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EXTENSION OF AN INEQUALITY WITH
POWER EXPONENTIAL FUNCTIONS

MITSUHIRO MIYAGI AND YUSUKE NISHIZAWA

Abstract. V. Cîrtoaje et al. [2] conjectured and proved [3, 4] that the inequality ar b +
br a ≤ 2 holds for all nonnegative numbers r ≤ 3 and nonnegative real numbers a,b with
a +b = 2. In this paper, we will show that ar b +br a ≤ 2 holds for all nonnegative r ≥ 3
and all nonnegative real numbers a,b with a +b = 2 and some conditions. This gives an
extended inequality of conjectured by V. Cîrtoaje.

1. Introduction

Inequalities appear on the various branches of mathematics. In this paper, we give a

result of an inequality with power exponential functions which is studied by V. Cîrtoaje et al.

[1, 2, 3, 4, 5, 6, 7, 8]. The formula of inequalities with power exponential functions are very

simple, but their proof is not as simple as it seems. V. Cîrtoaje et al. [3, 4] proved that the

inequality

ar b +br a ≤ 2 (1.1)

holds for all nonnegative real number r ≤ 3 and all nonnegative real numbers a,b with a+b =
2. Miyagi et al. [7] proved that the stronger inequality

a3b +b3a +
(

a −b

2

)4

≤ 2 (1.2)

holds for the same conditions. These inequalities (1.1) and (1.2) are conjectures by V. Cîrtoaje

[2]. The following is our main theorem.

Theorem 1.1. The inequality

ar b +br a ≤ 2 (1.3)

holds for all numbers r ≥ 3 and all real numbers a,b ∈ [0,1− ((r − 3)/(r − 2))1/3]∪ [1+ ((r −
3)/(r −2))1/3,2] with a +b = 2.
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The above inequality (1.3) is an extension of the inequality (1.1).

2. Preliminaries

In this section, we will show some lemmas to prove our main theorem.

Lemma 2.1. If 0 < b < 1, then

(2−b)3b−1 ln(2−b)+b5−3b lnb > 0.

Proof.

(2−b)3b−1 ln(2−b)+b5−3b lnb > 0

is equivalent to
−(b(2−b))3b ln(2−b)

(2−b)b5 lnb
> 1.

We set

f (b) = b3b−4 − (2−b)

then we have derivatives

f ′(b) = 1+b3b−4
(

3b −4

b
+3lnb

)
and

f ′′(b) = b3b−4
(

3

b
+ 4

b2

)
+b3b−4

(
3b −4

b
+3lnb

)2

.

Since f ′′(b) > 0, f ′(b) is strictly increasing for b. Since f ′(1) = 0, we have f ′(b) < 0 for all

0 < b < 1. Therefore, f (b) is strictly decreasing for 0 < b < 1. Since f (1) = 0, we have f (b) > 0

for all 0 < b < 1. Therefore, we get
b3b−4

2−b
> 1

for all 0 < b < 1. We set

g (b) = ln(2−b)+b lnb

then we have derivatives

g ′(b) = 1− 1

2−b
+ lnb

and

g ′′(b) = (b −4)(b −1)

(b −2)2b
.

Since g ′′(b) > 0, g ′(b) is strictly increasing for b. Since g ′(1) = 0, we have g ′(b) < 0 for all

0 < b < 1. Therefore, g (b) is strictly decreasing for 0 < b < 1. Since g (1) = 0, we have g (b) > 0

for all 0 < b < 1. Therefore, we get

− ln(2−b)

b lnb
> 1
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for all 0 < b < 1. Since 2−b > 1 and (2−b)3b > 13b = 1, we have (2−b)3b > 1. Thus, we can get

−(b(2−b))3b ln(2−b)

(2−b)b5 lnb
> 1.

for all 0 ≤ b ≤ 1. ���

Lemma 2.2. If 0 < t < 1, then G1(t ) > 0, where

G1(t ) = 18+54t +45t 2 +12t 3 −63t 4 −60t 5 −22t 6 +36t 7 +30t 8 +16t 9 > 0.

Proof. We set

f (t ) = 6+45t 2 +12t 3 −63t 4

and

g (t ) = 12+54t −60t 5 −22t 6 +36t 7.

