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EVALUATING PRIME POWER GAUSS AND JACOBI SUMS

MISTY OSTERGAARD, VINCENT PIGNO AND CHRISTOPHER PINNER

Abstract. We show that for any mod pm characters, χ1, . . . ,χk , with at least one χi primi-

tive mod pm , the Jacobi sum,

pm
∑

x1=1

· · ·
pm
∑

xk=1

x1+···+xk≡B mod pm

χ1(x1) · · ·χk (xk ),

has a simple evaluation when m is sufficiently large (for m ≥ 2 if p ∤ B). As part of the

proof we give a simple evaluation of the mod pm Gauss sums when m ≥ 2 that differs

slightly from existing evaluations when p = 2.

1. Introduction

For multiplicative characters χ1 and χ2 mod q one defines the classical Jacobi sum by

J(χ1,χ2, q) :=
q
∑

x=1

χ1(x)χ2(1−x). (1)

More generally for k characters χ1, . . . ,χk mod q one can define

J(χ1, . . . ,χk , q) =
q
∑

x1=1

· · ·
q
∑

xk=1

x1+···+xk≡1 mod q

χ1(x1) · · ·χk (xk ). (2)

If the χi are mod r s characters with (r, s)= 1, then, writing χi = χ′
i
χ′′

i
where χ′

i
and χ′′

i
are mod

r and mod s characters respectively, it is readily seen (e.g. [13, Lemma 2]) that

J(χ1, . . . ,χk ,r s)= J(χ′
1, . . . ,χ′

k ,r )J(χ′′
1 , . . . ,χ′′

k , s).

Hence, one usually only considers the case of prime power moduli q = pm .
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Zhang & Yao [12] showed that the sums (1) can in fact be evaluated explicitly when m is

even (and χ1, χ2 and χ1χ2 are primitive mod pm). Working with a slightly more general bi-

nomial character sum two of the authors [9] showed that techniques of Cochrane & Zheng

[3] (see also [2]) can be used to obtain an evaluation of (1) for any m > 1 with p an odd

prime. Zhang & Xu [13] considered the general case, (2), and assuming that χ,χn1 , . . . ,χnk ,

and χn1+···+nk are primitive characters modulo pm , obtained

J(χn1 , . . . ,χnk , pm) = p
1
2

(k−1)mχ(uu)χ(n
n1

1 . . . n
nk

k
), u := n1 +·· ·+nk , (3)

when m is even, and

J(χn1 , . . . ,χnk , pm) = p
1
2

(k−1)mχ(uu)χ(n
n1

1 . . .n
nk−1

k−1
)







εk−1
p

(

un1 ...nk

p

)

, if p 6= 2;
(

2
un1 ...nk

)

if p = 2,
(4)

when m,k ,n1, . . . ,nk are all odd, where
(

m
n

)

is the Jacobi symbol and (defined more generally

for later use)

εpm :=







1, if pm ≡ 1mod 4,

i , if pm ≡ 3mod 4.
(5)

In this paper we give an evaluation for all m > 1 (i.e. irrespective of the parity of k and the ni ).

In fact we evaluate the slightly more general sum

JB (χ1, . . . ,χk , pm) =
pm
∑

x1=1

· · ·
pm
∑

xk=1

x1+···+xk≡B mod pm

χ1(x1) · · ·χk (xk ).

Of course when B = pnB ′, p ∤B ′ the simple change of variables xi 7→ B ′xi gives

JB (χ1, . . . ,χk , pm)= χ1 · · ·χk (B ′)Jpn (χ1, . . . ,χk , pm).

For example, JB (χ1, . . . ,χk , pm) = χ1 · · ·χk (B )J(χ1, . . . ,χk , pm) when p ∤ B . From the change of

variables xi 7→ −xk xi , 1 ≤ i < k one also sees that

Jpm (χ1, . . . ,χk , pm) =







φ(pm)χk (−1)J(χ1 , . . . ,χk−1, pm), if χ1 · · ·χk = χ0,

0, if χ1 · · ·χk 6= χ0,

where χ0 denotes the principal character, so we assume that B = pn with n < m.

