This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

ON \mathcal{K} -EXTENDING MODULES

TAYYEBEH AMOUZEGAR

Abstract. Let *M* be a right *R*-module and $S = End_R(M)$. We call *M* a \mathcal{K} -extending module if for every element $\phi \in S$, Ker ϕ is essential in a direct summand of *M*. In this paper we investigate these modules. We give a characterization of \mathcal{K} -extending modules. We prove that if *M* is a projective self-generator module, then *M* is a \mathcal{K} -extending module and every finitely generated projective right ideal of *S* is a summand if and only if *S* is semiregular and $\Delta(M) = Jac(S)$, where $\Delta(M) = \{f \in S \mid Kerf \leq^e M\}$ if and only if *M* is Z(M)- \mathcal{I} -lifting.

1. Introduction

Throughout this paper *R* will denote an associative ring with identity, *M* a unitary right *R*-module and $S = End_R(M)$ the ring of all *R*-endomorphisms of *M*. We will use the notation $N \leq^e M$ to indicate that *N* is an essential submodule of *M* (i.e. $\forall 0 \neq L \leq M, L \cap N \neq 0$); $N \ll M$ to indicate that *N* is small in *M* (i.e. $\forall L \leq M, L + N \neq M$). The notation $N \leq^{\oplus} M$ denotes that *N* is a direct summand of *M*. We also denote $r_M(I) = \{x \in M \mid Ix = 0\}$, for $I \subseteq S$; $\Delta(M) = \{f \in S \mid Ker f \leq^e M\}$ and $Z(M) = \{x \in M \mid xI = 0 \text{ for some essential right ideal } I \text{ of } R\}$.

Extending modules, continuous modules and lifting modules play important roles in rings and categories of modules, and have been studied extensively by many authors in recent years (see, [4], [5], [7], [9], [11]). A module M is called *extending* (or *CS*) if every submodule of M is essential in a direct summand of M. Dually, a module M is called *lifting* if for every $A \leq M$, there exists a direct summand B of M such that $B \subseteq A$ and $A/B \ll M/B$ [9]. In [1], we introduced \mathscr{I} -lifting modules as a generalization of lifting modules. A module M is called \mathscr{I} -lifting if for every $\phi \in S$ there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \subseteq \text{Im}\phi$ and $M_2 \cap \text{Im}\phi \ll M_2$. It is obvious that every lifting module is \mathscr{I} -lifting while the converse in not true (the \mathbb{Z} -module \mathbb{Q} is \mathscr{I} -lifting but it is not lifting). A ring R is called a *semiregular* ring if for each $a \in R$, there exists $e^2 = e \in aR$ such that $(1 - e)a \in J(R)$ [10]. It is easily checked that R_R is an \mathscr{I} -lifting module if and only if R is a semiregular ring. In [11], Nicholson and Yousif introduced right I-semiregular rings for an ideal I of a ring R. A ring R is called a *right*

2010 Mathematics Subject Classification. 16D10, 16D80, 16D40.

Received January 24, 2015, accepted October 4, 2016.

Key words and phrases. Continuous module, extending module, lifting module, semiregular ring.

TAYYEBEH AMOUZEGAR

I-semiregular ring if for each $a \in R$, there exists $e^2 = e \in aR$ such that $(1 - e)a \in I$. In this note, motivated by [11], we introduce $F \cdot \mathscr{I}$ -lifting modules for a submodule F of a module M as a generalization of the right *I*-semiregular ring. A module M is called $F \cdot \mathscr{I}$ -lifting if for every $\phi \in S$ there exists a decomposition $M = A \oplus B$ such that $A \subseteq \phi M$ and $\phi M \cap B \leq F$. Let F = I be an ideal of R. It is clear that R_R is an $I \cdot \mathscr{I}$ -lifting module if and only if R is a right I-semiregular ring.

In [11], a ring *R* is called an *ACS-ring* if for every element $a \in R$, $r_R(a) \leq^e fR$ for some $f^2 = f \in R$. Inspired by this definition we introduce and investigate \mathcal{K} -extending modules as a generalization of the ACS-ring. We call *M* a \mathcal{K} -*extending* module if for every element $\phi \in S$, Ker ϕ is essential in a direct summand of *M*. These modules are also a generalization of extending modules and dual of \mathcal{I} -lifting modules. It is clear that R_R is a \mathcal{K} -extending module if and only if *R* is an ACS-ring. In this paper our aim is to generalize the some results of [11] from the ring case to the module case.

