EVALUATING PRIME POWER GAUSS AND JACOBI SUMS

MISTY OSTERGAARD, VINCENT PIGNO AND CHRISTOPHER PINNER

Abstract. We show that for any mod p^m characters, χ_1, \ldots, χ_k, with at least one χ_i primitive mod p^m, the Jacobi sum,

$$\sum_{x_1=1}^{p^m} \cdots \sum_{x_k=1}^{p^m} \chi_1(x_1) \cdots \chi_k(x_k),$$

has a simple evaluation when m is sufficiently large (for $m \geq 2$ if $p \nmid B$). As part of the proof we give a simple evaluation of the mod p^m Gauss sums when $m \geq 2$ that differs slightly from existing evaluations when $p = 2$.

1. Introduction

For multiplicative characters χ_1 and χ_2 mod q one defines the classical Jacobi sum by

$$J(\chi_1, \chi_2, q) := \sum_{x=1}^{q} \chi_1(x) \chi_2(1-x).$$

More generally for k characters χ_1, \ldots, χ_k mod q one can define

$$J(\chi_1, \ldots, \chi_k, q) = \sum_{x_1=1}^{q} \cdots \sum_{x_k=1}^{q} \chi_1(x_1) \cdots \chi_k(x_k).$$

If the χ_i are mod rs characters with $(r, s) = 1$, then, writing $\chi_i = \chi_i' \chi_i''$ where χ_i' and χ_i'' are mod r and mod s characters respectively, it is readily seen (e.g. [13, Lemma 2]) that

$$J(\chi_1, \ldots, \chi_k, rs) = J(\chi_1', \ldots, \chi_k', r) J(\chi_1'', \ldots, \chi_k'', s).$$

Hence, one usually only considers the case of prime power moduli $q = p^m$.

Received April 27, 2016, accepted October 19, 2016.

2010 Mathematics Subject Classification. Primary: 11L05; Secondary: 11L03, 11L10.

Key words and phrases. Gauss sums, Jacobi sums, character sums, exponential sums.

Corresponding author: Vincent Pigno.
Zhang & Yao [12] showed that the sums (1) can in fact be evaluated explicitly when \(m \) is even (and \(\chi_1, \chi_2 \) and \(\chi_1 \chi_2 \) are primitive mod \(p^m \)). Working with a slightly more general binomial character sum two of the authors [9] showed that techniques of Cochrane & Zheng [3] (see also [2]) can be used to obtain an evaluation of (1) for any \(m > 1 \) with \(p \) an odd prime. Zhang & Xu [13] considered the general case, (2), and assuming that \(\chi, \chi^{n_1}, \ldots, \chi^{n_k} \), and \(\chi^{n_1 + \cdots + n_k} \) are primitive characters modulo \(p^m \), obtained

\[
J(\chi^{n_1}, \ldots, \chi^{n_k}, p^m) = p^{\frac{k}{2}n_1, \ldots, n_k} \sum_{u=1}^{p^m} \chi(n_1 \cdots n_k), \quad u := n_1 + \cdots + n_k,
\]

(3)

when \(m \) is even, and

\[
J(\chi^{n_1}, \ldots, \chi^{n_k}, p^m) = p^{\frac{k}{2}(k-1)m} \sum_{u=1}^{p^m} \chi(n_1 \cdots n_k) \left\{ \frac{\epsilon_{p}^{-1} \left(\frac{u_1, \ldots, u_k}{p} \right)}{\epsilon_{\frac{2}{p} \frac{u_1, \ldots, u_k}}^{2}} \right\} \quad \text{if } p \neq 2;
\]

(4)

when \(m, k, n_1, \ldots, n_k \) are all odd, where \(\left(\frac{m}{n} \right) \) is the Jacobi symbol and (defined more generally for later use)

\[
\epsilon_{p}^{m} := \begin{cases} 1, & \text{if } p^m \equiv 1 \mod 4, \\ i, & \text{if } p^m \equiv 3 \mod 4. \end{cases}
\]

(5)

In this paper we give an evaluation for all \(m > 1 \) (i.e. irrespective of the parity of \(k \) and the \(n_i \)). In fact we evaluate the slightly more general sum

\[
J_B(\chi_1, \ldots, \chi_k, p^m) = \sum_{x_1, \ldots, x_k \equiv B \mod p^m} \chi_1(x_1) \cdots \chi_k(x_k).
\]

Of course when \(B = p^n B', p \nmid B' \) the simple change of variables \(x_i \rightarrow B' x_i \) gives

\[
J_B(\chi_1, \ldots, \chi_k, p^m) = \chi_1 \cdots \chi_k(B') J_{p^n}(\chi_1, \ldots, \chi_k, p^m).
\]

For example, \(J_B(\chi_1, \ldots, \chi_k, p^m) = \chi_1 \cdots \chi_k(B) J(\chi_1, \ldots, \chi_k, p^m) \) when \(p \nmid B \). From the change of variables \(x_i \rightarrow -x_k x_i, 1 \leq i < k \) one also sees that

\[
J_{p^m}(\chi_1, \ldots, \chi_k, p^m) = \begin{cases} \phi(p^m) \chi_k(-1) J(\chi_1, \ldots, \chi_{k-1}, p^m), & \text{if } \chi_1 \cdots \chi_k = \chi_0, \\ 0, & \text{if } \chi_1 \cdots \chi_k \neq \chi_0, \end{cases}
\]

where \(\chi_0 \) denotes the principal character, so we assume that \(B = p^n \) with \(n < m \).

