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ON K -EXTENDING MODULES

TAYYEBEH AMOUZEGAR

Abstract. Let M be a right R-module and S = EndR (M). We call M a K -extending mod-

ule if for every element φ ∈ S, Kerφ is essential in a direct summand of M . In this paper

we investigate these modules. We give a characterization of K -extending modules. We

prove that if M is a projective self-generator module, then M is a K -extending module

and every finitely generated projective right ideal of S is a summand if and only if S is

semiregular and ∆(M) = Jac(S), where ∆(M) = { f ∈ S | K er f ≤e M} if and only if M is

Z (M)-I -lifting.

1. Introduction

Throughout this paper R will denote an associative ring with identity, M a unitary right

R-module and S = EndR(M ) the ring of all R-endomorphisms of M . We will use the notation

N ≤e M to indicate that N is an essential submodule of M (i.e. ∀0 6= L ≤ M ,L∩N 6= 0); N ≪ M

to indicate that N is small in M (i.e. ∀L � M ,L +N 6= M ). The notation N ≤⊕ M denotes that

N is a direct summand of M . We also denote rM (I ) = {x ∈ M | I x = 0}, for I ⊆ S;∆(M )= { f ∈ S |

K er f ≤e M } and Z (M )= {x ∈ M | xI = 0 for some essential right ideal I of R}.

Extending modules, continuous modules and lifting modules play important roles in

rings and categories of modules, and have been studied extensively by many authors in recent

years (see, [4], [5], [7], [9], [11]). A module M is called extending (or CS) if every submodule

of M is essential in a direct summand of M . Dually, a module M is called lifting if for every

A ≤ M , there exists a direct summand B of M such that B ⊆ A and A/B ≪ M/B [9]. In [1],

we introduced I -lifting modules as a generalization of lifting modules. A module M is called

I -lifting if for every φ ∈ S there exists a decomposition M = M1 ⊕ M2 such that M1 ⊆ Imφ

and M2 ∩ Imφ ≪ M2. It is obvious that every lifting module is I -lifting while the converse

in not true (the Z-module Q is I -lifting but it is not lifting). A ring R is called a semiregular

ring if for each a ∈ R , there exists e2 = e ∈ aR such that (1−e)a ∈ J(R) [10]. It is easily checked

that RR is an I -lifting module if and only if R is a semiregular ring. In [11], Nicholson and

Yousif introduced right I -semiregular rings for an ideal I of a ring R . A ring R is called a right

Received January 24, 2015, accepted October 4, 2016.
2010 Mathematics Subject Classification. 16D10, 16D80, 16D40.
Key words and phrases. Continuous module, extending module, lifting module, semiregular ring.

1

http://dx.doi.org/10.5556/j.tkjm.48.2017.1838


2 TAYYEBEH AMOUZEGAR

I -semiregular ring if for each a ∈ R , there exists e2 = e ∈ aR such that (1−e)a ∈ I . In this note,

motivated by [11], we introduce F -I -lifting modules for a submodule F of a module M as a

generalization of the right I -semiregular ring. A module M is called F -I -lifting if for every

φ ∈ S there exists a decomposition M = A⊕B such that A ⊆φM and φM ∩B ≤ F . Let F = I be

an ideal of R . It is clear that RR is an I -I -lifting module if and only if R is a right I -semiregular

ring.

In [11], a ring R is called an ACS-ring if for every element a ∈ R , rR (a) ≤e f R for some

f 2 = f ∈ R . Inspired by this definition we introduce and investigate K -extending modules

as a generalization of the ACS-ring. We call M a K -extending module if for every element

φ ∈ S, Kerφ is essential in a direct summand of M . These modules are also a generalization of

extending modules and dual of I -lifting modules. It is clear that RR is a K -extending module

if and only if R is an ACS-ring. In this paper our aim is to generalize the some results of [11]

from the ring case to the module case.

In Section 2, we characterize semi-projective F -I -lifting modules. We show that the fol-

lowing are equivalent for a semi-projective retractable module M :

(1) M is Z (M )-I -lifting.

(2) S is ∆(M )-semiregular.

(3) S is Zr (S)-semiregular.