For p odd let a be a primitive root mod p s for all s. We define the integer r by

aφ(p) = 1+ r p, p ∤ r. (6)

For a character χi mod pm we define the integer ci by

χi (a) = eφ(pm )(ci ), 1≤ ci ≤φ(pm). (7)
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Note, p ∤ ci exactly when χi is primitive. For p = 2, m = 2 we take a =−1 in (7).

For p = 2 and m ≥ 3 we need two generators −1 and 5 for Z∗
2m and define ci by

χi (5) = e2m−2 (ci ), 1 ≤ ci ≤ 2m−2, (8)

with χi primitive exactly when 2 ∤ ci .

Theorem 1.1. Let p be a prime and m ≥n+2. Suppose that χ1, . . . ,χk , are k ≥ 2 characters mod

pm with at least one of them primitive.

If χ1, . . . ,χk are not all primitive mod pm or χ1 . . .χk is not induced by a primitive mod

pm−n character, then Jpn (χ1, . . . ,χk , pm) = 0.

If χ1, . . . ,χk are primitive mod pm and χ1 · · ·χk is primitive mod pm−n , then

Jpn (χ1, . . . ,χk , pm) = p
1
2

(m(k−1)+n)χ1(c1) · · ·χk (ck )

χ1 · · ·χk (v)
δ, (9)

where for p odd

δ=
(−2r

p

)m(k−1)+n (

v

p

)m−n (

c1 · · ·ck

p

)m

εk
pm ε−1

pm−n ,

with an extra factor e2πi r v/3 needed when p =m −n = 3, n > 0, and for p = 2 and m −n ≥ 5,

δ=
(

2

v

)m−n (

2

c1 · · ·ck

)m

ω(2n−1)v , (10)

with εpm as defined in (5), the r and ci as in (6) and (7) or (8), and

v := p−n(c1 +·· ·+ck ), ω := eπi /4. (11)

For m ≥ 5 and m −n = 2,3 or 4 the formula (10) for δ should be multiplied by ω, ω1+χ1···χk (−1),

or χ1 · · ·χk (−1)ω2v respectively.

Of course it is natural to assume that at least one of the χ1, . . . ,χk is primitive, otherwise

we can reduce the sum to a mod pm−1 sum. For n = 0 and χ1, . . . ,χk , and χ1 · · ·χk all primitive

mod pm , our result simplifies to

J(χ1, . . . ,χk , pm) = p
m(k−1)

2
χ1(c1) · · ·χk (ck )

χ1 · · ·χk (v)
δ, v = c1 +·· ·+ck ,

with

δ=























1, if m is even,
(

vc1 ···ck

p

)(

−2r
p

)k−1
εk−1

p , if m is odd and p 6= 2,
(

2
vc1 ···ck

)

, if m ≥ 5 is odd and p = 2.
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In the remaining n = 0 case, p = 2, m = 3 we have J(χ1, . . . ,χk ,23) = 2
3
2

(k−1)(−1)⌊
ℓ
2
⌋ where ℓ

denotes the number of characters 1 ≤ i ≤ k with χi (−1) =−1.

When the χi = χni for some primitive mod pm character χ, we can write ci = ni c (where

c is determined by χ(a) as in (7) or (8)), and for m even we recover the form (3), and for m

odd we recover (4) but with the addition of a factor
(

−2r c
p

)k−1
for p 6= 2, which of course can

be ignored when k is odd as assumed in [13].

For completeness we observe that in the few remaining m ≥ n +2 cases, (9) becomes

Jpn (χ1, . . . ,χk , pm) = 2
1
2

(m(k−1)+n)



















−iωk−
∑k

i=1χi (−1), if m = 3, n = 1,

ωχ1···χk (−1)−1−v ∏k
i=1χi (−ci ), if m = 4, n = 1,

i 1−v ∏k
i=1χi (ci ), if m = 4, n = 2.

