ON δ-PERFECT FUNCTIONS

C. K. BASU

Abstract. δ-continuous [6] and δ-perfect [5] functions are both introduced by T. Noiri in the similar fashion as continuous and perfect functions. The purpose of the present paper is to investigate several properties of δ-perfect functions and also to determine some topological properties which are preserved by δ-continuous δ-perfect functions.

1. Introduction

T. Noiri initiated the concepts of δ-perfect [5] and δ-continuous [6] functions. The purpose of this paper is to investigate certain properties of δ-perfect functions specially, in addition, when the function is also δ-continuous. We start this discussion with a new characterization of δ-perfect functions. A new class of functions under the terminology N-compact function are defined and investigated w.r.t. their relationship with δ-perfect functions; further, we have established that for a δ-continuous function, the concepts of δ-perfectness and N-compactness are identical when the range space is locally nearly compact and Hausdorff. Preservation of certain topological properties by δ-perfect δ-continuous functions are also investigated.

Throughout this paper, by X or Y we shall mean topological spaces. A set A is called regular open if $A = \text{int} (\text{cl} A)$ and regular closed if $A = \text{cl} (\text{int} A)$. The collection of all regular open sets containing the point x of X is denoted by $RO(x)$. A point x is said to be in the δ-closure [12] of a subset A of X, denoted by $δ-cl A$, if for every $U \in RO(x)$, $U \cap A \neq \emptyset$. A is δ-closed if $A = δ - \text{cl} A$. The complement of δ-closed set is called δ-open. A subset A of X is said to be an NC-set [1] if every regular open cover of A has a finite subcover. If $A = X$ and A is an NC-set, then X is called a nearly compact space [10]. A space X is said to be locally nearly compact [1] if for each point x of X, there exists a neighbourhood U of x such that clU is an NC-set in X. A function $f : X \rightarrow Y$ is said to be δ-continuous [6] if for each $x \in X$ and each $V \in RO(f(x))$, there exist a $U \in RO(x)$ such that $f(U) \subset V$. A function $f : X \rightarrow Y$ is said to be δ-perfect [5] if for every filter base \mathcal{F} in $f(X)$ δ-converging to $y \in Y$, $f^{-1}(3)$ is δ-directed towards $f^{-1}(y)$. Equivalently f is δ-perfect iff point inverses are NC-sets in X and f is δ-closed i.e. images of every δ-closed sets in X is δ-closed in Y [5]. A space X is said to be almost regular compact, nearly compact, NC-sets, locally nearly compact, nearly paracompact, N-compact.

Received December 12, 2002; revised March 11, 2003.
2000 Mathematics Subject Classification. 54D30, 54C10.
Key words and phrases. δ-continuous, δ-perfect, nearly compact, NC-sets, locally nearly compact, nearly paracompact, N-compact.
2. δ-Continuous δ-Perfect Functions

Theorem 2.1. For a function \(F : X \to Y \), where \(Y \) is Hausdorff, the following are equivalent:

(i) \(f \) is δ-perfect,

(ii) for each \(y \in Y \), \(f^{-1}(y) \) is a δ-closed subset of \(X \), and if \(U \) is a δ-open cover of \(X \) that is closed under finite unions, then \(\{ Y - f[X - U] : U \in \mathcal{U} \} \) is a δ-open cover of \(Y \).

Proof. The proof is similar to the proof of Theorem 1.8 (c) [7] and is thus omitted.

Lemma 2.2. [5] If \(f : X \to Y \) is a δ-perfect function, then \(f^{-1}(K) \) is an NC-set in \(X \) for every NC-set \(K \) of \(Y \).

Theorem 2.3. A composition of δ-perfect functions is δ-perfect.

Proof. Since the composition of δ-closed function is δ-closed, the proof follows from the Lemma 2.2.

Definition 2.4. Let \(f : X \to Y \) and \(g : X \to Z \) be two functions. The function \(F : X \to Y \times Z \) defined by \(F(x) = (f(x), g(x)) \) for each \(x \in X \), is called the Diagonal product of \(f \) and \(g \).

Theorem 2.5. Let \(f : X \to Y \) and \(g : X \to Z \) (where \(Z \) is Hausdorff) be δ-perfect and δ-continuous functions respectively and also let both be surjective. Then the set \(\{(f(x), g(x)) : x \in X \} \) is δ-closed in \(Y \times Z \).