(4) M is ∆(M )M-I -lifting.

In Section 3, we give a characterization of K -extending modules. We prove that if M

is a projective self-generator module, then M is a K -extending module and every finitely

generated projective right ideal of S is a summand if and only if S is semiregular and ∆(M ) =

Jac(S), where ∆(M )= { f ∈ S | K er f ≤e M } if and only if M is Z (M )-I -lifting.

We also prove the following which generalizes [11, Corollary 2.7]:

Let M be a projective self-generator module. Then the following are equivalent:

(1) M is quasi-injective.

(2) M has (C2) and M ⊕M is extending.

(3) M is Z (M )-I -lifting and M ⊕M is extending.

(4) M is weakly continuous and M ⊕M is extending.

2. F -I -lifting modules

Definition 2.1. Let F be a submodule of an R-module M . A module M is called F -I -lifting if

for every φ ∈ S there exists a decomposition M = A⊕B such that A ⊆φM and φM ∩B ≤ F .
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It is clear that every I -lifting module is Rad (M )-I -lifting.

A module M is called semi-projective if for any epimorphism f : M → N , where N is a

submodule of M , and for any homomorphism g : M → N , there exists h : M → M such that

f h = g .

Lemma 2.2. Let M be a semi-projective module and F be a fully invariant submodule of M.

Then the following are equivalent for φ ∈ S:

(1) There exists e2 = e ∈φS with (φ−eφ)M ⊆ F .

(2) There exists e2 = e ∈φS with φM ∩ (1−e)M ⊆ F .

(3) φM = eM ⊕N where e2 = e ∈ S and N ⊆ F .

Proof. (1) ⇒ (2) If x ∈φM ∩ (1−e)M , then x =φm = (1−e)m = (1−e)m′ for some m,m′ ∈ M .

Thus x = (1−e)φm ∈ F .

(2) ⇒ (3) It is clear that φM = eM ⊕ [φM ∩ (1−e)M ]. Set N =φM ∩ (1−e)M .

(3) ⇒ (1) First we show that e2 = e ∈φS. Consider the epimorphisms φ : M →φM and e : M →

eM . Since M is semi-projective, there exists a homomorphism g ∈ S such that φg = i e = e ,

where i : eM →φM is the inclusion map. Hence e ∈φS. Since φM = eM ⊕N , for every m ∈ M ,

we have φm = em′+n for some m′ ∈ M and n ∈ N . Then φm − eφm = n − en ∈ F because

N ⊆ F . Hence (φ−eφ)M ⊆ F . ���

Theorem 2.3. Let F be a fully invariant submodule of a semi-projective module M. Then the

following conditions are equivalent:

(1) M is F -I -lifting.

(2) For any finitely generated right ideal I ⊆ S, there exists a homomorphism γ from M to I M

such that γ2 =γ and (1−γ)I M ⊆ F .

(3) For any finitely generated right ideal I ⊆ S, there exists a decomposition M = L ⊕ H such

that L is a submodule of I M and I M ∩H ⊆ F .

(4) For any finitely generated right ideal I ⊆ S, I M can be written as I M = L ⊕N where L is a

direct summand of M and N ⊆ F .

When these conditions are satisfied we have:

(i) For every right ideal I of S such that I M * F there exists an idempotent e2 = e ∈ I such

that eM * F .

(ii) Jac(S)M ⊆ F , and ∆(M )M ⊆ F .
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Proof. (1) ⇒ (2) We induct on n where I = f0S + ·· · + fnS. If n = 1 there is nothing to prove

by (1). If n ≥ 2, then (1) and Lemma 2.2 give β2 = β ∈ fnS with (1 −β) fn M ⊆ F . Set J =

(1−β) f0S + ·· · + (1−β) fn−1S. By induction, choose α : M → J M such that α2 = α ∈ J , and

(1−α)J M ⊆ F . Define γ = β+α−αβ. Then γ = γ2 and γM = βM ⊕αM since βα = 0. It

remains to verify that (1−γ)I M ⊆ F . Since α ∈ J and β ∈ fnS, γ ∈ I . Hence γM ⊆ I M . But

(1−γ) = (1−γ)(1−β) and (1−β)J = J , so (1−γ)I ⊆ (1−α)(1−β)J + (1−α)(1−β) fn S. Hence

(1−γ)I M ⊆ (1−α)J M + (1−α)(1−β) fn M ⊆ F .