For \(p \) odd let \(a \) be a primitive root mod \(p^s \) for all \(s \). We define the integer \(r \) by

\[
a^{\phi(p)} = 1 + r p, \quad p \nmid r.
\]

(6)

For a character \(\chi_i \mod p^m \) we define the integer \(c_i \) by

\[
\chi_i(a) = e_{\phi(p^m)}(c_i), \quad 1 \leq c_i \leq \phi(p^m).
\]

(7)
Note, \(p \nmid c_i \) exactly when \(\chi_i \) is primitive. For \(p = 2, m = 2 \) we take \(a = -1 \) in (7).

For \(p = 2 \) and \(m \geq 3 \) we need two generators \(-1\) and \(5 \) for \(\mathbb{Z}_{2^m}^* \) and define \(c_i \) by

\[
\chi_i(5) = e^{2^{m-2} c_i}, \quad 1 \leq c_i \leq 2^{m-2}, \tag{8}
\]

with \(\chi_i \) primitive exactly when \(2 \nmid c_i \).

Theorem 1.1. Let \(p \) be a prime and \(m \geq n + 2 \). Suppose that \(\chi_1, \ldots, \chi_k \), are \(k \geq 2 \) characters mod \(p^m \) with at least one of them primitive.

If \(\chi_1, \ldots, \chi_k \) are not all primitive mod \(p^m \) or \(\chi_1 \cdots \chi_k \) is not induced by a primitive mod \(p^{m-n} \) character, then \(J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = 0 \).

If \(\chi_1, \ldots, \chi_k \) are primitive mod \(p^m \) and \(\chi_1 \cdots \chi_k \) is primitive mod \(p^{m-n} \), then

\[
J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = p^{1/2(m(k-1)+n)} \frac{\chi_1(1) \cdots \chi_k(c_k)}{\chi_1 \cdots \chi_k(v)} \delta,
\]

where for \(p \) odd

\[
\delta = \left(\frac{-2r}{p} \right)^{m(k-1)+n} \left(\frac{\nu}{p} \right)^{m-n} \left(\frac{c_1 \cdots c_k}{p} \right)^m \epsilon_p^{m} \epsilon_p^{-1},
\]

with an extra factor \(e^{2\pi i r / 3} \) needed when \(p = m - n = 3, n > 0 \), and for \(p = 2 \) and \(m - n \geq 5 \),

\[
\delta = \left(\frac{2}{v} \right)^{m-n} \left(\frac{2}{c_1 \cdots c_k} \right)^m \omega^{(2^n-1)v}, \tag{10}
\]

with \(\epsilon_p \) as defined in (5), the \(r \) and \(c_i \) as in (6) and (7) or (8), and

\[
v := p^{-m}(c_1 + \cdots + c_k), \quad \omega := e^{\pi i / 4}.
\]

For \(m \geq 5 \) and \(m - n = 2,3 \) or \(4 \) the formula (10) for \(\delta \) should be multiplied by \(\omega, \omega^{1+\chi_1 \cdots \chi_k(-1)} \), or \(\chi_1 \cdots \chi_k(-1) \omega^{2v} \) respectively.

Of course it is natural to assume that at least one of the \(\chi_1, \ldots, \chi_k \) is primitive, otherwise we can reduce the sum to a mod \(p^{m-1} \) sum. For \(n = 0 \) and \(\chi_1, \ldots, \chi_k \), and \(\chi_1 \cdots \chi_k \) all primitive mod \(p^m \), our result simplifies to

\[
J(\chi_1, \ldots, \chi_k, p^m) = p^{\frac{m(k-1)}{2}} \frac{\chi_1(1) \cdots \chi_k(c_k)}{\chi_1 \cdots \chi_k(v)} \delta, \quad v = c_1 + \cdots + c_k,
\]

with

\[
\delta = \begin{cases}
1, & \text{if } m \text{ is even}, \\
\left(\frac{\nu c_1 \cdots c_k}{p} \right) \left(\frac{-2r}{p} \right)^{k-1} \epsilon_p^{k-1}, & \text{if } m \text{ is odd and } p \neq 2, \\
\left(\frac{2}{\nu c_1 \cdots c_k} \right), & \text{if } m \geq 5 \text{ is odd and } p = 2.
\end{cases}
\]
In the remaining \(n = 0 \) case, \(p = 2, m = 3 \) we have \(J(\chi_1, \ldots, \chi_k, 2^3) = 2 \sum (k-1) (-1)^{\frac{k}{2}} \) where \(\ell \) denotes the number of characters \(1 \leq i \leq k \) with \(\chi_i(-1) = -1 \).

When the \(\chi_i = \chi^{n_i} \) for some primitive mod \(p^m \) character \(\chi \), we can write \(c_i = n_i c \) (where \(c \) is determined by \(\chi(a) \) as in (7) or (8)), and for \(m \) even we recover the form (3), and for \(m \) odd we recover (4) but with the addition of a factor \(\left(\frac{-2c}{p} \right)^{k-1} \) for \(p \neq 2 \), which of course can be ignored when \(k \) is odd as assumed in [13].

For completeness we observe that in the few remaining \(m \geq n + 2 \) cases, (9) becomes

\[
J_{p^m}(\chi_1, \ldots, \chi_k, p^m) = 2^{\frac{1}{2}(m(k-1)+n)} \begin{cases}
-i\omega^{k-\sum_{i=1}^k \chi_i(-1)}, & \text{if } m = 3, n = 1, \\
\omega^{T_{1 \cdots m}} \prod_{i=1}^k \chi_i(-c_i), & \text{if } m = 4, n = 1, \\
\prod_{i=1}^k \chi_i(c_i), & \text{if } m = 4, n = 2.
\end{cases}
\]