Proof. Let \((y, z) \notin \{(f(x), g(x)) : x \in X \} = F(X) \) (say) where \(y \in Y \) and \(z \in Z \) i.e. \(f^{-1}(y) \cap g^{-1}(z) = \phi \). This implies that \(z \notin gf^{-1}(y) \). Since \(gf^{-1}(y) \) is an NC-set in the Hausdorff space \(Z \), there exist disjoint regular open sets \(U \) and \(V \) in \(Z \) such that \(z \in U \) and \(gf^{-1}(y) \subset V \). Since \(f \) is δ-closed and \(f^{-1}(y) \subset g^{-1}(V) \), there exists a regular open set \(V_y \) in \(Y \) containing \(y \) such that \(f^{-1}(V_y) \subset g^{-1}(V) \). Therefore \(U \cap gf^{-1}(V_y) = \phi \) i.e. \(g^{-1}(U) \cap f^{-1}(V_y) = \phi \). Now \(V_y \times U \) is a regular open set in \(Y \times Z \) containing the point \((y, z)\) disjoint from \(F(X) \).

Theorem 2.6. If \(f : X \to Y \) is δ-perfect and \(g : X \to Z \) is δ-continuous, where \(X \) and \(Z \) are Hausdorff spaces, then the diagonal product of \(f \) and \(g \) is δ-perfect.

Proof. Let \((y, z) \in F(X)\), where \(F : X \to Y \times Z \) is the diagonal product of \(f \) and \(g \). We have \(F^{-1}(y, z) = f^{-1}(y) \cap g^{-1}(z) \). Since \(Z \) is Hausdorff, it is clear that every
one pointic set is δ-closed and since g is δ-continuous, $g^{-1}(z)$ is δ-closed in X. As f is δ-perfect, $f^{-1}(y)$ is an NC-set in the Hausdorff space X and hence it is δ-closed in X. Therefore $F^{-1}(y,z) = f^{-1}(y) \cap g^{-1}(z)$ is δ-closed in X and is contained in the NC-set $F^{-1}(y)$. So $F^{-1}(y,z)$ is an NC-set. Next we shall show that $F : X \to F(X)$ is a δ-closed function. Let A be any δ-closed subset of X. To show $F(A)$ is δ-closed it is sufficient to show that for any point $x^* \notin A$, either (1) $F(x^*) \notin F(A)$ or (2) there is a regular open set in $Y \times Z$ of the point $F(x^*)$ which does not meet $F(A)$. Let $y^* = f(x^*)$ and $z^* = g(x^*)$ and $D = f^{-1}(y^*)$, $E = D \cap A$ and $G = g(E)$. If $g(x^*) \notin G$, then $g(x^*) = g(x_1)$ for some $x_1 \in E$. Then $F(x_1) = (f(x_1), g(x_1)) = (f(x_1), g(x_1)) = F(x_1) \in F(A)$. Thus (1) is valid. Now suppose that $g(x^*) \notin G$. Since g is δ-continuous and E is an NC-set, by Lemma 5.7 of T. Noiri [6], $g(E) = G$ is an NC-set in the Hausdorff space Z. There exist disjoint regular open sets V^* and U^* in Z such that $g(x^*) \in V^*$ and $G \subset U^*$. The set $U = g^{-1}(U^*) \cup (X - A)$ is δ-open in X and $f^{-1}(y^*) \subset U$. Since f is δ-closed function, there exists a regular open set V_y^* in Y containing y^* such that $f^{-1}(V_y^*) \subset U$. The set $V_y^* \times V^*$ is a regular open set in $Y \times Z$ containing $F(x^*) = (f(x^*), g(x^*)) = (y^*, g(x^*))$. We claim that $(V_y^* \times V^*) \cap F(A) = \phi$. In fact, if for some $x \in A$, $F(x) \cap (V_y^* \times V^*) \neq \phi$ then $f(x) \in V_y^*$ and $g(x) \in V^*$. $f(x) \in V_y^*$ implies $x \in U$ and $g(x) \in V^*$ implies $x \notin U$ — a contradiction. Hence the proof.

Definition 2.7. A function $f : X \to Y$ is said to be N-compact if $f^{-1}(K)$ is an NC-set in X whenever K is an NC-set in Y.

Remark 2.8. Clearly by Lemma 2.2, every δ-perfect function is N-compact but that the converse is not true follows from the following example.

Example 2.9. Consider the identity function $i : (N, T_1) \to (N, T_2)$, where N is the set of naturals, T_1 is the discrete topology and T_2 is the topology generated by the collection $\{\{1, 2\}, \{3, 4\}, \ldots\}$. Only finite sets are NC-sets in (N, T_2) and as such i is N-compact but $\{1\}$ is δ-closed in (N, T_1) but is not so in (N, T_2).

It is therefore natural under what conditions an N-compact function would be a δ-perfect function. The following theorem establishes one such condition.