Our proof of Theorem 1.1 involves expressing the Jacobi sum (2) in terms of classical

Gauss sums

G(χ, pm ) :=
pm
∑

x=1

χ(x)epm (x), (12)

where χ is a mod pm character and ey (x) := e2πi x/y . Writing (1) in terms of Gauss sums is well

known for the mod p sums and the corresponding result for (2) can be found, along with many

other properties of Jacobi sums, in Berndt, Evans and Williams [1, Theorem 2.1.3 & Theorem

10.3.1 ] or Lidl and Niederreiter [5, Theorem 5.21]. There the results are stated for sums over

finite fields, Fpm , so it is not surprising that such expressions exist in the less studied mod pm

case. When χ1, . . . ,χk , and χ1 · · ·χk are primitive, Zhang & Yao [12, Lemma 3] for k = 2, and

Zhang and Xu [13, Lemma 1] for general k , showed that

J(χ1, . . . ,χk , pm)=
∏k

i=1
G(χi , pm)

G(χ1 . . .χk , pm)
. (13)

In Theorem 2.2 we obtain a similar expansion for Jpn (χ1, . . . ,χk , pm). Wang [11, Theorem 2.5]

had in fact already obtained such an expression for Jacobi sums over much more general rings

of residues modulo prime powers. (However, we use a slightly different form to avoid splitting

into cases as there.) As we show in Theorem 2.1, the mod pm Gauss sums can be evaluated

explicitly using the method of Cochrane and Zheng [3] when m ≥ 2.

For m = n+1 and at least one χi primitive, the Jacobi sum is still zero unless all the χi are

primitive mod pm and χ1 · · ·χk is a mod p character. Then we can say that |Jpn (χ1, . . . ,χk , pm)|
= p

1
2

mk−1 if χ1 · · ·χk = χ0 and p
1
2

(mk−1) otherwise, but an explicit evaluation in the latter case

is equivalent to an explicit evaluation of the mod p Gauss sum G(χ1 · · ·χk , p) when m ≥ 2.
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2. Gauss sums

In order to use the result from [4] we must establish some congruence relationships. For

p odd let a be a primitive root mod pm , m ≥ 2. We define the integers R j , j ≥ 1, by

aφ(p j ) = 1+R j p j . (14)

Note that for j ≥ i ,

R j ≡ Ri mod p i . (15)

For p = 2 and m ≥ 3 we define the integers R j , j ≥ 2, by

52 j−2

= 1+R j 2 j . (16)

Noting that R2
i
≡ 1 mod 8, we get

Ri+1 = Ri +2i−1R2
i ≡ Ri +2i−1 mod 2i+2. (17)

For j ≥ i +2 this gives the relationships,

R j ≡ Ri+2 ≡ Ri+1+2i ≡ (Ri +2i−1)+2i ≡Ri −2i−1 mod 2i+1 (18)

and

R j ≡ (Ri−1 +2i−2)−2i−1 ≡ Ri−1−2i−2 mod 2i+1. (19)

We shall need an explicit evaluation of the mod pm , m ≥ 2, Gauss sums. The form we use

comes from applying the technique of Cochrane & Zheng [3] as formulated in [8]. For p odd

this is essentially the same as Cochrane & Zheng [4, §10] but here we use the simpler R j as

opposed to the p-adic logarithm used in [4]; an adjustment to their formula is also needed

in the case pm = 33 (see errata for [3]). For p = 2 we use the same technique to get a new

evaluation of the Gauss sum. Variations can be found in Odoni [7] and Mauclaire [6] (see also

Berndt & Evans [1, §1.6 ] and Cochrane [2, Theorem 6.1]).

Theorem 2.1. Suppose that χ is a mod pm character with m ≥ 2. If χ is imprimitive, then

G(χ, pm) = 0. If χ is primitive, then

G(χ, pm ) = p
m
2 χ

(

−cR−1
j

)

epm

(

−cR−1
j

)







(

−2r c
p

)m
εpm , if p 6= 2, pm 6= 27,

(

2
c

)m
ωc , if p = 2 and m ≥ 5,

(20)

for any j ≥ ⌈m
2
⌉ when p is odd and any j ≥ ⌈m

2
⌉+2 when p = 2.

When pm = 27 an extra factor e3(−r c) is needed. For the remaining cases

G(χ,2m ) = 2
m
2



















i , if m = 2,

ω1−χ(−1), if m = 3,

χ(−c)e16(−c), if m = 4.