Since f ′(t ) = 18t (5+2t −14t 2) and f ′(0) = f ′((1+p
71)/14) = 0, f (t ) is strictly increasing for

0 < t < (1+p
71)/14 and f (t ) is strictly decreasing for (1+p

71)/14 < t < 1. From f (0) = 6

and f (1) = 0, f (t ) > 0 for all 0 < t < 1. Since g ′(t ) = 6(9 − 50t 4 − 22t 5 + 42t 6) and g ′′(t ) =
12t 3(−100− 55t + 126t 2) < 0, g ′(t ) is strictly decreasing for 0 < t < 1. From g ′(0) = 54 and

g ′(1) = −126, there exists uniquely a number t0 with 0 < t0 < 1 such that g ′(t0) = 0. Since

g ′(t ) > 0 for 0 < t < t0 and g ′(t ) < 0 for t0 < t < 1, g (t ) is strictly increasing for 0 < t < t0 and

g (t ) is strictly decreasing for t0 < t < 1. From g (0) = 12 and g (1) = 20, g (t ) > 0 for all 0 < t < 1.

Since G1(t ) > f (t )+ g (t ) and f (t )+ g (t ) > 0, we have G1(t ) > 0 for 0 < t < 1. ���

Lemma 2.3. There exists uniquely a number t1 with 0 < t1 < 1 such that G2(t1) = 0, G2(t ) < 0

for 0 < t < t1 and G2(t ) > 0 for t1 < t < 1, where

G2(t ) =−18+18t +9t 2 +36t 3 +24t 5 +2t 6 +16t 7.

Proof. From G ′
2(t ) > 0, G2(t ) is strictly increasing for 0 < t < 1. Since G2(0) =−18 and G2(1) =

87, there exists uniquely a number t1 with 0 < t1 < 1 such that G2(t1) = 0. Therefore, we have

G2(t ) < 0 for 0 < t < t1 and G2(t ) > 0 for t1 < t < 1. ���

Lemma 2.4. If 0 < t < 1, then

H1(t ) > 0, H2(t ) > 0, H3(t ) > 0,

where

H1(t ) = 648−5184t +13986t 2,

H2(t ) = 31320t 3 +73143t 4 +14742t 5 −35433t 6 −137844t 7

−53988t 8 −2000t 9 −3828t 9 +121410t 10,

H3(t ) = 50100 t 11 +44862t 12 −36280 t 13 +7156t 14

−20384t 15 +1408t 16 −22064t 17 −840t 18.
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Proof. We have following inequalities

H1(t ) > H1

(
48

259

)
= 43416

259
and

H2(t ) > 30000t 3 +70000t 4 +14000t 5 −36000t 6 −138000t 7

−54000t 8 −2000t 9 −4000t 9 +120000t 10

= 2000(−1+ t )t 3(−15−50t −57t 2 −39t 3 +30t 4 +57t 5 +60t 6).

Here, we set

f (t ) = −39t 3 +30t 4,

g (t ) = −57t 2 +57t 5

and

h(t ) = −15−50t +60t 6.

Then we have following inequalities

f (t ) = 3t 3(−13+10t ) < 3t 3(−13+10) =−9t 3 < 0,

g (t ) = 57(−1+ t )t 2(1+ t + t 2) < 0

and

h(t ) = −15+10t (−5+6t 5) <−15+10t (−5+6) <−5.

Since f (t )+ g (t )+h(t ) < 0, we have H2(t ) > 0. We have

H3(t ) > 50000t 11 +44000t 12 −37000t 13 +7000t 14 −21000t 15 +1400t 16

−23000t 17 −1000t 18

=−200t 11(−250−220t +185t 2 −35t 3 +105t 4 −7t 5 +115t 6 +5t 7).

Since

−250+105t 4 +115t 6 +5t 7 < −250+105+115+5 < 0

and

−220t +185t 2 −35t 3 −7t 5 = −t (220−185t +35t 2 +7t 4)

< −t (220−185t )

< 0,

we have H3(t ) > 0. Therefore, we have H1(t ) > 0, H2(t ) > 0 and H3(t ) > 0 for 0 < t < 1. ���

Lemma 2.5. If 0 ≤ t ≤ 1, then G(t ) ≤ 0, where

G(t ) = e
(1+t )

(
1

1−t3 +2
)(
−t− t2

2 − t3

3

)
+e

(1−t )
(

1
1−t3 +2

)(
t− t2

2 + t3

3

)
−2.
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Proof. We have

G ′(t ) = e
(1+t )

(
1

1−t3 +2
)(
−t− t2

2 − t3

3

) −G1(t )

6(−1+ t )2(1+ t + t 2)2 +e
(1−t )

(
1

1−t3 +2
)(

t− t2

2 + t3

3

) −G2(t )

6(1+ t + t 2)2

where

G1(t ) = 18+54t +45t 2 +12t 3 −63t 4 −60t 5 −22t 6 +36t 7 +30t 8 +16t 9

and

G2(t ) = −18+18t +9t 2 +36t 3 +24t 5 +2t 6 +16t 7.