(2) ⇒ (3) Let I and γ be as in (2). Then (1−γ)I M = (1−γ)M ∩ I M . Hence M = γM ⊕ (1−γ)M

and I M ∩ (1−γ)M = (1−γ)I M ⊆ F .

(3) ⇒ (4) ⇒ (1) They are clear.

Suppose these conditions hold. Then (i ) follows from Lemma 2.2, and (i i ) follows (i ). ���

An R-module M is called retractable if HomR (M , N ) 6= 0 for all nonzero submodules N of

M .

Lemma 2.4. Let M be a semi-projective module. Consider the following conditions for φ ∈ S:

(1) φM = eM ⊕N where e2 = e ∈ S and N is a singular submodule of M.

(2) φS = eS ⊕B where e2 = e ∈ S and B ⊆∆(M ) is a right ideal of S.

Then (1) ⇒ (2) holds and if moreover M is a retractable module, then (2) ⇒ (1) holds.

Proof. (1) ⇒ (2) Suppose that φM = eM ⊕N as in (1). First we show that N = φhM for some

h ∈ S. Consider the homomorphism φ : M → φM . Since M is semi-projective, there exists

a homomorphism h : M → M such that φh = iπφ, where i : N → φM and π : φM → N are

injection and projection maps respectively. Hence φhM = π(φM )= N . Now, by [13, 18.4], we

have HomR(M ,φM )= Hom(M ,eM )+Hom(M ,φhM). Since M is semi-projective, φS = eS +

φhS. As eM∩N = 0, eS∩φhS = HomR (M ,eM )∩HomR(M ,φhM )= HomR(M ,eM∩φhM )= 0.

Thus φS = eS ⊕φhS. Finally, since N = φhM is singular and φhM ∼=
M

Kerφh
, Kerφh ≤e M by

[11, Lemma 2.1]. So φh ∈∆(M ).

(2) ⇒ (1) Let φS = eS ⊕B as in (2). Clearly, φM = eM +B M . Since eS ∩B = 0 and M is semi-

projective, we have HomR(M ,eM )∩ HomR(M ,B M ) = 0. Therefore HomR(M ,eM ∩B ) = 0.

Hence eM ∩B M = 0 by retractability. It follows that φM = eM ⊕B M and B M ⊆ ∆(M )M ⊆

Z (M ). ���

Corollary 2.5. Let M be a semi-projective retractable module. Then the following are equiva-

lent:

(1) M is Z (M )-I -lifting.
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(2) S is ∆(M )-semiregular.

(3) S is Zr (S)-semiregular.

(4) M is ∆(M )M-I -lifting.

Proof. (1) ⇔ (2) By Lemma 2.4. (2) ⇔ (3) By [6, Proposition 2.4]. (2) ⇔ (4) Similar to the proof

of Lemma 2.4. ���

3. K -extending modules

Definition 3.1. We call a module M a K -extending module if for every element φ ∈ S, Kerφ≤e

eM for some e2 = e ∈ S.

Ir it clear that for M = RR , the notion of a K -extending module coincides with that of an

ACS-ring.

Example 3.2.

(1) Every extending module is a K -extending module.

(2) A module M is said to be Rickart if, for every φ ∈ EndR (M ), Kerφ≤⊕ M [8]. Rickart mod-

ules are precisely nonsingular K -extending modules.

(3) Z(N) is a Rickart Z-module by [8, Example 2.3]. Hence it is a K -extending module. But

Z(N) is not extending, since if it were, then we would have an epimorphism f : Z(N) → Q

with nonessential kernel. Then by the extending property, Ker( f ) is essential in some

direct summand K of Z(N). Hence Q∼= K /Ker( f )⊕T for some direct summand T of Z(N).

Since Q is nonsingular, K = Ker( f ). It follows thatQ embeds in Z, which is a contradiction.

The following proposition generalizes [11, Proposition 2.2].