(21)
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Here x−1 denotes the inverse of x mod pm , and r , c and R j are as in (6), (7) or (8), and (14) or

(16), ω as in (11), and εpm as in (5).

Proof. When p is odd, pm 6= 27, [8, Theorem 2.1] gives

G(χ, pm) = pm/2χ(α)epm (α)

(−2r c

pm

)

εpm

where α is a solution of

c +R J x ≡ 0 mod p J , J :=
⌈m

2

⌉

, (22)

and G(χ, pm ) = 0 if no solution exists. So, if p | c , there is no solution and G(χ, pm) = 0. If,

however, p ∤ c , by (15) we may take α=−cR−1
J ≡−cR−1

j
mod p J for any j ≥ J . When pm = 27

we need the extra factor e3(−r c).

If p = 2, m ≥ 6, and χ is primitive, then [8, Theorem 5.1] gives

G(χ,2m ) = 2m/2χ(α)e2m (α)







1, if m is even,

1+(−1)λi RJ c

p
2

, if m is odd,

where α is a solution to

c +R J x ≡ 0 mod 2⌊
m
2
⌋, (23)

and c +R Jα = 2⌊
m
2
⌋λ. If χ is imprimitive, then G(χ,2m ) = 0. If 2 ∤ c and j ≥ J +2 then, using

(18), we can take

α≡−cR−1
J ≡−c(R j +2J−1)−1 ≡−c(R−1

j −2J−1) mod 2J+1,

and

χ(α)e2m (α) = χ(−cR−1
j )e2m (−cR−1

j )χ(1−R j 2J−1)e2m (c2J−1).

Checking the four possible c mod 8,

1+ (−1)λi R J c

p
2

=
1− i c

p
2

=ω−c

(

2

c

)

.

Now

e2m (c2J−1) = e2m−2 (c2J−3) = χ
(

52J−3
)

= χ
(

1+R J−12J−1
)

,

where, since R j ≡ R J−1 −2J−2 mod 2J+1 and R j ≡−1 mod 4,

(

1−R j 2J−1
)(

1+R J−12J−1
)

= 1+ (R J−1 −R j )2J−1 −R j R J−122J−2

≡ 1+22J−3 +R J−122J−2 mod 2m .
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Noting that Rs ≡ −1 mod 23 for s ≥ 4 (and checking by hand for J = 3 or 4) gives 1+2R J−1 ≡
R2J−3 mod 8, and

(

1−R j 2J−1
)(

1+R J−12J−1
)

≡ 1+R2J−322J−3 mod 2m .

Hence

χ(1−R j 2J−1)e2m (c2J−1) =χ
(

522J−5
)

= e2m−2 (c22J−5) =







ωc , if m is even,

ω2c , if m is odd.

One can check numerically that the formula still holds for the 2m−2 primitive mod 2m char-

acters when m = 5. For m = 2,3,4, one has (21) instead of 2iω, 2
3
2 ω2, 22χ(c)e24 (c)ωc (so our

formula (20) requires an extra factor ω−1, ω−1−χ(−1) or χ(−1)ω−2c respectively). ���

We shall need the counterpart of (13) for Jpn (χ1, . . . ,χk ). We now state a less symmetrical

version to allow weaker assumptions on the χi .

Theorem 2.2. Suppose that χ1, . . . ,χk are mod pm characters with at least one of them primi-

tive and that m > n. If χ1 · · ·χk is a mod pm−n character, then

Jpn (χ1, . . . ,χk , pm) = p−(m−n) G(χ1 · · ·χk , pm−n)
k
∏

i=1

G(χi , pm). (24)

If χ1 · · ·χk is not a mod pm−n character, then Jpn (χ1, . . . ,χk , pm) = 0.

Recall the well-known properties of Gauss sums (see for example [1, §1.6]),

|G(χ, p j )| =



















p j /2, if χ is primitive mod p j ,

1, if χ= χ0 and j = 1,

0, otherwise.

(25)

So when χ1 · · ·χk is a primitive mod pm−n character and at least one of the χi is a primitive

mod pm character, we immediately obtain the symmetric form

Jpn (χ1, . . . ,χk , pm) =
∏k

i=1 G(χi , pm)

G(χ1 . . .χk , pm−n)
. (26)

In particular we recover (13) under the sole assumption that χ1 · · ·χk is a primitive mod pm

character.