Our proof of Theorem 1.1 involves expressing the Jacobi sum (2) in terms of classical Gauss sums

\[
G(\chi, p^m) := \sum_{x=1}^{p^m} \chi(x)e_{p^m}(x),
\]

where \(\chi \) is a mod \(p^m \) character and \(e_y(x) := e^{2\pi i x/y} \). Writing (1) in terms of Gauss sums is well known for the mod \(p \) sums and the corresponding result for (2) can be found, along with many other properties of Jacobi sums, in Berndt, Evans and Williams [1, Theorem 2.1.3 & Theorem 10.3.1] or Lidl and Niederreiter [5, Theorem 5.21]. There the results are stated for sums over finite fields, \(\mathbb{F}_{p^m} \), so it is not surprising that such expressions exist in the less studied mod \(p^m \) case. When \(\chi_1, \ldots, \chi_k \) and \(\chi_1 \cdots \chi_k \) are primitive, Zhang & Yao [12, Lemma 3] for \(k = 2 \), and Zhang and Xu [13, Lemma 1] for general \(k \), showed that

\[
J(\chi_1, \ldots, \chi_k, p^m) = \frac{\prod_{i=1}^k G(\chi_i, p^m)}{G(\chi_1 \cdots \chi_k, p^m)}.
\]

In Theorem 2.2 we obtain a similar expansion for \(J_{p^m}(\chi_1, \ldots, \chi_k, p^m) \). Wang [11, Theorem 2.5] had in fact already obtained such an expression for Jacobi sums over much more general rings of residues modulo prime powers. (However, we use a slightly different form to avoid splitting into cases as there.) As we show in Theorem 2.1, the mod \(p^m \) Gauss sums can be evaluated explicitly using the method of Cochrane and Zheng [3] when \(m \geq 2 \).

For \(m = n + 1 \) and at least one \(\chi_i \) primitive, the Jacobi sum is still zero unless all the \(\chi_i \) are primitive mod \(p^m \) and \(\chi_1 \cdots \chi_k \) is a mod \(p \) character. Then we can say that \(|J_{p^m}(\chi_1, \ldots, \chi_k, p^m)| = p\frac{1}{2}(mk-1) \) if \(\chi_1 \cdots \chi_k = \chi_0 \) and \(p\frac{1}{2}(mk-1) \) otherwise, but an explicit evaluation in the latter case is equivalent to an explicit evaluation of the mod \(p \) Gauss sum \(G(\chi_1 \cdots \chi_k, p) \) when \(m \geq 2 \).
2. Gauss sums

In order to use the result from [4] we must establish some congruence relationships. For \(p \) odd let \(a \) be a primitive root mod \(p^m \), \(m \geq 2 \). We define the integers \(R_j, j \geq 1 \), by

\[
a^{\phi(p^j)} = 1 + R_j p^j. \tag{14}
\]

Note that for \(j \geq i \),

\[
R_j \equiv R_i \mod p^i. \tag{15}
\]

For \(p = 2 \) and \(m \geq 3 \) we define the integers \(R_j, j \geq 2 \), by

\[
5^{2^{j-2}} = 1 + R_j 2^j. \tag{16}
\]

Noting that \(R_2^2 \equiv 1 \mod 8 \), we get

\[
R_i + 1 = R_i + 2^{i-1} R_i^2 \equiv R_i + 2^{i-1} \mod 2^{i+2}. \tag{17}
\]

For \(j \geq i + 2 \) this gives the relationships,

\[
R_j \equiv R_{i+2} \equiv R_{i+1} + 2^i \equiv (R_i + 2^{i-1}) + 2^i \equiv R_i - 2^{i-1} \mod 2^{i+1} \tag{18}
\]

and

\[
R_j \equiv (R_{i-1} + 2^{i-2}) - 2^{i-1} \equiv R_{i-1} - 2^{i-2} \mod 2^{i+1}. \tag{19}
\]

We shall need an explicit evaluation of the mod \(p^m \), \(m \geq 2 \), Gauss sums. The form we use comes from applying the technique of Cochrane & Zheng [3] as formulated in [8]. For \(p \) odd this is essentially the same as Cochrane & Zheng [4, §10] but here we use the simpler \(R_j \) as opposed to the \(p \)-adic logarithm used in [4]; an adjustment to their formula is also needed in the case \(p^m = 3^3 \) (see errata for [3]). For \(p = 2 \) we use the same technique to get a new evaluation of the Gauss sum. Variations can be found in Odoni [7] and Mauclaire [6] (see also Berndt & Evans [1, §1.6] and Cochrane [2, Theorem 6.1]).

Theorem 2.1. Suppose that \(\chi \) is a mod \(p^m \) character with \(m \geq 2 \). If \(\chi \) is imprimitive, then \(G(\chi, p^m) = 0 \). If \(\chi \) is primitive, then

\[
G(\chi, p^m) = p^m \chi \left(-cR_j^{-1}\right) e_{p^m} \left(-cR_j^{-1}\right) \begin{cases}
\left(\frac{2c}{p}\right)^m, & \text{if } p \neq 2, p^m \neq 27, \\
\left(\frac{2}{c}\right)^m \omega^c, & \text{if } p = 2 \text{ and } m \geq 5,
\end{cases} \tag{20}
\]

for any \(j \geq \left\lceil \frac{m}{2} \right\rceil \) when \(p \) is odd and any \(j \geq \left\lceil \frac{m}{2} \right\rceil + 2 \) when \(p = 2 \).

When \(p^m = 27 \) an extra factor \(e_3(-rc) \) is needed. For the remaining cases

\[
G(\chi, 2^m) = 2^m \begin{cases}
i, & \text{if } m = 2, \\
\omega^{1-\chi(-1)}, & \text{if } m = 3, \\
\chi(-c)e_{16}(-c), & \text{if } m = 4.
\end{cases} \tag{21}
\]
Here x^{-1} denotes the inverse of x mod p^m, and r, c and R_j are as in (6), (7) or (8), and (14) or (16), ω as in (11), and ϵ_p as in (5).