In Section 2, we characterize semi-projective F- \mathscr{I} -lifting modules. We show that the following are equivalent for a semi-projective retractable module M:

- (1) M is Z(M)- \mathscr{I} -lifting.
- (2) *S* is $\Delta(M)$ -semiregular.
- (3) *S* is $Z_r(S)$ -semiregular.
- (4) M is $\Delta(M)M$ - \mathscr{I} -lifting.

In Section 3, we give a characterization of \mathcal{K} -extending modules. We prove that if M is a projective self-generator module, then M is a \mathcal{K} -extending module and every finitely generated projective right ideal of S is a summand if and only if S is semiregular and $\Delta(M) = Jac(S)$, where $\Delta(M) = \{f \in S \mid Ker f \leq^e M\}$ if and only if M is Z(M)- \mathcal{I} -lifting.

We also prove the following which generalizes [11, Corollary 2.7]:

Let *M* be a projective self-generator module. Then the following are equivalent:

- (1) M is quasi-injective.
- (2) M has (C_2) and $M \oplus M$ is extending.
- (3) *M* is Z(M)- \mathscr{I} -lifting and $M \oplus M$ is extending.
- (4) *M* is weakly continuous and $M \oplus M$ is extending.

2. *F*-*I*-lifting modules

Definition 2.1. Let *F* be a submodule of an *R*-module *M*. A module *M* is called *F*- \mathscr{I} -*lifting* if for every $\phi \in S$ there exists a decomposition $M = A \oplus B$ such that $A \subseteq \phi M$ and $\phi M \cap B \leq F$.

It is clear that every \mathscr{I} -lifting module is Rad(M)- \mathscr{I} -lifting.

A module *M* is called *semi-projective* if for any epimorphism $f : M \to N$, where *N* is a submodule of *M*, and for any homomorphism $g : M \to N$, there exists $h : M \to M$ such that fh = g.

Lemma 2.2. Let *M* be a semi-projective module and *F* be a fully invariant submodule of *M*. Then the following are equivalent for $\phi \in S$:

- (1) There exists $e^2 = e \in \phi S$ with $(\phi e\phi)M \subseteq F$.
- (2) There exists $e^2 = e \in \phi S$ with $\phi M \cap (1 e)M \subseteq F$.
- (3) $\phi M = eM \oplus N$ where $e^2 = e \in S$ and $N \subseteq F$.

Proof. (1) \Rightarrow (2) If $x \in \phi M \cap (1-e)M$, then $x = \phi m = (1-e)m = (1-e)m'$ for some $m, m' \in M$. Thus $x = (1-e)\phi m \in F$.

(2) \Rightarrow (3) It is clear that $\phi M = eM \oplus [\phi M \cap (1-e)M]$. Set $N = \phi M \cap (1-e)M$.

(3) \Rightarrow (1) First we show that $e^2 = e \in \phi S$. Consider the epimorphisms $\phi : M \to \phi M$ and $e : M \to eM$. Since *M* is semi-projective, there exists a homomorphism $g \in S$ such that $\phi g = ie = e$, where $i : eM \to \phi M$ is the inclusion map. Hence $e \in \phi S$. Since $\phi M = eM \oplus N$, for every $m \in M$, we have $\phi m = em' + n$ for some $m' \in M$ and $n \in N$. Then $\phi m - e\phi m = n - en \in F$ because $N \subseteq F$. Hence $(\phi - e\phi)M \subseteq F$.

Theorem 2.3. *Let F be a fully invariant submodule of a semi-projective module M. Then the following conditions are equivalent:*

- (1) M is F- \mathcal{I} -lifting.
- (2) For any finitely generated right ideal $I \subseteq S$, there exists a homomorphism γ from M to IM such that $\gamma^2 = \gamma$ and $(1 \gamma)IM \subseteq F$.
- (3) For any finitely generated right ideal $I \subseteq S$, there exists a decomposition $M = L \oplus H$ such that *L* is a submodule of *IM* and $IM \cap H \subseteq F$.
- (4) For any finitely generated right ideal $I \subseteq S$, IM can be written as $IM = L \oplus N$ where L is a direct summand of M and $N \subseteq F$.

When these conditions are satisfied we have:

- (i) For every right ideal I of S such that $IM \nsubseteq F$ there exists an idempotent $e^2 = e \in I$ such that $eM \nsubseteq F$.
- (ii) $Jac(S)M \subseteq F$, and $\Delta(M)M \subseteq F$.

