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APPROXIMATE FIXED POINTS ON ALMOST CONVEX SETS

J. E. C. LOPE, R. M. REY, M. ROQUE AND P. W. SY

Abstract. In this paper, we deduce a maximal element theorem on multimaps and an approx-

imate fixed point theorem on almost convex sets. This generalizes the well-known Himmelberg

fixed point theorem and also unifies recent results of Park and Tan [14] and Sy and Park [16].

The celebrated Knaster-Kuratowski-Mazurkiewicz (simply KKM) principle is a ver-

satile tool to obtain fixed point theorems on convex subsets of topological vector spaces.
For examples, Park and Tan ([13], [14]) gave simple proofs of the generalizations of fixed

point theorems due to Schauder, Tychonoff, and Himmelberg by applying the KKM
principle directly.

In an earlier work of Sy and Park [16], the KKM principle is applied to obtain a new
non-compact version of the Fan-Browder fixed point theorem, from which an approximate

fixed point theorem is deduced. In this paper, we follow the method of [16] and obtain
a maximal element theorem and an approximate fixed point theorem which unify those

in Park and Tan ([13], [14]) and Sy and Park [16].
A multimap (or simply, a map) F : X ⊸ Y is a function from a set X into the power

set 2Y of a set Y ; that is, a function with the values F (x) ⊂ Y for x ∈ X and the fibers
F−(y) := {x ∈ X : y ∈ F (x)} for y ∈ Y . For A ⊂ X , let F (A) :=

⋃
{F (x) : x ∈ A}.

For a set D, let 〈D〉 denote the set of nonempty finite subsets of D.

Let X be a subset of a vector space and D a nonempty subset of X . We call (X, D)
a convex space if coD ⊂ X and X has a topology that induces the Euclidean topology

on the convex hulls of any N ∈ 〈D〉; see [5], [6]. If X = D is convex, then X = (X, X)
becomes a convex space in the sense of Lassonde [4]. If X is compact, then the convex

space (X, D) is said to be compact. Every nonempty convex subset X of a topological
vector space is a convex space with respect to any nonempty subset D of X , and the

converse is known to be not true.
The following version of the Knaster-Kuratowski-Mazurkiewicz (simply, KKM) the-

orem for convex spaces is known.

Theorem 1. Let (X, D) be a convex space and F : D ⊸ X a multimap such that

(1) F (z) is open [resp. closed] for each z ∈ D; and
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(2) F is a KKM map (that is, coN ⊂ F (N) for each N ∈ 〈D〉).

Then {F (z)}z∈D has the finite intersection property. (More precisely, for any N ∈ 〈D〉,
we have coN ∩ [

⋂
z∈N F (z)] 6= ∅.)

The closed version is essentially due to Fan [1] and the open version is motivated from
the works of Kim [3] and Shih-Tan [15], who showed that the original KKM theorem holds
for open valued KKM maps on a simplex. Later, Lassonde [5] showed that the closed
and open versions of Theorem 1 can be derived from each other. More general versions
of Theorem 1 were recently known; for example, see Park ([10] - [12]).

From Theorem 1, Sy and Park [16] obtained the following.

Theorem 2. Let (X, D) be a convex space and P : X ⊸ D a multimap. If there
exist z1, z2, . . . , zn ∈ D and nonempty open [resp. closed] subsets Gi ⊂ P−(zi) for each
i = 1, 2, . . . , n such that co{z1, z2, . . . , zn} ⊂

⋃n

i=1 Gi, then the map coP : X ⊸ X has a
fixed point x0 ∈ X (that is, x0 ∈ coP (x0)).

From Theorem 2, we have the following.

Theorem 3. Let (X, D) be a compact convex space and P : X ⊸ D a map such that
(1) x /∈ co P (x) for all x ∈ X; and
(2) P−(y) is open for all y ∈ D.

Then there exists an x ∈ X such that P (x) = ∅.

Proof. Suppose P (x) 6= ∅ for all x ∈ X . Then X =
⋃

y∈D P−(y). Since X is compact,
X =

⋃
y∈N P−(y) for some N ∈ 〈D〉. Then by Theorem 2, coP has a fixed point, which

contradicts (1).
For X = D, Theorem 3 reduces to theorems of Toussaint [17] and Yannelis and

Prabhakar [18] on the existence of maximal elements.
A nonempty subset Y of a topological vector space E is said to be almost convex if

for any neighborhood V of the origin O in E and for any finite set {y1, y2, . . . , yn} ⊂ Y ,
there exists a finite set {z1, z2, . . . , zn} ⊂ Y such that, for each i ∈ {1, 2, . . . , n}, we have
zi − yi ∈ V and co{z1, z2, . . . , zn} ⊂ Y ; see [2].

From Theorem 2, we deduce the following approximate fixed point theorem.

