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GLOBAL EXISTENCE AND QUENCHING FOR A DAMPED

HYPERBOLIC MEMS EQUATION WITH THE FRINGING FIELD

TOSIYA MIYASITA

Abstract. We study a damped hyperbolic MEMS equation with the fringing field. It arises

in the Micro-Electro Mechanical System(MEMS) devices. We give some criteria for global

existence and quenching of the solution. First we establish a time-local solution by a

contraction mapping theorem. This procedure is standard. Next we show that there ex-

ists a global solution for the small parameter and initial value. Finally, we deal with the

quenching result for the large parameter.

1. Introduction

We consider the following damped hyperbolic MEMS equation with the fringing field:



























ut t +ut = uxx +λ1+δ|ux |2
(1−u)2 x ∈ I , t ∈ (0,T ),

u(0, t )= u(1, t )= 0 t ∈ (0,T ),

u(x,0) = u0(x) x ∈ I ,

ut (x,0) = u1(x) x ∈ I ,

(1)

where λ > 0, δ > 0, I = (0,1) and 0 ≤ u0 < 1. (1) arises in the study of the Micro-Electro Me-

chanical System(MEMS) devices. Here λ denotes the voltage and δ |ux |2 is called the fringing

field [29, 35]. The MEMS devices are often utilized to combine electronics with micro-size me-

chanical devices. The MEMS devices can be modelled as the dynamic deflection of an elastic

membrane inside this system and arise in the accelerometers for airbag deployment in auto-

mobiles, in the ink jet printer heads, in the optical switches, in the chemical sensors and so

on. For more details, see [8, 9, 34] and references therein. If the solution u(x, t ) of (1) reaches

1 at some point in I in finite time t = Tq , the right-hand side becomes infinite, which leads

to the singularity. In this case, the solution u(x, t ) is said to quench in finite time t = Tq and

Tq is called the quenching time of the solution. Let Au be an elliptic −∆u, parabolic ut −∆u,

hyperbolic ut t −∆u or damped hyperbolic operator ut t +ut −∆u with Dirichlet boundary
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condition on the general higher dimensional domain Ω. If δ = 0, we have many results of

stationary problem, time-global existence and quenching in finite time. On the contrary, the

problem with the fringing field

Au =λ
1+δ |∇u|2

(1−u)2
,

is not studied enough. For an elliptic operator A, there are results of minimal solution, its

stability and the bifurcation diagram in [4, 10, 40]. They obtain the upper bound λ∗ of the

existence of the stationary solution for fixed δ > 0. λ∗ is called the pull-in voltage. For a

parabolic operator A, in [30, 39], they prove that the solution exists globally in time for λ ≤
λ∗ and that quenches in finite time for λ > λ∗. Moreover they consider the location of the

quenching point in [30] and the estimate of the quenching time in [39]. However, it seems

that there are no studies for a hyperbolic and damped hyperbolic operator A. The aim of

this paper is to consider the global existence and quenching of the solution for the damped

hyperbolic equation (1) with the fringing field. We introduce the related results and consider

the effects of the fringing field. First the problem

Au =λ
f (x)

(1−u)p ,

is considered, where p > 1 and f (x) = 1 or f (x) = |x|β for β ≥ 0. For an elliptic and parabolic

operator A, thanks to the maximum principle, we have the results of the time-global existence

[12, 19, 23, 25] for sufficiently small λ> 0, the quenching [12, 18, 23, 25] for sufficiently large

λ > 0, the connecting orbit [23], the Morse-Smale property [23], the location of the quench-

ing point [17] and its stationary solution [5, 6, 7, 11, 13, 23]. Also in the hyperbolic problem,

we have similar results to those in the parabolic case, i.e., the global existence [3, 26, 38], the

quenching [3, 26, 32, 38], the estimate of the quenching time [32] and the singularity of the

derivative [2]. In the damped hyperbolic case, we have the global existence [27] and quench-

ing [15, 27]. Next recently the nonlocal problem

Au =λ
1

(1−u)2
(

1+
∫

Ω

dx
1−u

)2
,

is studied intensively. Although we can not apply the comparison principle owing to the non-

local term, in the elliptic and parabolic problem, there are similar results to those without

nonlocal term, i.e., the global existence [14, 16, 20], its asymptotic behaviour [20], the quench-

ing [14, 16, 20] and its stationary solution [14, 16, 20, 22, 33, 36]. For a hyperbolic and damped

hyperbolic operator A, we have the results of the global existence [15, 22] and the quench-

ing [22] for Ω= (0,1). If we assume that the domain and the solution are radially symmetric,

we have the global solution [31]. Lately, in [28], the authors derive the global solution for the

higher dimensional domain Ω for a damped hyperbolic operator A.