Proof. (1) \Rightarrow (2) We induct on *n* where $I = f_0 S + \dots + f_n S$. If n = 1 there is nothing to prove by (1). If $n \ge 2$, then (1) and Lemma 2.2 give $\beta^2 = \beta \in f_n S$ with $(1 - \beta)f_n M \subseteq F$. Set $J = (1 - \beta)f_0 S + \dots + (1 - \beta)f_{n-1}S$. By induction, choose $\alpha : M \to JM$ such that $\alpha^2 = \alpha \in J$, and $(1 - \alpha)JM \subseteq F$. Define $\gamma = \beta + \alpha - \alpha\beta$. Then $\gamma = \gamma^2$ and $\gamma M = \beta M \oplus \alpha M$ since $\beta\alpha = 0$. It remains to verify that $(1 - \gamma)IM \subseteq F$. Since $\alpha \in J$ and $\beta \in f_n S$, $\gamma \in I$. Hence $\gamma M \subseteq IM$. But $(1 - \gamma) = (1 - \gamma)(1 - \beta)$ and $(1 - \beta)J = J$, so $(1 - \gamma)I \subseteq (1 - \alpha)(1 - \beta)J + (1 - \alpha)(1 - \beta)f_nS$. Hence $(1 - \gamma)IM \subseteq (1 - \alpha)JM + (1 - \alpha)(1 - \beta)f_nM \subseteq F$.

(2) \Rightarrow (3) Let *I* and γ be as in (2). Then $(1 - \gamma)IM = (1 - \gamma)M \cap IM$. Hence $M = \gamma M \oplus (1 - \gamma)M$ and $IM \cap (1 - \gamma)M = (1 - \gamma)IM \subseteq F$.

 $(3) \Rightarrow (4) \Rightarrow (1)$ They are clear.

Suppose these conditions hold. Then (*i*) follows from Lemma 2.2, and (*ii*) follows (*i*). \Box

An *R*-module *M* is called *retractable* if $Hom_R(M, N) \neq 0$ for all nonzero submodules *N* of *M*.

Lemma 2.4. Let *M* be a semi-projective module. Consider the following conditions for $\phi \in S$:

(1) $\phi M = eM \oplus N$ where $e^2 = e \in S$ and N is a singular submodule of M.

(2) $\phi S = eS \oplus B$ where $e^2 = e \in S$ and $B \subseteq \Delta(M)$ is a right ideal of S.

Then (1) \Rightarrow (2) holds and if moreover M is a retractable module, then (2) \Rightarrow (1) holds.

Proof. (1) \Rightarrow (2) Suppose that $\phi M = eM \oplus N$ as in (1). First we show that $N = \phi hM$ for some $h \in S$. Consider the homomorphism $\phi : M \to \phi M$. Since M is semi-projective, there exists a homomorphism $h : M \to M$ such that $\phi h = i\pi\phi$, where $i : N \to \phi M$ and $\pi : \phi M \to N$ are injection and projection maps respectively. Hence $\phi hM = \pi(\phi M) = N$. Now, by [13, 18.4], we have $Hom_R(M,\phi M) = Hom(M,eM) + Hom(M,\phi hM)$. Since M is semi-projective, $\phi S = eS + \phi hS$. As $eM \cap N = 0$, $eS \cap \phi hS = Hom_R(M,eM) \cap Hom_R(M,\phi hM) = Hom_R(M,eM \cap \phi hM) = 0$. Thus $\phi S = eS \oplus \phi hS$. Finally, since $N = \phi hM$ is singular and $\phi hM \cong \frac{M}{\text{Ker}\phi h}$, $\text{Ker}\phi h \leq^e M$ by [11, Lemma 2.1]. So $\phi h \in \Delta(M)$.

(2) \Rightarrow (1) Let $\phi S = eS \oplus B$ as in (2). Clearly, $\phi M = eM + BM$. Since $eS \cap B = 0$ and M is semiprojective, we have $Hom_R(M, eM) \cap Hom_R(M, BM) = 0$. Therefore $Hom_R(M, eM \cap B) = 0$. Hence $eM \cap BM = 0$ by retractability. It follows that $\phi M = eM \oplus BM$ and $BM \subseteq \Delta(M)M \subseteq Z(M)$.

Corollary 2.5. *Let M be a semi-projective retractable module. Then the following are equiva-lent:*

(1) M is Z(M)- \mathcal{I} -lifting.

- (2) S is $\Delta(M)$ -semiregular.
- (3) S is $Z_r(S)$ -semiregular.
- (4) M is $\Delta(M)M$ - \mathscr{I} -lifting.

Proof. (1) \Leftrightarrow (2) By Lemma 2.4. (2) \Leftrightarrow (3) By [6, Proposition 2.4]. (2) \Leftrightarrow (4) Similar to the proof of Lemma 2.4.

3. \mathcal{K} -extending modules

Definition 3.1. We call a module *M* a \mathcal{K} -*extending module* if for every element $\phi \in S$, Ker $\phi \leq^{e} eM$ for some $e^{2} = e \in S$.