Theorem 2.10. If $f : X \to Y$ is δ-continuous N-compact function from a Hausdorff space X into a locally nearly compact Hausdorff space Y then f is δ-perfect.

Proof. Since f is N-compact function, the point inverses are NC-sets. Let A be a δ-closed subset of X and let $y \notin f(A)$ be in the δ-closure of $f(A)$. Since Y is locally nearly compact, there exists a regular open set U in Y such that $y \in U$ and $\text{cl } U$ is an NC-set in Y. Now $f(A) \cap \text{cl } U$ cannot be an NC-set. In fact, if it is an NC-set, there exist disjoint regular open sets V_1 and V_2 in Y such that $y \in V_1$ and $f(A) \cap \text{cl } U \subset V_2$ (since Y is Hausdorff). Then $U \cap V_1 \cap f(A) \subset V_1 \cap \text{cl } U \cap f(A) = \phi$ — which contradicts the fact that y is in the δ-closure of $f(A)$. As $\text{cl } U$ is an NC-set and f is N-compact, $f^{-1}(\text{cl } U)$ is an NC-set in X. Therefore $A \cap f^{-1}(\text{cl } U)$ is an NC-set in the Hausdorff space X and so $f[A \cap f^{-1}(\text{cl } U)] = f(A) \cap \text{cl } U$ is an NC-set — a contradiction. So $y \in f(A)$.

Corollary 2.11. A δ-continuous function $f : X \to Y$, where X is Hausdorff and Y is locally nearly compact Hausdorff is N-compact iff it is δ-perfect.

In the above discussion δ-continuity plays a very crucial role. It is of interest under what conditions on the domain and co-domain spaces, the other restrictions on f may imply that f is δ-continuous.

Theorem 2.12. If $f : X \to Y$ is a surjective function from a almost regular space X onto a nearly compact space Y with the property that f is δ-closed and point inverses are δ-closed sets, then f is δ-continuous.

Proof. Let f be not δ-continuous. Then by Theorem 2.2 of T. Noiri [6], there exist a point $x \in X$ and a $V \in RO(f(x))$ such that for every $U \in RO(x)$, $f(U) \cap (Y - V) \neq \emptyset$. Since f is δ-closed $f(clU) \cap (Y - V)$ is a δ-closed set in Y. The collection $\{f(clU) \cap (Y - V) : U \in RO(x)\}$ has the finite inter-section property. If not i.e. if there exist $U_1, U_2, \ldots, U_n \in RO(x)$ such that $\cap_{i=1}^n [f(clU_i) \cap (Y - V)] = \emptyset$, then it can be easily shown that $f(\cap_{i=1}^n U_i) \cap (Y - V) = \emptyset$, which shows that f is δ-continuous — a contradiction. As Y is nearly compact, $\cap_{U \in RO(x)} [f(clU) \cap (Y - V)] \neq \emptyset$. Let y^* belong to the intersection, then clearly $f(x) \neq y^*$. So $x \notin f^{-1}(y^*)$. By the almost regularity of X, there exist disjoint regular open sets U_1^* and U_2^* in X such that $x \in U_1^*$ and $f^{-1}(y^*) \subset U_2^*$. So $y^* \notin f(clU_1^*)$. But $y^* \in f(clU_1^*)$ — a contradiction. So f is δ-continuous.

Next we shall show that the product of two δ-perfect functions is δ-perfect.

Lemma 2.13. Let X_1 and X_2 be two topological spaces and let K_i be NC-sets in X_i for $i = 1, 2$. If Y be a regular open set of $X_1 \times X_2$ containing $K_1 \times K_2$, there exist δ-open sets U_i of X_i containing K_i such that $K_1 \times K_2 \subseteq U_1 \times U_2 \subseteq Y$.

Proof. We fix $x \in K_1$ and then for each $y \in K_2$, $(x, y) \in Y$. So there exist open sets W_1 of X_1 such that $x \in W_1$ and $y \in W_2$ and $(x, y) \in W_1 \times W_2 \subset intcl W_1 \times intcl W_2 \subset intcl V = Y$. Then the collection $\{intcl W_2 : y \in K_2\}$ covers K_2. Since K_1 is an NC-set, there exist $y_1, \ldots, y_n \in K_2$ such that $K_2 \subseteq \bigcup_{i=1}^n intcl W_2^{y_i} = W_z$ (say). Let $U_z = \bigcap_{i=1}^n intcl W_2^{y_i}$. Clearly $\{x\} \times K_2 \subseteq U_z \times W_z \subseteq V$. Since K_1 is an NC-set and the collection $\{U_z : x \in K_1\}$ is a regular open cover of K_1, then there exist $x_1, \ldots, x_m \in K_1$ such that $K_1 \subseteq \bigcup_{i=1}^m U_{z_{x_i}} = U_1$ (say) and $U_2 = \bigcap_{i=1}^m W_{z_{x_i}}$. Then $K_1 \times K_2 \subseteq U_1 \times U_2 \subseteq Y$.