Proof. When p is odd, $p^m \neq 27$, [8, Theorem 2.1] gives

$$G(\chi, p^m) = p^{m/2} \chi(\alpha)e_{p^m}(\alpha)\left(-\frac{2rc}{p^m}\right)\epsilon_{p^m}$$

where α is a solution of

$$c + R_jx \equiv 0 \mod p^j, \ J := \left\lceil \frac{m}{2} \right\rceil,$$

and $G(\chi, p^m) = 0$ if no solution exists. So, if $p \mid c$, there is no solution and $G(\chi, p^m) = 0$. If, however, $p \nmid c$, by (15) we may take $\alpha = -cR_j^{-1} \equiv -cR_j^{-1} \mod p^j$ for any $j \geq J$. When $p^m = 27$ we need the extra factor $e_3(-rc)$.

If $p = 2$, $m \geq 6$, and χ is primitive, then [8, Theorem 5.1] gives

$$G(\chi, 2^m) = 2^{m/2} \chi(\alpha)e_{2^m}(\alpha)\begin{cases} 1, & \text{if } m \text{ is even}, \\ 1 + (-1)^{jR_jc}/\sqrt{2}, & \text{if } m \text{ is odd}, \end{cases}$$

where α is a solution to

$$c + R_j\alpha \equiv 0 \mod 2^{\lceil\frac{m}{2}\rceil},$$

and $c + R_j\alpha = 2^{\lceil\frac{m}{2}\rceil}\lambda$. If χ is imprimitive, then $G(\chi, 2^m) = 0$. If $2 \nmid c$ and $j \geq J + 2$ then, using (18), we can take

$$\alpha \equiv -cR_j^{-1} \equiv -c(R_j + 2^{j-1})^{-1} \equiv -c(R_j^{-1} - 2^{j-1}) \mod 2^{j+1},$$

and

$$\chi(\alpha)e_{2^m}(\alpha) = \chi(-cR_j^{-1})e_{2^m}(-cR_j^{-1})\chi(1 - R_j2^{j-1})e_{2^m}(c2^{j-1}).$$

Checking the four possible c mod 8,

$$\frac{1 + (-1)^{jR_jc}/\sqrt{2}}{\sqrt{2}} = \frac{1 - c}{\sqrt{2}} = \omega^{-c} \left(\frac{2}{c}\right).$$

Now

$$e_{2^m}(c2^{j-1}) = e_{2^{m-2}}(c2^{j-3}) = \chi(52^{j-3}) = \chi(1 + R_{j-1}2^{j-1}),$$

where, since $R_j \equiv R_{j-1} - 2^{j-2} \mod 2^{j+1}$ and $R_j \equiv -1 \mod 4$,

$$(1 - R_j2^{j-1})(1 + R_{j-1}2^{j-1}) = 1 + (R_{j-1} - R_j)2^{j-1} - R_j R_{j-1}2^{2j-2} \equiv 1 + 2^{2j-3} + R_{j-1}2^{2j-2} \mod 2^m.$$
Noting that \(R_s \equiv -1 \mod 2^3 \) for \(s \geq 4 \) (and checking by hand for \(J = 3 \) or 4) gives \(1 + 2R_{J-1} \equiv R_{2J-3} \mod 8 \), and

\[
(1 - R_J 2^{J-1}) (1 + R_{J-1} 2^{J-1}) \equiv 1 + R_{2J-3} 2^{2J-3} \mod 2^m.
\]

Hence

\[
\chi(1 - R_J 2^{J-1})e_{2m}(c2^{J-1}) = \chi(J) = e_{2m-2}(c2^{J-5}) = \begin{cases} \omega^c, & \text{if } m \text{ is even,} \\ \omega^{2c}, & \text{if } m \text{ is odd.} \end{cases}
\]

One can check numerically that the formula still holds for the \(2^{m-2} \) primitive mod \(2^m \) characters when \(m = 5 \). For \(m = 2, 3, 4 \), one has (21) instead of \(2i\omega, 2^3\omega^2, 2^5\chi(c)e_2(c)\omega^c \) (so our formula (20) requires an extra factor \(\omega^{-1}, \omega^{-1-\chi(-1)} \) or \(\chi(-1)\omega^{-2c} \) respectively). \(\square \)

We shall need the counterpart of (13) for \(J_{p^n}(\chi_1, \ldots, \chi_k) \). We now state a less symmetrical version to allow weaker assumptions on the \(\chi_i \).

Theorem 2.2. Suppose that \(\chi_1, \ldots, \chi_k \) are mod \(p^m \) characters with at least one of them primitive and that \(m > n \). If \(\chi_1 \cdots \chi_k \) is a mod \(p^{m-n} \) character, then

\[
J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = p^{-(m-n)} \frac{G(\chi_1 \cdots \chi_k, p^{m-n})}{\prod_{i=1}^k G(\chi_i, p^m)}.
\]

If \(\chi_1 \cdots \chi_k \) is not a mod \(p^{m-n} \) character, then \(J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = 0 \).

Recall the well-known properties of Gauss sums (see for example [1, §1.6]),

\[
|G(\chi, p^j)| = \begin{cases} p^{j/2}, & \text{if } \chi \text{ is primitive mod } p^j, \\ 1, & \text{if } \chi = \chi_0 \text{ and } j = 1, \\ 0, & \text{otherwise}. \end{cases}
\]

So when \(\chi_1 \cdots \chi_k \) is a primitive mod \(p^{m-n} \) character and at least one of the \(\chi_i \) is a primitive mod \(p^m \) character, we immediately obtain the symmetric form

\[
J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = \frac{\prod_{i=1}^k G(\chi_i, p^m)}{G(\chi_1 \cdots \chi_k, p^{m-n})}.
\]

In particular we recover (13) under the sole assumption that \(\chi_1 \cdots \chi_k \) is a primitive mod \(p^m \) character.