According to Lemmas 2.2 and 2.3, we have G1(t ) > 0 and G2(t ) ≥ 0 for t1 ≤ t < 1, therefore

G ′(t ) < 0 for t1 ≤ t < 1. We will show further that G ′(t ) is also negative for 0 < t < t1, which

involves G ′(t ) < 0 for 0 < t < 1. The inequality G ′(t ) < 0 for 0 < t < t1 is equivalent to H(t ) > 0,

where

H(t ) =(1+ t )

(
−t − t 2

2
− t 3

3

)(
1

1− t 3 +2

)
+ lnG1(t )− ln((−1+ t )2)

− (1− t )

(
t − t 2

2
+ t 3

3

)(
1

1− t 3 +2

)
− ln(−G2(t )) > 0.

The derivative of H(t ) is

H ′(t ) = −t 2(H1(t )+H2(t )+H3(t ))

(−1+ t )2(1+ t + t 2)2G1(t )G2(t )
,

where

H1(t ) = 648−5184t +13986t 2,

H2(t ) = 31320t 3 +73143t 4 +14742t 5 −35433t 6 −137844t 7

−53988t 8 −2000t 9 −3828t 9 +121410t 10,

and

H3(t ) = 50100 t 11 +44862t 12 −36280 t 13 +7156t 14

−20384t 15 +1408t 16 −22064t 17 −840t 18.

By Lemma 2.4, it follows that H ′(t ) > 0 for 0 < t < t1, when G1(t ) > 0 and G2(t ) < 0. Therefore,

H(t ) is strictly increasing for 0 < t < t1, hence H(t ) > H(0) = 0. Thus, G ′(t ) < 0 for 0 < t < 1,

G(t ) is strictly decreasing, G(t ) <G(0) = 0 for t1 < t ≤ 1. ���

3. Proof of Theorem 1.1

Proof. Without loss of generically, we assume that

0 ≤ b ≤ 1−
(

r −3

r −2

) 1
3
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and

1+
(

r −3

r −2

) 1
3 ≤ a ≤ 2.

We set

F (b,r ) = (2−b)r b +br (2−b) −2.

Then we have derivatives
∂F

∂r
(b,r ) = (2−b)br b ln(2−b)+ (2−b)b(2−b)r lnb

and
∂2F

∂r 2 (b,r ) = (2−b)br b2(ln(2−b))2 + (2−b)2b(2−b)r (lnb)2.

Since ∂2F (b,r )/∂r 2 ≥ 0, the function ∂F (b,r )/∂r is strictly increasing for r . By Lemma 2.1, we

have
∂F

∂r
(b,r ) ≥ ∂F

∂r
(b,3)

= b(2−b)
(
(2−b)3b−1 ln(2−b)+b5−3b lnb

)
≥ 0.

Thus, F (b,r ) is strictly increasing for r ≥ 3. Since

0 ≤ b ≤ 1−
(

r −3

r −2

) 1
3

,

we have

3 ≤ r ≤ 1

1− (1−b)3 +2.

Thus, we can get

F (b,r ) ≤ F

(
b,

1

1− (1−b)3 +2

)
= (2−b)

(
1

1−(1−b)3 +2
)
b +b

(
1

1−(1−b)3 +2
)
(2−b) −2.

Therefore, it suffices to show that

(2−b)

(
1

1−(1−b)3 +2
)
b +b

(
1

1−(1−b)3 +2
)
(2−b) −2 ≤ 0.

Denoting

t = 1−b, 0 ≤ t ≤ 1,

this desired inequality becomes

(1+ t )
(1−t )

(
1

1−t3 +2
)
+ (1− t )

(1+t )
(

1
1−t3 +2

)
−2 ≤ 0.

From Lemma 6.1 in [3], we have

ln(1+ t ) ≤ t − t 2

2
+ t 3

3
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for all t >−1. Using this inequality, we get

(1− t )
(1+t )

(
1

1−t3 +2
)
+ (1+ t )

(1−t )
(

1
1−t3 +2

)
−2

= e
(1+t )

(
1

1−t3 +2
)
ln(1−t ) +e

(1−t )
(

1
1−t3 +2

)
ln(1+t ) −2

≤ e
(1+t )

(
1

1−t3 +2
)(
−t− t2

2 − t3

3

)
+e

(1−t )
(

1
1−t3 +2

)(
t− t2

2 + t3

3

)
−2.

Therefore, it suffices to prove that G(t ) ≤ 0 for 0 ≤ t ≤ 1, where

G(t ) = e
(1+t )

(
1

1−t3 +2
)(
−t− t2

2 − t3

3

)
+e

(1−t )
(

1
1−t3 +2

)(
t− t2

2 + t3

3

)
−2.

This is true by Lemma 2.5. Thus, the proof of Theorem 1.1 is completed. ���
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