It it clear that for $M = R_R$, the notion of a \mathcal{K} -extending module coincides with that of an ACS-ring.

Example 3.2.

- (1) Every extending module is a \mathcal{K} -extending module.
- (2) A module *M* is said to be *Rickart* if, for every $\phi \in End_R(M)$, Ker $\phi \leq^{\oplus} M$ [8]. Rickart modules are precisely nonsingular \mathcal{K} -extending modules.
- (3) $\mathbb{Z}^{(\mathbb{N})}$ is a Rickart \mathbb{Z} -module by [8, Example 2.3]. Hence it is a \mathcal{K} -extending module. But $\mathbb{Z}^{(\mathbb{N})}$ is not extending, since if it were, then we would have an epimorphism $f : \mathbb{Z}^{(\mathbb{N})} \to \mathbb{Q}$ with nonessential kernel. Then by the extending property, Ker(f) is essential in some direct summand K of $\mathbb{Z}^{(\mathbb{N})}$. Hence $\mathbb{Q} \cong K/\text{Ker}(f) \oplus T$ for some direct summand T of $\mathbb{Z}^{(\mathbb{N})}$. Since \mathbb{Q} is nonsingular, K = Ker(f). It follows that \mathbb{Q} embeds in \mathbb{Z} , which is a contradiction.

The following proposition generalizes [11, Proposition 2.2].

Proposition 3.3. Let M be a projective module. Consider the following conditions for an element $\phi \in S = End_R(M)$.

- (1) M is a \mathcal{K} -extending module.
- (2) $\phi M = P \oplus N$ where P_R is a projective module and N_R is a singular module.
- (3) $\phi S = A \oplus B$ where A_S is a projective right ideal of S and B_S is a right ideal of S with $B \subseteq \Delta(M)$.

Then (1) \Leftrightarrow (2) \Rightarrow (3). Moreover, if M generates $r_M(I)$ for every $I \leq S_S$, then (3) \Rightarrow (1) holds.

Proof. (1) \Rightarrow (2) Let $r_M(\phi) \leq^e (1-e)M$ where $e^2 = e \in S$. First we show that $\phi M = \phi e M \oplus \phi (1-e)M$. $e \in M$. Clearly $\phi M = \phi e M + \phi (1-e)M$. If $x \in \phi e M \cap \phi (1-e)M$, then $x = \phi e m = \phi (1-e)m'$ where $m, m' \in M$. Hence $em - (1-e)m' \in r_M(\phi) \subseteq (1-e)M$, so $em \in (1-e)M \cap eM = 0$, thus em = 0. Hence $x = \phi em = 0$ and so $\phi M = \phi eM \oplus \phi(1 - e)M$. Now $\phi eM \cong eM$ because the multiplication map $\overline{\phi} : eM \to \phi eM$ has kernel $\{em \mid \phi em = 0\} = eM \cap r_M(\phi) = 0$. Since *M* is projective, *eM* is projective. Hence ϕeM is projective. Finally, $\overline{\phi} : (1 - e)M \to \phi(1 - e)M$ has kernel $(1 - e)M \cap r_M(\phi) = r_M(\phi)$. Hence $\phi(1 - e)M \cong \frac{(1 - e)M}{r_M(\phi)}$, and so $\phi(1 - e)M$ is singular by [11, Lemma 2.1] because $r_M(\phi) \leq e(1 - e)M$.

(2) \Rightarrow (1) Suppose that $\phi M = P \oplus N$ as in (2), and let $\pi : \phi M \to P$ be the projection with Ker(π) = N. Then define $\gamma : M \to P$ by $\gamma(m) = \pi(\phi m)$, and write $K = \text{Ker}(\gamma)$. Then γ is onto so, as P is projective, K = fM for some $f^2 = f \in S$. Clearly $r_M(\phi) \subseteq fM$; it remains to verify that $r_M(\phi) \leq ^e fM$. If $k \in K$, then $\phi(k) \in N$ because $\pi(\phi(k)) = \gamma(k) = 0$. Hence we have a map $\theta : K \to N$ defined by $\theta(k) = \phi(k)$. Then Ker(θ) = $K \cap r_M(\phi) = r_M(\phi)$. So $\frac{K}{r_M(\phi)} \cong \text{Im}(\theta) \subseteq N$. Thus $\frac{K}{r_M(\phi)}$ is singular. Since K is projective, it follows that $r_M(\phi) \leq ^e K$ by [11, Lemma 2.1].