Proof. We first note that if \(\chi \) is a primitive character mod \(p^j \), \(j \geq 1 \) and \(A \in \mathbb{Z} \), then

\[
\sum_{y=1}^{p^j} \chi(y)e_{p^j}(Ay) = \overline{\chi}(A)G(\chi, p^j).
\]
Indeed, for \(p \mid A \) this is plain from \(y \mapsto A^{-1}y \). If \(p \mid A \) and \(j = 1 \) the sum equals \(\sum_{y=1}^{p} \chi(y) = 0 \). For \(j \geq 2 \), as \(\chi \) is primitive, there exists a \(z \equiv 1 \mod p^{j-1} \) with \(\chi(z) \neq 1 \). To see this, note that there must be some \(a \equiv b \mod p^{j-1} \) with \(\chi(a) \neq \chi(b) \), and we can take \(z = ab^{-1} \). So

\[
\sum_{y=1}^{p^j} \chi(y)e_{p^j}(Ay) = \sum_{y=1}^{p^j} \chi(zy)e_{p^j}(Azy) = \chi(z) \sum_{y=1}^{p^j} \chi(y)e_{p^j}(Ay)
\]

(27)

and thus \(\sum_{y=1}^{p^j} \chi(y)e_{p^j}(Ay) = 0 \).

Hence if \(\chi_k \) is a primitive character mod \(p^m \) we have

\[
\overline{\chi_k}(-1)G(\overline{\chi_k}, p^m) \prod_{x_i=1}^{p^m} \chi_1(x_1) \cdots \chi_{k-1}(x_{k-1}) \chi_k(p^m - x_1 - \cdots - x_{k-1})
\]

\[
= \overline{\chi_k}(-1) \prod_{x_i=1}^{p^m} \chi_1(x_1) \cdots \chi_{k-1}(x_{k-1}) \chi_k(p^m - x_1 - \cdots - x_{k-1}) Y
\]

\[
= \sum_{y=1}^{p^m} \chi_1(x_1) e_{p^m}(-x_1 y) \cdots \sum_{x_{k-1}=1}^{p^m} \chi_{k-1}(x_{k-1}) e_{p^m}(-x_{k-1} y)
\]

\[
= \sum_{y=1}^{p^m} \chi_1(x_1 e_{p^m}(-x_1 y)) \cdots \sum_{x_{k-1}=1}^{p^m} \chi_{k-1}(x_{k-1} e_{p^m}(-x_{k-1} y))
\]

\[
= \chi_1 \cdots \chi_{k-1}(-1) \prod_{y=1}^{p^m} \chi_1 \cdots \chi_k(y) e_{p^m}(p^m Y) \prod_{i=1}^{k-1} G(\chi_i, p^m).
\]

If \(m > n \) and \(\chi_1 \cdots \chi_k \) is a mod \(p^{m-n} \) character, then

\[
\sum_{y=1}^{p^m} \chi_1 \cdots \chi_k(y) e_{p^m}(p^n Y) = p^n \sum_{y=1}^{p^m-n} \chi_1 \cdots \chi_k(y) e_{p^{m-n}}(y) = p^n G(\chi_1 \cdots \chi_k, p^{m-n}).
\]

If \(\chi_1 \cdots \chi_k \) is a primitive character mod \(p^j \) with \(m - n < j \leq m \), then by the same reasoning as in (27)

\[
\sum_{y=1}^{p^m} \chi_1 \cdots \chi_k(y) e_{p^m}(p^n Y) = p^{m-j} \sum_{y=1}^{p^j} \chi_1 \cdots \chi_k(y) e_{p^j}(p^{j-(m-n)} Y) = 0
\]

and the result follows from observing that \(G(\chi, p^m) = \overline{\chi}(-1)G(\overline{\chi}, p^m) \) and, since \(\chi_k \) is primitive,

\(G(\chi_k, p^m) = p^m G(\chi_k, p^m)^{-1} \).
3. Proof of Theorem 1.1

We assume that χ_1, \ldots, χ_k are all primitive mod p^m characters and $\chi_1 \cdots \chi_k$ is a primitive mod p^{m-n} character, since otherwise from Theorem 2.2 and (25), $J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = 0$. In particular we have (26).

We write $R = R_{\left\lfloor \frac{m}{2} \right\rfloor + 2}$, and then by (26) and the evaluation of Gauss sums in Theorem 2.1 we have

$$J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = \frac{\prod_{i=1}^k G(\chi_i, p^m)}{G(\chi_1 \cdots \chi_k, p^{m-n})} = \frac{\prod_{i=1}^k p^{m/2} \chi_i(-c_i R^{-1}) e^{p^{m-n}(-c_i R^{-1})} \delta_i}{p^{(m-n)/2} \chi_1 \cdots \chi_k(-v R^{-1}) e^{p^{m-n}(-v R^{-1})} \delta_s} = p^{k(m(k-1)+n)} \frac{\prod_{i=1}^k \chi_i(c_i)}{\chi_1 \cdots \chi_k(v)} \delta_s^{-1} \prod_{i=1}^k \delta_i,$$

(28)

where, as long as $p^{m-n} \neq 27$ and $p^m \neq 27$,

$$\delta_i = \left\{ \begin{array}{ll} \left(\frac{-2r c_i}{p}\right)^m & \text{if } p \text{ is odd,} \\ \left(\frac{2}{c_i}\right)^m \omega^{c_i} & \text{if } p = 2 \text{ and } m \geq 5, \end{array} \right.$$

and

$$\delta_s = \left\{ \begin{array}{ll} \left(\frac{-2r v}{p}\right)^{m-n} & \text{if } p \text{ is odd,} \\ \left(\frac{2}{v}\right)^{m-n} \omega^v & \text{if } p = 2 \text{ and } m - n \geq 5, \end{array} \right.$$

and the result is plain when p is odd or $p = 2$, $m - n \geq 5$.