Proposition 3.3. Let M be a projective module. Consider the following conditions for an ele-

ment φ ∈ S = EndR(M ).

(1) M is a K -extending module.

(2) φM = P ⊕N where PR is a projective module and NR is a singular module.

(3) φS = A⊕B where AS is a projective right ideal of S and BS is a right ideal of S with B ⊆∆(M ).

Then (1) ⇔ (2) ⇒ (3). Moreover, if M generates rM (I ) for every I ≤ SS , then (3) ⇒ (1) holds.

Proof. (1) ⇒ (2) Let rM (φ) ≤e (1−e)M where e2 = e ∈ S. First we show that φM =φeM ⊕φ(1−

e)M . Clearly φM = φeM +φ(1− e)M . If x ∈ φeM ∩φ(1− e)M , then x = φem = φ(1− e)m′

where m,m′ ∈ M . Hence em − (1− e)m′ ∈ rM (φ) ⊆ (1− e)M , so em ∈ (1− e)M ∩ eM = 0, thus
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em = 0. Hence x = φem = 0 and so φM = φeM ⊕φ(1− e)M . Now φeM ∼= eM because the

multiplication map φ : eM → φeM has kernel {em | φem = 0} = eM ∩ rM (φ) = 0. Since M is

projective, eM is projective. Hence φeM is projective. Finally, φ : (1− e)M → φ(1− e)M has

kernel (1− e)M ∩ rM (φ) = rM (φ). Hence φ(1− e)M ∼=
(1−e)M
rM (φ)

, and so φ(1− e)M is singular by

[11, Lemma 2.1] because rM (φ) ≤e (1−e)M .

(2) ⇒ (1) Suppose that φM = P⊕N as in (2), and let π :φM → P be the projection with Ker(π) =

N . Then define γ : M → P by γ(m) = π(φm), and write K = Ker(γ). Then γ is onto so, as

P is projective, K = f M for some f 2 = f ∈ S. Clearly rM (φ) ⊆ f M ; it remains to verify that

rM (φ) ≤e f M . If k ∈ K , then φ(k) ∈ N because π(φ(k)) = γ(k) = 0. Hence we have a map

θ : K → N defined by θ(k) = φ(k). Then Ker(θ) = K ∩ rM (φ) = rM (φ). So K
rM (φ)

∼= Im(θ) ⊆ N .

Thus K
rM (φ)

is singular. Since K is projective, it follows that rM (φ) ≤e K by [11, Lemma 2.1].

(1) ⇒ (3) Let rM (φ) ≤e (1− e)M where e2 = e ∈ S. First we show that φS = φeS ⊕φ(1− e)S.

Clearly φS = φeS +φ(1− e)S. If x ∈ φeS ∩φ(1− e)S, then x = φe f = φ(1− e)g where f , g ∈ S.

So, for all m ∈ M , (e f − (1− e)g )m ∈ rM (φ) ⊆ (1− e)M . Hence e f m = 0 and so e f M = 0. Thus

x = φe f = 0. Therefore φS = φeS ⊕φ(1− e)S. Now φeS ∼= eS because the multiplication map

φ : eS → φeS has kernel {e f | φe f = 0} = 0. Hence φeS is projective. Finally, φ : (1− e)M →

φ(1−e)M has kernel (1−e)M ∩ rM (φ) = rM (φ). Hence (1−e)M
rM (φ)

∼=φ(1−e)M ∼=
M

rM (φ(1−e))
, and so

M
rM (φ(1−e)) is singular by [11, Lemma 2.1]. Thus rM (φ(1− e)) ≤e M by [11, Lemma 2.1] again.

Therefore φ(1−e)S ⊆∆(M ).