(1) \Rightarrow (3) Let $r_M(\phi) \leq^e (1-e)M$ where $e^2 = e \in S$. First we show that $\phi S = \phi eS \oplus \phi(1-e)S$. Clearly $\phi S = \phi eS + \phi(1-e)S$. If $x \in \phi eS \cap \phi(1-e)S$, then $x = \phi ef = \phi(1-e)g$ where $f, g \in S$. So, for all $m \in M$, $(ef - (1-e)g)m \in r_M(\phi) \subseteq (1-e)M$. Hence efm = 0 and so efM = 0. Thus $x = \phi ef = 0$. Therefore $\phi S = \phi eS \oplus \phi(1-e)S$. Now $\phi eS \cong eS$ because the multiplication map $\overline{\phi} : eS \to \phi eS$ has kernel $\{ef \mid \phi ef = 0\} = 0$. Hence ϕeS is projective. Finally, $\overline{\phi} : (1-e)M \to \phi(1-e)M$ has kernel $(1-e)M \cap r_M(\phi) = r_M(\phi)$. Hence $\frac{(1-e)M}{r_M(\phi)} \cong \phi(1-e)M \cong \frac{M}{r_M(\phi(1-e))}$, and so $\frac{M}{r_M(\phi(1-e))}$ is singular by [11, Lemma 2.1]. Thus $r_M(\phi(1-e)) \leq^e M$ by [11, Lemma 2.1] again. Therefore $\phi(1-e)S \subseteq \Delta(M)$.

(3) \Rightarrow (1) Suppose that $\phi S = A \oplus B$ as in (3), and let $\pi : \phi S \to A$ be the projection with Ker $\pi = B$. Then define $\gamma : S \to A$ by $\gamma(f) = \pi(\phi f)$, and write $K = \text{Ker}(\gamma)$. Then γ is onto so, as A is projective, K = eS for some $e^2 = e \in S$. Clearly, $r_S(\phi) \subseteq eS$. Since M generates $r_M(I)$ for every $I \leq S_S$, $r_S(\phi)M = r_M(\phi)$. Thus $r_M(\phi) \subseteq eSM = eM$. It remains to show that $r_M(\phi) \leq ^e eM$. Since $e \in K$, then $\phi em \in BM$ because $\pi(\phi e) = \gamma(e) = 0$. Hence we have a map $\theta : eM \to BM$ defined by $\theta(em) = \phi em$. Then Ker(θ) = $eM \cap r_M(\phi) = r_M(\phi)$. So $\frac{eM}{r_M(\phi)} \cong \text{Im}(\theta) \subseteq BM$. Thus $\frac{eM}{r_M(\phi)}$ is singular so, since eM is projective, it follows that $r_M(\phi) \leq ^e eM$ by [11, Lemma 2.1].

Let *M* and *N* be *R*-modules. We say that *M* is *N*- \mathcal{K} -extending if for every homomorphism $\phi : M \to N$, there exists $L \leq^{\oplus} M$ such that $\operatorname{Ker} \phi \leq^{e} M$. It is clear that a module *M* is \mathcal{K} -extending if and only if *M* is *M*- \mathcal{K} -extending.

Proposition 3.4. *The following conditions are equivalent for a module M:*

- (1) *M* is a \mathcal{K} -extending module;
- (2) For any submodule N of M, every direct summand L of M is $N-\mathcal{K}$ -extending;
- (3) For every pair of summands L and N of M and any $\phi \in Hom_R(M, N)$, the kernel of the restricted map $\phi|_L$ is essential in a direct summand of L.

Proof. (1) \Rightarrow (2) Let L = eM where $e^2 = e \in S$. Let $\psi : L \to N$ be any homomorphism and set $\phi = \psi e \in S$. Since M is \mathcal{K} -extending, there exists $f^2 = f \in S$ such that $\operatorname{Ker}\phi \leq^e fM$. Thus $\operatorname{Ker}\psi = \operatorname{Ker}\phi \cap L \leq^e fM \cap L$. It is enough to show that there exists $g^2 = g \in S$ such that $fM \cap L \leq^e gM$. Since $(1-e)M \subseteq \operatorname{Ker}(1-f)e$, $\operatorname{Ker}(1-f)e = eM \cap \operatorname{Ker}(1-f)e \oplus (1-e)M = eM \cap \operatorname{Ker}(1-f) \oplus (1-e)M$. There exists $h^2 = h \in S$ such that $\operatorname{Ker}(1-f)e \leq^e hM$ as M is a \mathcal{K} -extending module. Since $(1-e)M \subseteq hM$, it follows that $hM = hM \cap (eM \oplus (1-e)M) = hM \cap eM \oplus (1-e)M$. Hence $eM \cap \operatorname{Ker}(1-f) \oplus (1-e)M \leq^e hM \cap eM \oplus (1-e)M$ and so $eM \cap fM = eM \cap \operatorname{Ker}(1-f) \leq^e hM \cap eM$. Since $eM \cap hM$ is a direct summand of hM, $eM \cap hM$ is a direct summand of M.