For $p^{m-n} = 3^3$, $p^m \neq 3^3$ we get the extra factor $e_3(r v)$ from the Gauss sum in the denominator, for $p^{m-n} = p^m = 3^3$ or $p^{m-n} \neq 3^3$, $p^m = 3^3$ the additional factors needed in the Gauss sums cancel. The remaining cases $p = 2$, $m \geq 5$ and $m - n = 2, 3, 4$ follow similarly using the adjustment to δ_s observed at the end of the proof of Theorem 2.1.

4. A more direct approach

We should note that the Cochrane & Zheng reduction technique in [3] can be applied to directly evaluate the Jacobi sums instead of turning to Gauss sums, via the binomial character sum evaluations of [9] and [10].

CASE A) ODD p AND $m \geq n + 2$.

If $b = p^n b'$ with $p \nmid b'$ and χ_2 is primitive, then from [9, Theorem 3.1] we have

$$J_b(\chi_1, \chi_2, p^m) = \sum_{x=1}^{p^m} \chi_1(x) \chi_2(b-x) = \sum_{x=1}^{p^m} \chi_1 \chi_2(x) \chi_2(bx-1)$$
we see from (i) that
\[J_{\chi_1, \chi_2}(x_0, x_1, x_2) = 0 \]
Hence assuming that at least one of the \(x_i \) can take the characteristic equation
\[c_1 + c_2 - c_1 b x \equiv 0 \mod p^{m-n}, \quad p \nmid x(bx - 1). \]

If (29) has no solution mod \(p^{m-n} \), then \(J_{\chi_1, \chi_2}(x_0, x_1, x_2) = 0 \). In particular we see the following.

(i) If \(p \mid c_1 \) and \(p \nmid c_2 \), then \(J_{\chi_1, \chi_2}(x_0, x_1, x_2) = 0 \).

(ii) If \(p \nmid c_1 c_2 (c_1 + c_2) \) then
\[J_{\chi_1, \chi_2}(x_0, x_1, x_2) = p^{m-n} \chi_1(x_0) \chi_2(b) \chi_1(c_1) \chi_2(c_2) \chi_1(x_1) \chi_2(x_2) \delta_2. \]
where
\[\delta_2 = \left(\frac{-2r}{p} \right)^m \left(\frac{c_1 c_2 (c_1 + c_2)}{p} \right)^m \varepsilon_{p^{m-n}}. \]

(iii) If \(p \nmid c_1 \) and \(b = p^n b' \), \(p \nmid b' \) with \(n < m - 1 \) then \(J_{\chi_1, \chi_2}(x_0, x_1, x_2) = 0 \) unless \(p^n \mid (c_1 + c_2) \) in which case writing \(w = (c_1 + c_2)/p^n \), we get
\[J_{\chi_1, \chi_2}(x_0, x_1, x_2) = p^{m-n} \chi_1(x_0) \chi_2(b') \chi_1(c_1) \chi_2(c_2) \chi_1(x_1) \chi_2(w) \left(\frac{-2r}{p} \right)^{m-n} \left(\frac{c_1 c_2 w}{p} \right)^{m-n} \varepsilon_{p^{m-n}}, \]
with an extra factor \(e_3(r w) \) needed when \(p^{m-n} = 27, n > 0 \).

To see (ii) observe that if \(p \mid b \), then \(J_{\chi_1, \chi_2}(x_0, x_1, x_2) = 0 \), and if \(p \nmid b \), then we can take \(x_0 \equiv (c_1 + c_2) c_1^{-1} b^{-1} \mod p^n \) (and hence \(b x_0 - 1 = c_2 c_1^{-1} \)). Similarly for (iii) if \(p^n \mid (c_1 + c_2) \) we can take \(x_0 \equiv p^{-n} (c_1 + c_2) c_1^{-1} (b')^{-1} \mod p^m \).

Of course we can write the generalized sum in the form
\[J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = \sum_{x_3=1}^{p^m} \cdots \sum_{x_k=1}^{p^m} \chi_3(x_3) \cdots \chi_k(x_k) \sum_{x_1=1}^{p^m} \chi_1(x_1) \chi_2(b - x_1) \]
\[= \sum_{x_3=1}^{p^m} \cdots \sum_{x_k=1}^{p^m} \chi_3(x_3) \cdots \chi_k(x_k) J_{\chi_1, \chi_2}(x_0, x_1, x_2) f_b(\chi_1, \chi_2, p^m), \]
Hence assuming that at least one of the \(\chi_i \) is primitive mod \(p^m \) (and reordering the characters as necessary) we see from (i) that \(J_{p^n}(\chi_1, \ldots, \chi_k, p^m) = 0 \) unless all the characters are primitive mod \(p^m \). Also when \(k = 2, \chi_1, \chi_2 \) primitive, we see from (iii) that \(J_{p^n}(\chi_1, \chi_2, p^m) = 0 \) unless \(\chi_1 \chi_2 \) is induced by a primitive mod \(p^{m-n} \) character, in which case we recover the formula
in Theorem 1.1 on observing that \(\left(\frac{c_1 c_2}{p} \right) \equiv 1 \mod 4 \); this is plain when \(n \) is even, for \(n \) odd observe that \(\left(\frac{c_1 c_2}{p} \right) = \left(\frac{(c_1 + c_2)^2 - (c_1 - c_2)^2}{p} \right) = \left(\frac{-1}{p} \right) \).