(3) ⇒ (1) Suppose that φS = A ⊕B as in (3), and let π : φS → A be the projection with Kerπ =

B . Then define γ : S → A by γ( f ) = π(φ f ), and write K = Ker(γ). Then γ is onto so, as A is

projective, K = eS for some e2 = e ∈ S. Clearly, rS(φ) ⊆ eS. Since M generates rM (I ) for every

I ≤ SS , rS(φ)M = rM (φ). Thus rM (φ) ⊆ eSM = eM . It remains to show that rM (φ) ≤e eM . Since

e ∈ K , then φem ∈ B M because π(φe)= γ(e)= 0. Hence we have a map θ : eM → B M defined

by θ(em) = φem. Then Ker(θ) = eM ∩ rM (φ) = rM (φ). So eM
rM (φ)

∼= Im(θ) ⊆ B M . Thus eM
rM (φ) is

singular so, since eM is projective, it follows that rM (φ) ≤e eM by [11, Lemma 2.1]. ���

Let M and N be R-modules. We say that M is N -K -extending if for every homomor-

phism φ : M → N , there exists L ≤⊕ M such that Kerφ ≤e M . It is clear that a module M is

K -extending if and only if M is M-K -extending.

Proposition 3.4. The following conditions are equivalent for a module M:

(1) M is a K -extending module;

(2) For any submodule N of M, every direct summand L of M is N -K -extending;

(3) For every pair of summands L and N of M and any φ ∈ HomR(M , N ), the kernel of the

restricted map φ|L is essential in a direct summand of L.
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Proof. (1) ⇒ (2) Let L = eM where e2 = e ∈ S. Letψ : L → N be any homomorphism and set φ=

ψe ∈ S. Since M is K -extending, there exists f 2 = f ∈ S such that Kerφ≤e f M . Thus Kerψ=

Kerφ∩L ≤e f M ∩L. It is enough to show that there exists g 2 = g ∈ S such that f M ∩L ≤e g M .

Since (1−e)M ⊆ Ker(1− f )e , Ker(1− f )e = eM∩Ker(1− f )e⊕(1−e)M = eM∩Ker(1− f )⊕(1−e)M .

There exists h2 = h ∈ S such that Ker(1− f )e ≤e hM as M is a K -extending module. Since

(1 − e)M ⊆ hM , it follows that hM = hM ∩ (eM ⊕ (1 − e)M ) = hM ∩ eM ⊕ (1 − e)M . Hence

eM∩Ker(1− f )⊕(1−e)M ≤e hM∩eM⊕(1−e)M and so eM∩ f M = eM∩Ker(1− f ) ≤e hM∩eM .

Since eM ∩hM is a direct summand of hM , eM ∩hM is a direct summand of M .

(2) ⇒ (3) is obvious to take that N is a direct summand of M .

(3) ⇒ (1) is clear to see by taking L = N = M . ���

Corollary 3.5. Every direct summand of a K -extending module is K -extending.

We recall that the module M is K -nonsingular if, for all φ ∈ S, Kerφ≤e M implies φ= 0.

Proposition 3.6. The following conditions are equivalent for a K -nonsingular module M:

(1) M is an indecomposable K -extending module;

(2) Every nonzero endomorphism φ ∈ S is a monomorphism.

Proof. (1) ⇒ (2) Let M is an indecomposable K -extending module. Assume that 0 6= φ ∈ S.

Then there exists e2 = e ∈ S such that Kerφ≤e eM . Since M is indecomposable, e = 0 or e = 1.

If e = 1, then Kerφ≤e M . By K -nonsingularity, φ= 0, a contradiction. Thus e = 0 and so φ is

a monomorphism.

(2) ⇒ (1) is clear. ���

A ring is called I -finite if it contains no infinite set of orthogonal idempotents.

Proposition 3.7. Let M be a K -extending module.

(1) For every X ⊆ M, if ℓS(X ) * ∆(M ), then ℓS(X ) contains a nonzero idempotent, where

ℓS(X ) = {φ ∈ S |φ(X ) = 0}.

(2) If S is I -finite, every left annihilator ℓS(X ) with X ⊆ M, has the form ℓS(X ) = Se ⊕T where

e2 = e ∈ S and R T ⊆∆(M ).

Proof. (1) Choose φ ∈ ℓS(X ), φ 6∈∆(M ). By hypothesis, rM (φ) ≤e eM where e2 = e ∈ S and e 6= 1

because φ 6∈∆(M ). Hence X ⊆ rM (φ) ⊆ eM , so 0 6= (1−e) ∈ ℓS(X ).