Theorem 2.14. Let $f_i : X_i \to Y_i$ $(i = 1, 2)$ be two δ-perfect functions, then the function $f = f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ defined by $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$ is δ-perfect.

Proof. Let $y = (y_1, y_2) \in Y_1 \times Y_2$. Then $f^{-1}(y) = (f_1 \times f_2)^{-1}(y_1, y_2) = f_1^{-1}(y_1) \times f_2^{-1}(y_2)$, which is an NC-set in $X_1 \times X_2$. Let P be any δ-closed set in $X_1 \times X_2$. Let $(y_1, y_2) \notin f(P)$. Then $(f_1 \times f_2)^{-1}(y_1, y_2) = f_1^{-1}(y_1) \times f_2^{-1}(y_2) \subset X_1 \times X_2 - P$. By Lemma 2.13, there exist δ-open sets U_i containing y_i such that $(f_1 \times f_2)^{-1}(y_1, y_2) \subseteq
of regular closed sets of X. Following:

Perfect continuous functions preserve, in both directions, certain topological properties. Here, we shall investigate certain topological properties which are preserved by δ-perfect δ-continuous functions.

Definition 2.17. [8] A space X is said to be nearly paracompact if every regular open cover of X has an open locally finite refinement.

Theorem 2.18. If $f : (X, T) \to (Y, \sigma)$ is a surjective δ-perfect δ-continuous function, then the following are true:

i) (X, T) is almost regular iff (Y, σ) is almost regular.

ii) (X, T) is Hausdorff iff (Y, σ) is Hausdorff.

iii) (X, T) is locally nearly compact iff (Y, σ) is nearly compact.

iv) (X, T) is locally nearly compact Hausdorff iff (Y, σ) is locally nearly compact Hausdorff.

Proof. $f : (X, T) \to (Y, \sigma)$ is δ-continuous if $f : (X, T_\alpha) \to (Y, \sigma_\alpha)$ is continuous [6] and $f : (X, T) \to (Y, \sigma)$ is δ-perfect if $f : (X, T_\alpha) \to (Y, \sigma_\alpha)$ is perfect [5], where (X, T_α) and (Y, σ_α) are semiregularizations of (X, T) and (Y, σ) respectively. Also a space (X, T) is almost regular (resp. Hausdorff, nearly compact, locally nearly compact Hausdorff and nearly paracompact iff (X, T_α) is regular (resp. Hausdorff, compact, locally compact Hausdorff [3] and paracompact [4])). Since regularity, Hausdorffness, compactness and local compactness (in presence of Hausdorffness) are preserved in both directions by perfect continuous functions, all the results are immediate.

Definition 2.19. A space X is said to be weakly T_2 if every point is the intersection of regular closed sets of X.

Theorem 2.20. Let $f : X \to Y$ be a δ-perfect surjective function. Then we have the following:

i) If X is weakly T_2 then Y is also weakly T_2.

ii) If f is δ-continuous and Y is nearly paracompact, then X is also nearly paracompact.
Proof. i) Let X be weakly T_2. Then every point in X is the intersection of regular closed sets of X. Therefore every point in X is δ-closed. Let $y \in Y$. Then for every $x \in f^{-1}(y)$, $f(x) = y$. Since f is δ-perfect and hence δ-closed, $\{y\}$ is δ-closed i.e. intersection of regular closed sets of Y. Therefore Y is weakly T_2.

ii) It is immediate from the argument given in the proof of Theorem 2.18.

Theorem 2.22. Let X be nearly compact and Y be nearly paracompact then $X \times Y$ is nearly paracompact.

Proof. Since $\pi_Y : X \times Y \to Y$ is continuous open and hence θ-continuous almost open, by Lemma 2.21, π_Y is δ-continuous. Since X is nearly compact by Lemma 2.15, $\pi_Y : X \times Y \to Y$ is δ-perfect. As Y is nearly paracompact and π_Y is δ-perfect δ-continuous surjection, by Theorem 2.20, $X \times Y$ is nearly paracompact.

Acknowledgement

The author wishes to thank the learned referee for his valuable suggestions which improved the paper to a great extent.

References

Department of Mathematics, University of Kalyani, Kalyani, Dist.-Nadia, West Bengal, Pin-741235, India.
E-mail: ckbasu@klyuniv.ernet.in