Proof. We first note that if χ is a primitive character mod p j , j ≥ 1 and A ∈Z, then

p j
∑

y=1

χ(y)ep j (Ay) = χ(A)G(χ, p j ).
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Indeed, for p ∤ A this is plain from y 7→ A−1 y . If p | A and j = 1 the sum equals
∑p

y=1χ(y) = 0.

For j ≥ 2, as χ is primitive, there exists a z ≡ 1 mod p j−1 with χ(z) 6= 1. To see this, note that

there must be some a ≡ b mod p j−1 with χ(a) 6= χ(b), and we can take z = ab−1. So

p j
∑

y=1

χ(y)ep j (Ay) =
p j
∑

y=1

χ(z y)ep j (Az y)= χ(z)
p j
∑

y=1

χ(y)ep j (Ay) (27)

and thus
∑p j

y=1χ(y)ep j (Ay) = 0.

Hence if χk is a primitive character mod pm we have

χk (−1)G(χk , pm)
pm
∑

x1=1

· · ·
pm
∑

xk−1=1

χ1(x1) . . .χk−1(xk−1)χk (pn −x1 −·· ·−xk−1)

= χk (−1)
pm
∑

x1=1

· · ·
pm
∑

xk−1=1

χ1(x1) . . .χk−1(xk−1)
pm
∑

y=1

χk (y)epm ((pn −x1 −·· ·−xk−1)y)

=
pm
∑

y=1

p∤y

χk (−y)epm (pn y)

(

pm
∑

x1=1

χ1(x1)epm (−x1 y) · · ·
pm
∑

xk−1=1

χk−1(xk−1)epm (−xk−1 y)

)

=
pm
∑

y=1

p∤y

χ1 . . .χk (−y)epm (pn y)

(

pm
∑

x1=1

χ1(x1)epm (x1) · · ·
pm
∑

xk−1=1

χk−1(xk−1)epm (xk−1)

)

= χ1 . . .χk (−1)
pm
∑

y=1

p∤y

χ1 . . .χk (y)epm (pn y)
k−1
∏

i=1

G(χi , pm).

If m >n and χ1 . . .χk is a mod pm−n character, then

pm
∑

y=1

p∤y

χ1 . . .χk (y)epm (pn y)= pn
pm−n
∑

y=1

p∤y

χ1 . . .χk (y)epm−n (y)= pnG(χ1 . . .χk , pm−n).

If χ1 . . .χk is a primitive character mod p j with m −n < j ≤ m, then by the same reasoning as

in (27)
pm
∑

y=1

p∤y

χ1 . . .χk (y)epm (pn y) = pm− j
p j
∑

y=1

χ1 . . .χk (y)ep j (p j−(m−n) y)= 0

and the result follows from observing that G(χ, pm )= χ(−1)G(χ, pm) and, sinceχk is primitive,

G(χk , pm) = pmG(χk , pm)−1. ���
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3. Proof of Theorem 1.1

We assume that χ1, . . . ,χk are all primitive mod pm characters and χ1 · · ·χk is a primitive

mod pm−n character, since otherwise from Theorem 2.2 and (25), Jpn (χ1, . . . ,χk , pm) = 0. In

particular we have (26).

We write R = R⌈m
2
⌉+2, and then by (26) and the evaluation of Gauss sums in Theorem 2.1

we have

Jpn (χ1, . . . ,χk , pm)=
∏k

i=1 G(χi , pm)

G(χ1 . . .χk , pm−n)

=
∏k

i=1 pm/2χi (−ci R−1)epm (−ci R−1)δi

p(m−n)/2χ1 . . .χk (−vR−1)epm−n (−vR−1)δs

= p
1
2

(m(k−1)+n)

∏k
i=1χi (ci )

χ1 . . .χk (v)
δ−1

s

k
∏

i=1

δi , (28)

where, as long as pm−n 6= 27 and pm 6= 27,

δi =







(

−2r ci

p

)m
εpm , if p is odd,

(

2
ci

)m
ωci , if p = 2 and m ≥ 5,

and

δs =







(

−2r v
p

)m−n
εpm−n , if p is odd,

(

2
v

)m−n
ωv , if p = 2 and m −n ≥ 5,

and the result is plain when p is odd or p = 2, m −n ≥ 5.