(2) If ℓS(X ) ⊆∆(M ), then take e = 0 and T = ℓS(X ). Otherwise use (1) and the I -finite hypoth-

esis to choose e maximal in {e ∈ S | 0 6= e2 = e ∈ ℓS(X ) }, where e ≤ f means e ∈ f S f . Then
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ℓS(X ) = Se ⊕ [ℓS(X )∩ S(1− e)] so it suffices to show that ℓS(X )∩ S(1− e) ⊆ ∆(M ). If not, let

0 6= f 2 = f ∈ ℓS(X )∩S(1− e) by (1). Then f e = 0 so g = e + f − e f satisfies g 2 = g ∈ ℓS(X ) and

e ≤ g . Thus g = e by the choice of e , and so f = e f and f = f 2 = f (e f ) = 0, a contradiction. ���

According to [12], M is called a Baer module if for every left ideal I of S, ∩φ∈I Kerφ is a

direct summand of M .

Corollary 3.8. Let S be I -finite and ∆(M ) = 0, then M is a Baer module if and only if M is a

K -extending module.

An R-module M has (C2) if any submodule of M isomorphic to a summand of M is itself

a summand. A ring R is called a right C2-ring if RR has (C2).

Lemma 3.9. If M has (C2), then ∆(M )⊆ Jac(S).

Proof. Let φ ∈∆(M ). Since rM (φ)∩rM (1−φ) = 0, we have rM (1−φ) = 0 and so Im(1−φ) ∼= M .

Hence Im(1−φ) is a direct summand of M by hypothesis. Im(1−φ) is also essential in M

because, for every m ∈ rM (φ), we have (1−φ)m = m and so rM (φ) ⊆ Im(1− f ). Therefore

Im(1−φ) = M . Since this holds for every φ ∈∆(M ), we have ∆(M ) ⊆ Jac(S). ���

An R-module M is called continuous if M is extending and has (C 2) [9]. A ring R is called

right continuous if RR is a continuous module. In [11], Nicholson and Yousif introduced the

notion of weakly continuous rings. A ring R is called right weakly continuous if R is a right

ACS-ring which is also a right C2-ring. Motivated by this concept, we define a weakly contin-

uous module as follows:

Definition 3.10. We call a module M weakly continuous if M is a K -extending module and

has (C2).

Clearly, a ring R is a right weakly continuous ring if RR is a weakly continuous module.

Example 3.11.

(1) It is clear that every continuous module is weakly continuous.

(2) The Z-module Z is a noetherian K -extending module which is not weakly continuous.

(3) Given a field F and an isomorphism a 7→ ā from F → F̄ ⊆ F , let M = R be the left F -space

on basis {1, t } with multiplication given by t 2 = 0 and t a = āt for all a ∈ F . Then MR is a

weakly continuous module, but MR is not a continuous module if di mF̄ (F ) ≥ 2 (see [11,

Example 2.5] or [3, Page 70]).

Theorem 3.12. Let M be a projective self-generator module. Then the following are equivalent:

(1) M is ∆(M )M-I -lifting.
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(2) M is Z (M )-I -lifting.

(3) If I is a finitely generated right ideal of S, then I M = eM ⊕N where e2 = e ∈ S and N is a

singular submodule of M.

(4) M is a K -extending module and for every finitely generated right ideal I of S such that I M

is projective, we have I M ≤⊕ M.

(5) If I is a finitely generated right ideal of S, then I = eS ⊕B where e2 = e ∈ S and B ⊆∆(M ) is

a right ideal of S.

(6) M is a K -extending module and every finitely generated projective right ideal of S is a

summand.

(7) M is a K -extending module and S is a right C2-ring.

(8) S is semiregular and ∆(M )= Jac(S).

(9) M is weakly continuous.

Proof. (1) ⇒ (2) It is clear.

(2) ⇒ (3) By Theorem 2.3.

(3) ⇒ (4) If φ ∈ S, taking I =φS in (3) shows that M is a K -extending module by Proposition

3.3. If I is a finitely generated right ideal of S with I M projective, write I M = eM ⊕N as in (3).

Then NR is both singular and projective, so N = 0 by [11, Lemma 2.1].