We show that a simple induction recovers the formula for all \(k \geq 3 \). We assume that all the \(\chi_i \) are primitive mod \(p^m \) and observe that when \(k \geq 3 \) we can further assume (reordering as necessary) that \(\chi_1 \chi_2 \) is also primitive mod \(p^m \), since if \(\chi_1 \chi_3, \chi_2 \chi_4 \) are not primitive then \(p | (c_1 + c_3) \) and \(p | (c_2 + c_3) \) and \((c_1 + c_2) \equiv -2c_3 \not\equiv 0 \mod p \) and \(\chi_1 \chi_2 \) is primitive. Hence from (ii) we can write

\[
J_{p^m}(\chi_1, \ldots, \chi_k, p^m) = \frac{\chi_1(c_1)\chi_2(c_2)}{\chi_1\chi_2(c_1 + c_2)} p^2 \delta_2 \sum_{x_1} \sum_{x_1} \chi_3(x_3) \ldots \chi_k(x_k)\chi_1\chi_2(b) = p^2 \chi_1(c_1)\chi_2(c_2) \chi_1\chi_2(c_1 + c_2) \delta_2 J_{p^n}(\chi_1\chi_2, \chi_3, \ldots, \chi_k, p^m).
\]

Assuming the result for \(k - 1 \) characters we have \(J_{p^n}(\chi_1\chi_2, \chi_3, \ldots, \chi_k, p^m) = 0 \) unless \(\chi_1 \cdots \chi_k \) is induced by a primitive mod \(p^{m-n} \) character, in which case

\[
J_{p^n}(\chi_1\chi_2, \chi_3, \ldots, \chi_k, p^m) = p^m \chi_1\chi_2(c_1 + c_2) \delta_3 \prod_{i=3}^k \chi_i(c_i) \chi_1\chi_2(b)
\]

where

\[
\delta_3 = \left(\frac{-2r}{p} \right)^{m(k-2)+n} \left(\frac{v}{p} \right)^{m-n} \left(\frac{c_1 + c_2}{p} \right)^m \epsilon_{p^m} \epsilon_{p^{m-n}},
\]

plus an additional factor \(e_3(r v) \) if \(p^{m-n} = 27, n > 0 \). Our formula for \(k \) characters then follows on observing that \(\delta_2 \delta_3 = \delta \).

CASE B) WHEN \(p = 2 \) **AND** \(m \geq n + 5 \).

Suppose that \(\chi_2 \) is primitive mod \(2^m \), that is \(2 | c_2 \), and \(b = 2^n b' \) with \(2 | b' \) and \(m \geq n + 5 \). In this case from [10, Theorem 1.1] we similarly have \(J_b(\chi_1, \chi_2) = 0 \) unless \(2 | c_1 \) and \(2^n | c_1 + c_2 \), in which case

\[
J_b(\chi_1, \chi_2, 2^m) = 2^{\frac{1}{2}(m+n)} \chi_1\chi_2(x_0)\chi_2(bx_0 - 1) \begin{cases}
1, & \text{if } m - n \text{ is even,} \\
\omega^h \left(\frac{2}{7} \right), & \text{if } m - n \text{ odd,}
\end{cases}
\]

where \(x_0 \) is a solution to

\[-(c_1 + c_2)(bx_0 - 1) + c_2 bx_0 R_N R_{-1} = 0 \mod 2^{N+n+3},\]

with \(2 | x_0(bx_0 - 1) \) and

\[
\omega := e_8(1), \quad N := \left[\frac{1}{2} (m - n) \right] \geq 3, \quad v := \frac{c_1 + c_2}{2^n}, \quad h := -(2^n - 1)v \mod 8.
\]
From the relations (17) we obtain

$$R_{i+n} R_i^{-1} - 1 = 2^{i-1} \mu_i, \quad \mu_i \equiv (2^n - 1) R_i \mod 8,$$

where $R_2 = 1$, $R_3 = 3$, and $R_j \equiv -1 \mod 8$ for $j \geq 4$. Hence, taking

$$x_0 = v b^{r-1} (c_1 + c_2 - c_2 R_N R_{N+n}^{-1})^{-1},$$

we get

$$J_b(\chi_1, \chi_2, 2^m) = 2^{\frac{1}{2}(m+n)} \frac{\chi_1(1 \chi_2(2^m \chi_1(1 \chi_2(v) \left(\frac{2}{v}\right)^{m-n} \epsilon}

with

$$\epsilon := \overline{\chi_2(1 + 2N^{-1} \mu_N)} \chi_1(1 + c_1^{-1} v \mu_N 2^{N+n-1}) \begin{cases} 1, & \text{if } m-n \text{ is even}, \\ \omega^{-(2^n-1)v} \left(\frac{2}{2^{n-1}}\right), & \text{if } m-n \text{ is odd}, \end{cases}$$

where $\overline{\chi_2}$ is a primitive mod 2^{m-n} character. Expanding binomially, observing that $2(N + n - 1) \geq m$ if $n \geq 2$ or m is even, and $2(N + n - 1) = m - 1$ if $n = 1$ and m is odd, one readily obtains

$$1 + c_1^{-1} v \mu_N 2^{N+n-1} \equiv (1 + R_{N+n-1} 2^{N+n-1})^x = 5^{2^{N+n-1}} \mod 2^m,$$

with

$$\kappa := c_1^{-1} v \mu_N R_{N+n-1}^{-1} \begin{cases} \frac{1}{2} (v - c_1) 2^{(m-1)/2}, & \text{if } n = 1, m \text{ odd}, \\ 0, & \text{else}. \end{cases}$$