Theorem 4. Let X be a subset of a topological vector space E and Y an almost
convex dense subset of X. Let F : X ⊸ X be a lower [resp. upper] semi-continuous map
such that (1) F has nonempty values, (2) F (y) is convex for all y ∈ Y , and (3) F (X) is
totally bounded. Then for every open [resp. closed] convex neighborhood V of the origin
O of E, there exists a point xV ∈ Y such that

F (xV ) ∩ (xV + V ) 6= ∅.

Proof. Let V be the given symmetric neighborhood of O in E. Then there exists a
neighborhood U of O such that U + U ⊂ V . Since F (X) is totally bounded in X , there
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exists a finite subset {x1, x2, . . . , xn} ⊂ F (X) such that F (X) ⊂
⋃n

i=1(xi+U). Moreover,

since Y is almost convex and dense in X , there exists a finite subset D := {y1, y2, . . . , yn}

of Y such that xi − yi ∈ U for each i ∈ {1, 2, . . . , n} and Z := co{y1, y2, . . . , yn} ⊂ Y .

Since xi + U = yi + (xi − yi) + U ⊂ yi + U + U ⊂ yi + V , we have F (Z) ⊂ F (X) ⊂
⋃n

i=1(yi + V ). Define a map P : Z ⊸ D by P (z) := (F (z) − V ) ∩ D for z ∈ Z. Then

each P (z) is nonempty. Note that for each y ∈ D, we have

P−(y) = {z ∈ Z : y ∈ P (z)}

= {z ∈ Z : y ∈ (F (z) − V ) ∩ D}

= {z ∈ Z : F (z) ∩ (y + V ) 6= ∅}.

If F is lower semi-continuous and V is open, then each P−(y) is open in Z. If F is

upper semi-continuous and V is closed, then each P−(y) is closed in Z.

Note that for each z ∈ Z, we have a y ∈ D such that z ∈ P−(y). Therefore, Z ⊂ Y =
⋃

y∈D P−(y). Hence, by Theorem 2, coP : Z ⊸ Z has a fixed point xV ∈ Z ⊂ Y , that

is, xV ∈ coP (xV ). Since xV ∈ Z ⊂ Y , F (xV ) is convex and hence, xV ∈ coP (xV ) ⊂

co[(F (xV ) − V ) ∩ D] ⊂ (F (xV ) − V ) ∩ Z, which readily implies F (xV ) ∩ (xV + V ) 6= ∅.

If X = Y is almost convex, then Theorem 4 improves Theorem 5 obtained in Sy and

Park [16].

We now deduce the following result due to Park and Tan [14].

Theorem 5. (Park and Tan [14], Theorem 1) Let X be a subset of a locally convex

Hausdorff topological vector space E and Y an almost convex dense subset of X. Let

T : X ⊸ X be a compact upper semi-continuous multimap with nonempty closed values

such that T (y) is convex for all y ∈ Y . Then T has a fixed point x0 ∈ X; that is,

x0 ∈ T (x0).

Proof. For each neighborhood V of O, there exist xV , yV ∈ X such that yV ∈ T (xV )

and yV ∈ xV + V . Since T (X) is relatively compact, we may assume that the net

{yV } converges to some x0 ∈ X . Since E is Hausdorff, the net {xV } also converges to

x0. Because T is upper semi-continuous with closed values, the graph of T is closed in

X × T (X) and hence we have x0 ∈ T (x0). This proves the theorem.

In particular, for X = Y , we obtain

Theorem 6. (Park and Tan [14], Theorem 2) Let X be an almost convex subset

of a locally convex Hausdorff topological vector space. Then any compact upper semi-

continuous multimap T : X ⊸ X with nonempty closed convex values has a fixed point

in X.

If X itself is convex, Theorem 6 reduces to the Himmelberg fixed point theorem.

From Theorem 4 or from Theorem 5, we obtain
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Theorem 7. (Park and Tan [13], Theorem 1) Let X be an almost convex subset of a

locally convex Hausdorff topological vector space E and f : X ⊸ X a compact continuous

map. Then f has a fixed point.

Further, from the lower semi-continuous case of Theorem 4, we deduce the following.

Theorem 8. Let X be a subset of a topological vector space and Y an almost convex

dense subset of X. Let F : X ⊸ X be a multimap such that

(1) F (x) is nonempty for each x ∈ X;

(2) F (y) is convex for each y ∈ Y ;

(3) F−(z) is open for each z ∈ X; and

(4) F (X) is totally bounded.

Then for any convex neighborhood V of O in E, there exists a point xV ∈ X such that

F (xV ) ∩ (xV + V ) 6= ∅.

Proof. Simply F is lower semi-continuous.

If X = Y is convex, then Theorem 8 reduces to Sy and Park ([16], Theorem 7).
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