(T - i)^*T(T - i) = \begin{pmatrix} -6i - 8 & 10i + 1 \\ 4i - 7 & -4i - 7 \end{pmatrix}. $$

Therefore $(T - i) \notin [3N]$. Thus $T \in [nN]$ is not translation invariant.

Naturally in view of the above statement, the following question arises: What could be the nature of class $[nN]$ operators satisfying the translation invariant property?

In [8] Eungil Ko proved that if the k^{th} root of a hyponormal operator is translation invariant then it is hyponormal. We use the same technique to prove the following Theorem.

Theorem 2.25. Suppose $T \in [nN]$ is translation invariant then T is normal.

Proof.

$$(T - \lambda)^n(T - \lambda)^* = (T - \lambda)^*(T - \lambda)^n$$

$$0 = (T - \lambda)^*(T - \lambda)^n - (T - \lambda)^n(T - \lambda)^*$$

$$0 = (T - \lambda)^* \left[\sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} T^{n-k}(-\lambda)^k \right] - \left[\sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} T^{n-k}(-\lambda)^k \right](T - \lambda)^* \quad (2.4)$$

Put $\lambda = \rho e^{i\theta}, \rho > 0, 0 \leq \theta < 2\pi$, in (2.4) and dividing the simplified equation by ρ^n gives,

$$0 = n(T^*T - TT^*)e^{(n-1)i\theta} + \frac{1}{\rho} (\text{the other terms}).$$

Taking limit as $\rho \to \infty$ gives, $TT^* = T^*T$. \hfill \Box
Acknowledgement

The authors would like to thank the referee for the valuable comments which helped us to improve this manuscript.

References

Department Of Mathematics, P.S.G College Of Arts And Science, Coimbatore, Tamilnadu, India 641014.

E-mail: stellairenemary@gmail.com

E-mail: sreevijis@gmail.com