The first theorem is concerned with the local existence of the solution.
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Theorem 1. Let X ≡ H 2(I )∩H 1
0 (I ), D ≡ X ×H 1

0 (I ) and H ≡ H 1
0 (I )×L2(I ). For any λ> 0, δ> 0

and (u0,u1) ∈ D with

‖u0‖X ≤
1−θ

CS
,

for 0 < θ < 1, there exists a unique solution of (1) with

φ=
(

u

ut

)

∈C ([0,T );D)∩C 1 ([0,T ); H ) ,

for sufficiently small T > 0. The solution u can be continued as long as ‖u(·, t )‖X < C−1
S . Here

CS > 0 is an embedding constant which depends only on I determined by

‖u‖C +‖ux‖C ≤CS ‖u‖X .

Throughout this paper, the definition of the function spaces and their norms is presented

in Section 2. In the second theorem, we derive the global existence of the sufficiently small

solution in the norm of X . The conditions of (λ,δ) and (u0,u1) are so complicated that we

refer to the proof for more details.

Theorem 2. Let (u0,u1)∈ D with

‖u0‖X ≤
1−θ

CS
,

for 0 < θ < 1. For sufficiently small (λ,δ) and small (u0,u1), there exists a unique global solution

of (1) with

‖u(·, t )‖X ≤
1−θ

CS
,

and

φ=
(

u

ut

)

∈C ([0,∞);D)∩C 1 ([0,∞); H ) .

The last theorem is on the quenching for sufficiently large λ.

Theorem 3. Let (u0,u1)∈ D with u1(x) ≥ 0 in I and

‖u0‖X ≤
1−θ

CS
,

for 0 < θ < 1. For any λ> (4π2)/27 and δ> 0, the solution of (1) quenches in finite time.

This paper is organized as follows: In Section 2, we transform (1) to the modified integral

equation and apply the contraction mapping theorem to it so that we can obtain the local

solution. In Section 3, we consider the global solution for the small parameter (λ,δ) and initial

value (u0,u1). In Section 4, we prove that the solution quenches in finite time for the large
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parameter λ. We note that we do not have to impose any restriction on δ. Hence this estimate

is not optimal.

2. Local solution

We transform (1) to the modified Schrödinger equation as in [37, 38]. We apply the con-

traction mapping theorem owing to the facts for the Schrödinger equation in [1]. Then we

establish the local solution. For δ = 0, the similar proof is done in [26, 31]. Different from

Theorem 1 in [31], we truncate nonlinear term to deal with the derivative of u(x). The proof is

standard. However we prove it in order to see the effects of the fringing field u2
x . In this paper,

C (I ) denotes the space of all continuous functions in I with the norm

‖u‖C = sup
x∈I

|u(x)| ,

for u ∈C (I ) and W s,p (I ) denotes the usual Sobolev space in I with the norm

‖u‖W s,p =
(

s
∑

k=0

∥

∥

∥

∥

∥

∂k

∂xk
u

∥

∥

∥

∥

∥

p

p

)
1
p

,

for u ∈W s,p (I ) with s ∈N for 1 ≤ p <∞ and

‖u‖W s,∞ =
s

∑

k=0

∥

∥

∥

∥

∥

∂k

∂xk
u

∥

∥

∥

∥

∥

∞
,

for u ∈ W s,∞(I ) with s ∈ N, respectively. Here, ‖ · ‖p denotes the standard Lp norm in I with

p ∈ [1,∞]. In particular, we denote W s,2(I ) = H s(I ). H s
0(I ) is defined as the closure of the

set D(I ) in the space H s(I ), where D(I ) represents the space of all infinitely differentiable

functions on I with compact supports. Now the following Poincaré inequality holds:

‖u‖2 ≤CP ‖ux‖2 , (2)

for u ∈ H 1
0 (I ), where CP > 0 depends only on I . Hence we adopt the norm in H 1

0 (I ) as

‖u‖H1
0
≡ ‖ux‖2 ,

for u ∈ H 1
0 (I ) and in X = H 2(I )∩H 1

0 (I ) as

‖u‖X ≡
(

‖uxx‖2
2 +‖ux‖2

2

)

1
2 ,

for u ∈ X , respectively. Since I ⊂R, we have the Sobolev embedding inequality

‖u‖C +‖ux‖C ≤CS ‖u‖X , (3)