(4) ⇒ (2) Let φ ∈ S. Then φM = P ⊕N where PR is projective and NR is a singular submodule.

Consider the homomorphism φ : M → φM . Since M is projective, there exists a homomor-

phism h : M → M such that φh = ιπφ, where ι : P → φM and π : φM → P are injection and

projection maps. Hence φh(M ) = πφ(M ) = P . Take I = φhS in (4), so P is a direct summand

of M .

(2) ⇒ (5) By Corollary 2.5, S is ∆(M )-semiregular and, by [11, Theorem 1.2], we have (5).

(5) ⇒ (6) If φ ∈ S, taking I =φS in (5) shows that M is a K -extending module by Proposition

3.3. If I is a finitely generated projective right ideal of S, write I = eS ⊕B , where e2 = e ∈ S and

B ⊆ ∆(M ). By [6, Proposition 2.4], ∆(M ) = Zr (S) and so B ⊆ Zr (S). Thus BS is both singular

and projective, so B = 0 by [11, Lemma 2.1].

(6) ⇒ (7) To verify the right C2-condition, let I be a right ideal of S which is isomorphic to a

summand of S. Then I is projective and principal, so I is a summand by (6), as required.

(7) ⇒ (8) By Proposition 3.3, for every φ ∈ S, we have φS = A⊕B where AS is a projective right

ideal of S and BS is a right ideal of S with B ⊆ ∆(M ). By Lemma 3.9, ∆(M ) ⊆ Jac(S), and so

B ⊆ Jac(S). Since AS is projective, AS is isomorphic to a summand of S. Hence A = eS where
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e2 = e ∈ S by the C2-condition. Therefore S is semiregular. Finally, if φ ∈ Jac(S), then e2 = e ∈

Jac(S) and so e = 0 and φ ∈φS = B ⊆∆(M ), proving that Jac(S)⊆∆(M ). Thus Jac(S)=∆(M ).

(8) ⇒ (1) By Corollary 2.5.

(7) ⇒ (9) By [11, Theorem 3.9].

(9) ⇒ (2) Let φ ∈ S. Since M is a K -extending module, we have φM = P ⊕N where P is pro-

jective and N is singular. Thus P is isomorphic to a summand of M and so the C2-condition

implies that P = eM where e2 = e ∈ S. ���

Corollary 3.13 (see [11, Theorem 2.4]). The following are equivalent for a ring R:

(1) R is semiregular and J = Zr .

(2) R is right Zr -semiregular.

(3) If T is a finitely generated right ideal, then T = eR ⊕B where e2 = e ∈ R and B is a singular

right ideal.

(4) R is a right ACS-ring and every finitely generated projective right ideal is a summand.

(5) R is a right ACS-ring which is also a right C2-ring.

Corollary 3.14. Let M be a projective self-generator module. Then the following are equivalent:

(1) M is quasi-injective.

(2) M has (C2) and M ⊕M is extending.

(3) M is Z (M )-I -lifting and M ⊕M is extending.

(4) M is weakly continuous and M ⊕M is extending.

Proof. (1) ⇒ (2) By [9, Proposition 1.18].

(2) ⇒ (3) If M ⊕M is extending, then M is extending. By Theorem 3.12, M is Z (M )-I -lifting.

(3) ⇒ (4) By Theorem 3.12.

(4) ⇒ (1) If M is weakly continuous, then S is semiregular by Theorem 3.12. Since

semiregularity is a Morita invariant property by [10, Corollary 2.8], the matrix ring M2(S)∼=

EndR (M ⊕M ) is semiregular. In particular EndR(M ⊕M ) has the right C2-condition, and so

M ⊕M has (C2) by [11, Theorem 3.9]. Hence M ⊕M is continuous and, by [9, Theorem 3.16],

M is quasi-injective. ���

A module M is called finitely lifting, or f-lifting for short, if for every finitely generated

submodule A of M , there exists a direct summand B of M such that B ⊆ A and A/B ≪ M/B .
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Corollary 3.15. Let M be a projective self-generator module. Then M is weakly continuous if

and only if SS is f-lifting and ∆(M )= Jac(S).

Proof. It is clear by Theorem 3.12. ���
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