Similarly,

$$1 + 2^{N-1} \mu_N \equiv 1 + R_{N-1} 2^{N-1} \mu_N R_{N-1}^{-1} \equiv 1 + 2^{N-1} R_{N-1} \mu_N R_{N+n-1}^{-1} (1 + 2^{N-2} \mu_{N-1})$$

$$\equiv 1 + R_{N-1} 2^{N-1} \left(\mu_N R_{N+n-1}^{-1} + 2^{N-2} R_N R_{N-1} R_{N+n-1}^{-1}\right) \mod 2^{m-n}$$

and, since $3(N - 1) \geq m - n$,

$$1 + 2^{N-1} \mu_N \equiv (1 + R_{N-1} 2^{N-1})^\mu_N R_{N+n-1}^{-1} 2^{N-2}(2^n-1) = 5^{2^{N-3} (\mu_N R_{N+n-1}^{-1} 2^{N-2}(2^n-1))} \mod 2^{m-n}.$$

Hence, checking the possibilities mod 8, recalling that $2^n \parallel c_1 + c_2$,

$$\epsilon = e_{2^{m-n-2N+3}}((2^n - 1)v) \begin{cases} (-1)^{\frac{1}{2}(v-c_1)}, & \text{if } m-n \text{ is even and } n = 1, \\ 1, & \text{if } m-n \text{ is even and } n \geq 2, \\ \omega^{-(2^n-1)v} \left(\frac{2}{2^{n-1}}\right), & \text{if } m-n \text{ odd}. \end{cases}$$

and we obtain the $p = 2, k = 2$ result of Theorem 1.1. As in the case of odd p we can deduce from the $k = 2$ result that $J_b(\chi_1, \ldots, \chi_k, 2^m) = 0$ if the sum contains both primitive and
imprimitive χ_i mod 2^m. Hence in the following we assume that all the χ_i are primitive mod 2^m.

For $k = 3$ we observe from parity considerations that $J_b(\chi_1, \chi_2, \chi_3, 2^m) = 0$ if b is even, while if b is odd we can make the change of variables $x_i \mapsto bx_i$. Hence in either case

$$J_b(\chi_1, \chi_2, \chi_3, 2^m) = \chi_1 \chi_2 \chi_3(b) J(\chi_1, \chi_2, \chi_3, 2^m). \quad (30)$$

Now at least one of $\chi_1 \chi_2, \chi_1 \chi_3, \chi_2 \chi_3$ is primitive mod 2^{m-1} (since they are all mod 2^{m-1} characters and $\chi_1^2 = \chi_1 \chi_2 \cdot \chi_1 \chi_3 \cdot \chi_2 \chi_3$ is primitive mod 2^{m-1}). We suppose that $\chi_1 \chi_2$ is primitive mod 2^{m-1}, i.e. $2 \parallel c_1 + c_2$. Then

$$J(\chi_1, \chi_2, \chi_3, 2^m) = \sum_{x_3 = 1}^{2^m} \chi_3(x_3) J_{1-x_3}(\chi_1, \chi_2, 2^m)$$

$$= 2^{\frac{1}{2}(m+1)} \frac{\chi_1(c_1) \chi_2(c_2)}{\chi_1 \chi_2} \left(2 \frac{2}{c_1 + c_2} \right)^{m-1} \sum_{x_3 = 1}^{2^m} \chi_3(x_3) \chi_1 \chi_2 \left(\frac{1-x_3}{2} \right).$$

Now

$$\sum_{x_3 = 1}^{2^m} \chi_3(x_3) \chi_1 \chi_2 \left(\frac{1-x_3}{2} \right) = \frac{1}{2} \sum_{1=x_3=1}^{2^m} \chi_3(x_3) \chi_1 \chi_2(x),$$

which, from the change of variables $x \mapsto x^{-1}$, $x_3 \mapsto -x_3 x^{-1}$ and the $k = 2$ result, equals

$$\frac{1}{2} \chi_3(-1) \sum_{x_3 = 1}^{2^m} \chi_3(x_3) \frac{1}{\chi_1 \chi_2 \chi_3}(x) =$$

$$2^{\frac{1}{2}(m-1)} \chi_3(-1) \frac{\chi_1 \chi_2 \chi_3}{\chi_1 \chi_2} \left(2 \frac{2}{c_1 + c_2} \right)^{m-1} \left(2 \frac{c_1 + c_2}{c_1 + c_2 + c_3} \right)^m \omega^{-\frac{1}{2}(c_1 + c_2)},$$

since $\chi_3 \chi_1 \chi_2 \chi_3 = \chi_1 \chi_2$ and $2 \parallel c_i$ ensures that $2 \parallel c_1 + c_2 + c_3$. Hence

$$J(\chi_1, \chi_2, \chi_3, 2^m) = 2^m \frac{\chi_1(c_1) \chi_2(c_2) \chi_3(c_3)}{\chi_1 \chi_2 \chi_3(c_1 + c_2 + c_3)} \left(2 \frac{2}{c_1 + c_2 + c_3} \right)^m \left(2 \frac{c_1 + c_2}{c_1 c_2 c_3} \right)^m,$$

and we recover Theorem 1.1 when $k = 3$ (note $J_{b^n}(\chi_1, \chi_2, \chi_3, 2^m) = 0$ unless $n = 0$).

For $k \geq 4$ we use (30) to write

$$J_b(\chi_1, \ldots, \chi_k, 2^m) = J_b(\chi_1 \chi_2 \chi_3, \chi_4, \ldots, \chi_n, 2^m) J(\chi_1, \chi_2, \chi_3, 2^m)$$

and the Theorem 1.1 result for general k follows easily by induction.
References

Department of Mathematics, University of Southern Indiana, Evansville, IN 47712.

E-mail: m.ostergaard@usi.edu

Department of Mathematics & Statistics, California State University, Sacramento, Sacramento, CA 95819.

E-mail: vincent.pigno@csus.edu

Department of Mathematics, Kansas State University, Manhattan, KS 66506.

E-mail: pinner@math.ksu.edu