For pm−n = 33, pm 6= 33 we get the extra factor e3(r v) from the Gauss sum in the denom-

inator, for pm−n = pm = 33 or pm−n 6= 33, pm = 33 the additional factors needed in the Gauss

sums cancel. The remaining cases p = 2, m ≥ 5 and m −n = 2,3,4 follow similarly using the

adjustment to δs observed at the end of the proof of Theorem 2.1 .

4. A more direct approach

We should note that the Cochrane & Zheng reduction technique in [3] can be applied to

directly evaluate the Jacobi sums instead of turning to Gauss sums, via the binomial character

sum evaluations of [9] and [10].

CASE A) ODD p AND m ≥ n +2.

If b = pnb′ with p ∤ b′ and χ2 is primitive, then from [9, Theorem 3.1] we have

Jb

(

χ1,χ2, pm
)

=
pm
∑

x=1

χ1(x)χ2(b −x)=
pm
∑

x=1

χ1χ2(x)χ2(bx −1)
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= p
m+n

2 χ1χ2(x0)χ2(bx0 −1)

(−2c2r b′x0

p

)m−n

εpm−n ,

with an extra factor e3(r (c1 +c2)/pn) needed when pm−n = 27, n > 0, where x0 is a solution to

the characteristic equation

c1 +c2 −c1bx ≡ 0 mod p⌊m+n
2

⌋+1, p ∤ x(bx −1). (29)

If (29) has no solution mod p⌊m+n
2

⌋, then Jb (χ1,χ2, pm) = 0. In particular we see the following.

(i) If p | c1 and p ∤ c2, then Jb (χ1,χ2, pm) = 0.

(ii) If p ∤ c1c2(c1 +c2) then

Jb (χ1,χ2, pm)= p
m
2 χ1χ2(b)χ1(c1)χ2(c2)χ1χ2(c1 +c2)δ2.

where

δ2 =
(−2r

p

)m (

c1c2(c1 +c2)

p

)m

εpm .

(iii) If p ∤ c1 and b = pnb′, p ∤ b′ with n < m−1 then Jb (χ1,χ2, pm) = 0 unless pn || (c1 +c2) in

which case writing w = (c1 +c2)/pn , we get

Jb (χ1,χ2, pm) = p
m+n

2 χ1χ2(b′)
χ1(c1)χ2(c2)

χ1χ2(w )

(−2r

p

)m−n (

c1c2w

p

)m−n

εpm−n ,

with an extra factor e3(r w ) needed when pm−n = 27, n > 0.

To see (ii) observe that if p | b, then Jb(χ1,χ2, pm) = 0, and if p ∤ b, then we can take

x0 ≡ (c1 +c2)c−1
1 b−1 mod pm (and hence bx0 −1 = c2c−1

1 ). Similarly for (iii) if pn || (c1 +c2) we

can take x0 ≡ p−n(c1 +c2)c−1
1 (b′)−1 mod pm .

Of course we can write the generalized sum in the form

Jpn (χ1, . . . ,χk , pm) =
pm
∑

x3=1

· · ·
pm
∑

xk=1

χ3(x3) . . .χk (xk )
pm
∑

x1=1
b:=pn−x3−···−xk

χ1(x1)χ2(b −x1)

=
pm
∑

x3=1

· · ·
pm
∑

xk=1

χ3(x3) . . .χk (xk )Jb (χ1,χ2, pm),

Hence assuming that at least one of the χi is primitive mod pm (and reordering the characters

as necessary) we see from (i) that Jpn (χ1, . . . ,χk , pm) = 0 unless all the characters are primitive

mod pm. Also when k = 2, χ1,χ2 primitive, we see from (iii) that Jpn (χ1,χ2, pm) = 0 unless

χ1χ2 is induced by a primitive mod pm−n character, in which case we recover the formula
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in Theorem 1.1 on observing that
(

c1c2

p

)n
ε2

pm−n = ε2
pm ; this is plain when n is even, for n odd

observe that
(

c1c2

p

)

=
(

(c1+c2)2−(c1−c2)2

p

)

=
(

−1
p

)

.