HYPERBOLIC MEMS EQUATION WITH THE FRINGING FIELD 35

for u ∈ X , where CS > 0 depends only on I . For the homogeneous damped wave equation



































ut t +ut =uxx x ∈ I , t > 0,

u(0, t )= u(1, t )= 0 t > 0,

u(x,0) =u0(x) x ∈ I ,

ut (x,0) = u1(x) x ∈ I ,

(4)

we define

φ=
(

u

v

)

=
(

u

ut

)

and A = i

(

0 id

−B 2 −id

)

,

where i =
p
−1, B 2 =−∂2/(∂x2) is a positive definite self-adjoint operator of L2(I ) with domain

D(B 2) = X = H 2(I )∩ H 1
0 (I ), D(A) = D ⊂ H and id denotes the identity operator on H 1

0 (I ).

Then, we can write (4) into the homogeneous Schrödinger equation































φt =−i Aφ x ∈ I , t > 0,

φ(0, t )=φ(1, t ) = 0 t > 0,

φ(x,0) =φ0(x) =
(

u0(x)

u1(x)

)

x ∈ I .

(5)

Then we recall the following well-known results.

Lemma 1 (Cf. Théorèmes VII.4 et X.7 in [1]). For any φ0 ∈ D, there exists a unique solution

φ ∈C ([0,+∞);D)∩C 1 ([0,+∞); H ) ,

of (5). Moreover, we have
∥

∥φ( · , t )
∥

∥

H ≤
∥

∥φ0

∥

∥

H ,

for t > 0, where
∥

∥φ
∥

∥

H =
(

‖u‖2
H1

0

+‖v‖2
2

)
1
2

.

Denoting the mapping exp(−i At ) : D → D defined by

e−i Atφ0( ·) =φ( · , t ),

then we have
∥

∥

∥e−i At
∥

∥

∥≤ M ,
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where M > 0 depends only on I . For 0 < θ < 1, we define the modification Fθ

(

p
)

of (1−p)−1

by

Fθ

(

p
)

=







1
1−p for p ≤ 1−θ,

2
θ

for p ≥ 1−θ/2

and extend Fθ suitably in the range (1−θ,1−θ/2) so that Fθ and F ′
θ

are uniformly Lipschitz

continuous on R and Fθ ∈ W 2,∞(R) with the Lipschitz constant L1,θ and the following esti-

mates

‖Fθ‖∞ ≤ L1,θ,
∥

∥F ′
θ

∥

∥

∞ ≤ L1,θ and
∥

∥F ′′
θ

∥

∥

∞ ≤ L1,θ,

where L1,θ > 0 depends only on θ. Moreover we define the truncation aθ(p) by

aθ

(

p
)

=







1 for
∣

∣p
∣

∣≤ 1−θ,

0 for
∣

∣p
∣

∣≥ 1−θ/2

and extend aθ suitably in the range (θ/2− 1,θ− 1) and (1−θ,1−θ/2) so that aθ and a′
θ

are

uniformly Lipschitz continuous on R and aθ ∈ W 2,∞(R) with the Lipschitz constant L2,θ and

the following estimates

‖aθ‖∞ ≤ L2,θ,
∥

∥a′
θ

∥

∥

∞ ≤ L2,θ and
∥

∥a′′
θ

∥

∥

∞ ≤ L2,θ,

where L2,θ > 0 depends only on θ. Now let Lθ = max
(

L1,θ, L2,θ

)

. Denoting

Gθ (u,ux) = aθ(ux )F 2
θ (u)u2

x ,

and

Jθ (u) =
(

0

λF 2
θ

(u)+λδGθ (u,ux)

)

,

we introduce the perturbed problem of (1) as

φt =−i Aφ+ Jθ (u) , (6)

with the same initial and boundary conditions. Under these notations, we have the integral

equation corresponding to perturbed problem

φ= e−i Atφ0 +
∫t

0
e−i A(t−s)Jθ (u(s)) d s. (7)

Taking

η≡
∥

∥φ0

∥

∥

D +1 ≡
(

‖u0‖2
X +‖u1‖2

H1
0

)
1
2 +1 > 0,

we set

XT ≡
{

φ ∈C ([0,T ];D) |
∥

∥φ
∥

∥

XT
≤ 2ηM

}

,
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where T is a positive constant to be determined later. Here the space XT is equipped with the

norm
∥

∥φ
∥

∥

XT
= sup

t∈[0,T ]

∥

∥φ ( · , t )
∥

∥

D = sup
t∈[0,T ]

(

‖u ( · , t )‖2
X +‖v ( · , t )‖2

H1
0

)
1
2

.