 $(2) \Rightarrow (3)$ is obvious to take that *N* is a direct summand of *M*.

(3) \Rightarrow (1) is clear to see by taking L = N = M.

Corollary 3.5. *Every direct summand of a* \mathcal{K} *-extending module is* \mathcal{K} *-extending.*

We recall that the module *M* is \mathcal{K} -nonsingularif, for all $\phi \in S$, Ker $\phi \leq^{e} M$ implies $\phi = 0$.

Proposition 3.6. The following conditions are equivalent for a \mathcal{K} -nonsingular module M:

- (1) *M* is an indecomposable \mathcal{K} -extending module;
- (2) Every nonzero endomorphism $\phi \in S$ is a monomorphism.

Proof. (1) \Rightarrow (2) Let *M* is an indecomposable \mathscr{K} -extending module. Assume that $0 \neq \phi \in S$. Then there exists $e^2 = e \in S$ such that $\operatorname{Ker} \phi \leq^e eM$. Since *M* is indecomposable, e = 0 or e = 1. If e = 1, then $\operatorname{Ker} \phi \leq^e M$. By \mathscr{K} -nonsingularity, $\phi = 0$, a contradiction. Thus e = 0 and so ϕ is a monomorphism.

 $(2) \Rightarrow (1)$ is clear.

A ring is called *I*-finite if it contains no infinite set of orthogonal idempotents.

Proposition 3.7. Let M be a \mathcal{K} -extending module.

- (1) For every $X \subseteq M$, if $\ell_S(X) \not\subseteq \Delta(M)$, then $\ell_S(X)$ contains a nonzero idempotent, where $\ell_S(X) = \{\phi \in S \mid \phi(X) = 0\}.$
- (2) If *S* is *I*-finite, every left annihilator $\ell_S(X)$ with $X \subseteq M$, has the form $\ell_S(X) = Se \oplus T$ where $e^2 = e \in S$ and $_RT \subseteq \Delta(M)$.

Proof. (1) Choose $\phi \in \ell_S(X)$, $\phi \notin \Delta(M)$. By hypothesis, $r_M(\phi) \leq^e eM$ where $e^2 = e \in S$ and $e \neq 1$ because $\phi \notin \Delta(M)$. Hence $X \subseteq r_M(\phi) \subseteq eM$, so $0 \neq (1 - e) \in \ell_S(X)$.

(2) If $\ell_S(X) \subseteq \Delta(M)$, then take e = 0 and $T = \ell_S(X)$. Otherwise use (1) and the *I*-finite hypothesis to choose *e* maximal in $\{e \in S \mid 0 \neq e^2 = e \in \ell_S(X)\}$, where $e \leq f$ means $e \in fSf$. Then

TAYYEBEH AMOUZEGAR

 $\ell_S(X) = Se \oplus [\ell_S(X) \cap S(1-e)]$ so it suffices to show that $\ell_S(X) \cap S(1-e) \subseteq \Delta(M)$. If not, let $0 \neq f^2 = f \in \ell_S(X) \cap S(1-e)$ by (1). Then fe = 0 so g = e + f - ef satisfies $g^2 = g \in \ell_S(X)$ and $e \leq g$. Thus g = e by the choice of e, and so f = ef and $f = f^2 = f(ef) = 0$, a contradiction. \Box

According to [12], *M* is called a *Baer* module if for every left ideal *I* of *S*, $\cap_{\phi \in I} \text{Ker}\phi$ is a direct summand of *M*.

Corollary 3.8. Let *S* be *I*-finite and $\Delta(M) = 0$, then *M* is a Baer module if and only if *M* is a \mathcal{K} -extending module.

An *R*-module *M* has (C_2) if any submodule of *M* isomorphic to a summand of *M* is itself a summand. A ring *R* is called a *right* C_2 -*ring* if R_R has (C_2).

Lemma 3.9. If M has (C_2) , then $\Delta(M) \subseteq Jac(S)$.

Proof. Let $\phi \in \Delta(M)$. Since $r_M(\phi) \cap r_M(1-\phi) = 0$, we have $r_M(1-\phi) = 0$ and so $\operatorname{Im}(1-\phi) \cong M$. Hence $\operatorname{Im}(1-\phi)$ is a direct summand of M by hypothesis. $\operatorname{Im}(1-\phi)$ is also essential in M because, for every $m \in r_M(\phi)$, we have $(1-\phi)m = m$ and so $r_M(\phi) \subseteq \operatorname{Im}(1-f)$. Therefore $\operatorname{Im}(1-\phi) = M$. Since this holds for every $\phi \in \Delta(M)$, we have $\Delta(M) \subseteq Jac(S)$.