We show that a simple induction recovers the formula for all k ≥ 3. We assume that all

the χi are primitive mod pm and observe that when k ≥ 3 we can further assume (reordering

as necessary) that χ1χ2 is also primitive mod pm, since if χ1χ3, χ2χ3 are not primitive then

p | (c1 + c3) and p | (c2 + c3) and (c1 + c2) ≡−2c3 6≡ 0 mod p and χ1χ2 is primitive. Hence from

(ii) we can write

Jpm (χ1, . . . ,χk , pm) =
χ1(c1)χ2(c2)

χ1χ2(c1 +c2)
p

m
2 δ2

pm
∑

x3=1

· · ·
pm
∑

xk=1

χ3(x3) . . .χk (xk )χ1χ2(b)

= p
m
2 χ1(c1)χ2(c2)χ1χ2(c1 +c2)δ2 Jpn (χ1χ2,χ3, . . . ,χk , pm).

Assuming the result for k −1 characters we have Jpn (χ1χ2,χ3, . . . ,χk , pm)= 0 unless χ1 · · ·χk is

induced by a primitive mod pm−n character, in which case

Jpn (χ1χ2,χ3, . . . ,χk , pm)= p
m(k−2)+n

2 χ1χ2(c1 +c2)δ3

k
∏

i=3

χi (ci )χ1 . . .χk (v)

where

δ3 =
(−2r

p

)m(k−2)+n (

v

p

)m−n (

(c1 +c2)c3 . . .ck

p

)m

εk−1
pm ε−1

pm−n ,

plus an additional factor e3(r v) if pm−n = 27, n > 0. Our formula for k characters then follows

on observing that δ2δ3 =δ.

CASE B) WHEN p = 2 AND m ≥n +5.

Suppose that χ2 is primitive mod 2m , that is 2 ∤ c2, and b = 2n b′ with 2 ∤ b′ and m ≥ n+5. In

this case from [10, Theorem 1.1] we similarly have Jb (χ1,χ2) = 0 unless 2 ∤ c1 and 2n || c1 +c2,

in which case

Jb (χ1,χ2,2m) = 2
1
2

(m+n)χ1χ2(x0)χ2(bx0 −1)







1, if m −n is even,

ωh
(

2
h

)

, if m −n odd,

where x0 is a solution to

−(c1 +c2)(bx0 −1)+c2bx0RN R−1
N+n ≡ 0 mod 2N+n+3,

with 2 ∤ x0(bx0 −1) and

ω := e8(1), N :=
⌈

1

2
(m −n)

⌉

≥ 3, v :=
c1 +c2

2n
, h :≡−(2n −1)v mod 8.
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From the relations (17) we obtain

Rl+nR−1
l −1 = 2l−1µl , µl ≡ (2n −1)Rl mod 8,

where R2 = 1, R3 = 3, and R j ≡−1 mod 8 for j ≥ 4. Hence, taking

x0 = vb′−1(c1 +c2 −c2RN R−1
N+n)−1, we get

Jb(χ1,χ2,2m) = 2
1
2

(m+n)χ1χ2(b′)
χ1(c1)χ2(c2)

χ1χ2(v)

(

2

v

)m−n

ǫ

with

ǫ := χ1χ2(1+2N−1µN )χ1(1+c−1
1 vµN 2N+n−1)







1, if m −n is even,

ω−(2n−1)v
(

2
2n−1

)

, if m −n is odd,

where χ1χ2 is a primitive mod 2m−n character. Expanding binomially, observing that 2(N +
n −1) ≥ m if n ≥ 2 or m is even, and 2(N +n −1) = m −1 if n = 1 and m is odd, one readily

obtains

1+c−1
1 vµN 2N+n−1 ≡ (1+RN+n−12N+n−1)κ = 52N+n−3κ mod 2m ,

with

κ := c−1
1 vµN R−1

N+n−1 +







1
2 (v −c1)2(m−1)/2, if n = 1, m odd,

0, else.