An *R*-module *M* is called *continuous* if *M* is extending and has (*C*2) [9]. A ring *R* is called *right continuous* if R_R is a continuous module. In [11], Nicholson and Yousif introduced the notion of weakly continuous rings. A ring *R* is called *right weakly continuous* if *R* is a right ACS-ring which is also a right C_2 -ring. Motivated by this concept, we define a weakly continuous module as follows:

Definition 3.10. We call a module *M* weakly continuous if *M* is a \mathcal{K} -extending module and has (C_2).

Clearly, a ring R is a right weakly continuous ring if R_R is a weakly continuous module.

Example 3.11.

- (1) It is clear that every continuous module is weakly continuous.
- (2) The \mathbb{Z} -module \mathbb{Z} is a noetherian \mathcal{K} -extending module which is not weakly continuous.
- (3) Given a field *F* and an isomorphism a → ā from F → F ⊆ F, let M = R be the left *F*-space on basis {1, t} with multiplication given by t² = 0 and ta = āt for all a ∈ F. Then M_R is a weakly continuous module, but M_R is not a continuous module if dim_F(F) ≥ 2 (see [11, Example 2.5] or [3, Page 70]).

Theorem 3.12. Let M be a projective self-generator module. Then the following are equivalent:

(1) $M \text{ is } \Delta(M)M - \mathcal{I} - lifting.$

- (2) M is Z(M)- \mathscr{I} -lifting.
- (3) If I is a finitely generated right ideal of S, then $IM = eM \oplus N$ where $e^2 = e \in S$ and N is a singular submodule of M.
- (4) *M* is a \mathcal{K} -extending module and for every finitely generated right ideal I of S such that IM is projective, we have $IM \leq^{\oplus} M$.
- (5) If *I* is a finitely generated right ideal of *S*, then $I = eS \oplus B$ where $e^2 = e \in S$ and $B \subseteq \Delta(M)$ is a right ideal of *S*.
- (6) *M* is a *K*-extending module and every finitely generated projective right ideal of S is a summand.
- (7) *M* is a \mathcal{K} -extending module and *S* is a right C_2 -ring.
- (8) *S* is semiregular and $\Delta(M) = Jac(S)$.
- (9) *M is weakly continuous*.

Proof. (1) \Rightarrow (2) It is clear.

(2) \Rightarrow (3) By Theorem 2.3.

(3) \Rightarrow (4) If $\phi \in S$, taking $I = \phi S$ in (3) shows that M is a \mathcal{K} -extending module by Proposition 3.3. If I is a finitely generated right ideal of S with IM projective, write $IM = eM \oplus N$ as in (3). Then N_R is both singular and projective, so N = 0 by [11, Lemma 2.1].

(4) \Rightarrow (2) Let $\phi \in S$. Then $\phi M = P \oplus N$ where P_R is projective and N_R is a singular submodule. Consider the homomorphism $\phi : M \to \phi M$. Since *M* is projective, there exists a homomorphism $h : M \to M$ such that $\phi h = \iota \pi \phi$, where $\iota : P \to \phi M$ and $\pi : \phi M \to P$ are injection and projection maps. Hence $\phi h(M) = \pi \phi(M) = P$. Take $I = \phi hS$ in (4), so *P* is a direct summand of *M*.

(2) \Rightarrow (5) By Corollary 2.5, *S* is $\Delta(M)$ -semiregular and, by [11, Theorem 1.2], we have (5).

(5) \Rightarrow (6) If $\phi \in S$, taking $I = \phi S$ in (5) shows that M is a \mathcal{K} -extending module by Proposition 3.3. If I is a finitely generated projective right ideal of S, write $I = eS \oplus B$, where $e^2 = e \in S$ and $B \subseteq \Delta(M)$. By [6, Proposition 2.4], $\Delta(M) = Z_r(S)$ and so $B \subseteq Z_r(S)$. Thus B_S is both singular and projective, so B = 0 by [11, Lemma 2.1].

(6) \Rightarrow (7) To verify the right C_2 -condition, let *I* be a right ideal of *S* which is isomorphic to a summand of *S*. Then *I* is projective and principal, so *I* is a summand by (6), as required.