Similarly,

1+2N−1µN ≡ 1+RN−12N−1µN R−1
N−1 ≡ 1+2N−1RN−1µN R−1

N+n−1(1+2N−2µN−1)

≡ 1+RN−12N−1
(

µN R−1
N+n−1 +2N−2RN RN−1R−1

N+n−1

)

mod 2m−n

and, since 3(N −1) ≥ m −n,

1+2N−1µN ≡ (1+RN−12N−1)µN R−1
N+n−1−2N−2(2n−1) = 52N−3(µN R−1

N+n−1−2N−2(2n−1)) mod 2m−n .

Hence, checking the possibilities mod 8, recalling that 2n || c1 +c2,

ǫ= e2m−n−2N+3 ((2n −1)v) ·



















(−1)
1
2

(v−c1), if m −n is even and n = 1,

1, if m −n is even and n ≥ 2,

ω−(2n−1)v
(

2
2n−1

)

, if m −n odd.

=ω(2n−1)v

(

2

c1c2

)m

and we obtain the p = 2, k = 2 result of Theorem 1.1. As in the case of odd p we can de-

duce from the k = 2 result that Jb (χ1, . . . ,χk ,2m) = 0 if the sum contains both primitive and
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imprimitive χi mod 2m . Hence in the following we assume that all the χi are primitive mod

2m .

For k = 3 we observe from parity considerations that Jb(χ1,χ2,χ3,2m) = 0 if b is even,

while if b is odd we can make the change of variables xi 7→ bxi . Hence in either case

Jb(χ1,χ2,χ3,2m) = χ1χ2χ3(b)J(χ1,χ2,χ3,2m). (30)

Now at least one of χ1χ2, χ1χ3, χ2χ3 is primitive mod 2m−1 (since they are all mod 2m−1 char-

acters and χ2
1 = χ1χ2 ·χ1χ3 ·χ2χ3 is primitive mod 2m−1). We suppose that χ1χ2 is primitive

mod 2m−1, i.e. 2 || c1 +c2. Then

J(χ1,χ2,χ3,2m) =
2m
∑

x3=1

x3odd

χ3(x3)J1−x3
(χ1,χ2,2m)

= 2
1
2

(m+1)χ1(c1)χ2(c2)

χ1χ2

( c1+c2

2

)

(

2
c1+c2

2

)m−1 (

2

c1c2

)m

ω
1
2

(c1+c2)
2m
∑

x3=1

x3odd

χ3(x3)χ1χ2

(

1−x3

2

)

.

Now
2m
∑

x3=1

x3odd

χ3(x3)χ1χ2

(

1−x3

2

)

=
1

2

2m
∑

x3=1

2m
∑

x=1

1−x3≡2x mod 2m

χ3(x3)χ1χ2(x)

which, from the change of variables x 7→ x−1, x3 7→ −x3x−1 and the k = 2 result, equals

1

2
χ3(−1)

2m
∑

x3=1

2m
∑

x=1

x+x3≡2 mod 2m

χ3(x3)χ1χ2χ3(x) =

2
1
2

(m−1)χ3(−1)
χ1χ2χ3(−(c1 +c2 +c3))χ3(c3)

χ1χ2(−1
2 (c1 +c2))

(

2

− c1+c2

2

)m−1 (

2

−(c1 +c2 +c3)c3

)m

ω− 1
2

(c1+c2),

since χ3χ1χ2χ3 = χ1χ2 and 2 ∤ ci ensures that 2 ∤ c1 +c2 +c3. Hence

J(χ1,χ2,χ3,2m) = 2m χ1(c1)χ2(c2)χ3(c3)

χ1χ2χ3(c1 +c2 +c3)

(

2

c1 +c2 +c3

)m (

2

c1c2c3

)m

,

and we recover Theorem 1.1 when k = 3 (note Jpn (χ1,χ2,χ3,2m) = 0 unless n = 0).

For k ≥ 4 we use (30) to write

Jb(χ1, . . . ,χk ,2m) = Jb (χ1χ2χ3,χ4, . . . ,χn ,2m)J(χ1,χ2,χ3,2m)

and the Theorem 1.1 result for general k follows easily by induction.
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