(7) \Rightarrow (8) By Proposition 3.3, for every $\phi \in S$, we have $\phi S = A \oplus B$ where A_S is a projective right ideal of *S* and B_S is a right ideal of *S* with $B \subseteq \Delta(M)$. By Lemma 3.9, $\Delta(M) \subseteq Jac(S)$, and so $B \subseteq Jac(S)$. Since A_S is projective, A_S is isomorphic to a summand of *S*. Hence A = eS where

 $e^2 = e \in S$ by the C_2 -condition. Therefore *S* is semiregular. Finally, if $\phi \in Jac(S)$, then $e^2 = e \in Jac(S)$ and so e = 0 and $\phi \in \phi S = B \subseteq \Delta(M)$, proving that $Jac(S) \subseteq \Delta(M)$. Thus $Jac(S) = \Delta(M)$.

(8) \Rightarrow (1) By Corollary 2.5.

 $(7) \Rightarrow (9)$ By [11, Theorem 3.9].

(9) \Rightarrow (2) Let $\phi \in S$. Since *M* is a \mathcal{K} -extending module, we have $\phi M = P \oplus N$ where *P* is projective and *N* is singular. Thus *P* is isomorphic to a summand of *M* and so the *C*₂-condition implies that P = eM where $e^2 = e \in S$.

Corollary 3.13 (see [11, Theorem 2.4]). *The following are equivalent for a ring R:*

- (1) *R* is semiregular and $J = Z_r$.
- (2) R is right Z_r -semiregular.
- (3) If *T* is a finitely generated right ideal, then $T = eR \oplus B$ where $e^2 = e \in R$ and *B* is a singular right ideal.
- (4) *R* is a right ACS-ring and every finitely generated projective right ideal is a summand.
- (5) *R* is a right ACS-ring which is also a right C_2 -ring.

Corollary 3.14. Let M be a projective self-generator module. Then the following are equivalent:

- (1) *M* is quasi-injective.
- (2) M has (C_2) and $M \oplus M$ is extending.
- (3) *M* is Z(M)- \mathcal{I} -lifting and $M \oplus M$ is extending.
- (4) *M* is weakly continuous and $M \oplus M$ is extending.

Proof. (1) \Rightarrow (2) By [9, Proposition 1.18].

(2) \Rightarrow (3) If $M \oplus M$ is extending, then *M* is extending. By Theorem 3.12, *M* is *Z*(*M*)-*I*-lifting.

(3) \Rightarrow (4) By Theorem 3.12.

 $(4) \Rightarrow (1)$ If *M* is weakly continuous, then *S* is semiregular by Theorem 3.12. Since semiregularity is a Morita invariant property by [10, Corollary 2.8], the matrix ring $M_2(S) \cong End_R(M \oplus M)$ is semiregular. In particular $End_R(M \oplus M)$ has the right C_2 -condition, and so $M \oplus M$ has (C_2) by [11, Theorem 3.9]. Hence $M \oplus M$ is continuous and, by [9, Theorem 3.16], *M* is quasi-injective.

A module *M* is called *finitely lifting*, or *f*-*lifting* for short, if for every finitely generated submodule *A* of *M*, there exists a direct summand *B* of *M* such that $B \subseteq A$ and $A/B \ll M/B$.

Corollary 3.15. Let *M* be a projective self-generator module. Then *M* is weakly continuous if and only if S_S is f-lifting and $\Delta(M) = Jac(S)$.

Proof. It is clear by Theorem 3.12.

References

- T. Amouzegar, A generalization of lifting modules, Ukrainian Math. J., DOI: 10.1007/s11253-015-1042-z, 66, n. 11, (2015).
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- [3] J.-E. Björk, Rings satisfying certain chain conditions, J. Reine Angew. Math., 245 (1970), 63–73.
- [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, 2006.
- [5] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics Series, Longman, Harlow, 1994.
- [6] A. Haghany and M. R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq, 14(2007), 489–496.
- [7] D. Keskin and W. Xue, Generalizations of lifting modules, Acta. Math. Hung., 91 (2001), 253–261.
- [8] G. Lee, S. T. Rizvi and C. S. Roman, Rickart modules, Comm. Algebra, 38(2010), 4005–4027.
- [9] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [10] W. K. Nicholson, Semiregular modules and rings, Canad. J. Math., 28 (1976), 1105–1120.
- [11] W. K. Nicholson and M. F. Yousif, Weakly continuous and C2-rings, Comm. Algebra, 29 (2001), 2429–2446.
- [12] S. T. Rizvi and C. S. Roman, Baer and quasi-Baer modules, Comm. Algebra, 32 (2004), 103–123.
- [13] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.
- [14] W. M. Xue, On PP rings, Kobe J. Math., 7(1990), 77-80.

Department of Mathematics, Quchan University of Advanced Technology, Quchan, Iran.

E-mail: t.amoozegar@yahoo.com; t.amouzgar@qiet.ac.ir

11