For φ ∈ XT , we define the mapping S(t ) by the right-hand side of (7), that is,

Sφ= e−i Atφ0 +
∫t

0
e−i A(t−s)Jθ (u(s))d s.

Then we show that S is a contraction mapping from XT into XT for sufficiently small T > 0.

Lemma 2. If

T <T1 ≡
1

2λL2
θ

M

(

2+5δLθ

)−1
,

then S is a mapping from XT into XT .

Proof. First of all, we have

∣

∣

∣aθ

(

p
)
∣

∣p
∣

∣

k
∣

∣

∣≤‖aθ‖∞ ≤ Lθ and
∣

∣

∣a′
θ

(

p
)
∣

∣p
∣

∣

k
∣

∣

∣≤
∥

∥a′
θ

∥

∥

∞ ≤ Lθ, (8)

for p ∈R and k ∈ {0}∪N. Let φ=
(

u

v

)

∈ XT . Since we have

‖Gθ (u,ux )‖H1
0
≤

∥

∥a′
θ (ux ) F 2

θ (u)u2
x uxx

∥

∥

2
+2

∥

∥aθ (ux )Fθ (u)F ′
θ (u)u3

x

∥

∥

2

+2
∥

∥aθ (ux )F 2
θ (u)ux uxx

∥

∥

2

≤ L3
θ ‖uxx‖2 +2L3

θ ‖ux‖2 +2L3
θ ‖uxx‖2

≤ 5L3
θ ‖u‖X ,

the following estimate holds:

∥

∥Sφ
∥

∥

D ≤ M
∥

∥φ0

∥

∥

D +M

∫t

0
‖Jθ (u(s))‖D d s

≤ ηM +λM

∫t

0

∥

∥F 2
θ (u)

∥

∥

H1
0

d s +λδM

∫t

0
‖Gθ (u,ux)‖H1

0
d s

≤ ηM +2λL2
θM

∫t

0
‖u‖X d s +5λδL3

θM

∫t

0
‖u‖X d s

≤ ηM +2λη
(

2+5δLθ

)

L2
θM 2T,

and
∥

∥Sφ
∥

∥

XT
≤ 2ηM . ���

Lemma 3. If T < T2, then S is a contraction mapping from XT into XT , where 0 < T2 ≤ T1 and

T2 depends only on λ, δ, θ, η and I .



38 TOSIYA MIYASITA

Proof. For any φ1 =
(

u1

v1

)

∈ XT and φ2 =
(

u2

v2

)

∈ XT , we have

∥

∥Sφ1 −Sφ2

∥

∥

D ≤ λM

∫t

0

∥

∥F 2
θ (u1)−F 2

θ (u2)
∥

∥

H1
0

d s

+λδM

∫t

0
‖Gθ (u1, (u1)x )−Gθ (u2, (u2)x )‖H1

0
d s.

Through (3), (8) and uniformly Lipschitz continuity, the desired estimate is derived by the

same computation as the proof of Lemma 2. For example, we have

∥

∥

∥

{

a′
θ((u1)x )−a′

θ((u2)x )
}

F 2
θ (u2)(u2)2

x (u2)xx

∥

∥

∥

2

≤ L2
θ

∥

∥a′
θ((u1)x )−a′

θ((u2)x )
∥

∥

∞ ‖(u2)x‖2
C ‖(u2)xx‖2

≤ C 3
S L3

θ ‖u1 −u2‖X ‖u2‖3
X

≤ 8η3C 3
S L3

θM 3
∥

∥φ1 −φ2

∥

∥

D ,

and deal with other terms similarly. ���

Proof of Theorem 1. By Lemmas 2 and 3, the mapping S is a contraction mapping from XT to

XT for sufficiently small T ∈ (0,T2). Hence (6) has a unique time local solution φ ∈C ([0,T );D).

Since we get

‖vt‖2 ≤ ‖v‖2 +‖uxx‖2 +λ
∥

∥F 2
θ (u)

∥

∥

2
+λδ‖Gθ (u,ux)‖2

≤ CP ‖v‖H1
0
+‖u‖X +λL2

θ+λδL3
θ

≤ CP ‖v‖H1
0
+‖u‖X +λL2

θ (1+δLθ) ,

owing to (2) and (8), φt ∈C ([0,T ); H ) follows at once. If the solution of (6) begins with ‖u0‖X ≤
(1−θ)/CS and satisfies ‖u( · , t )‖X ≤ (1−θ)/CS for all t > 0, then we obtain

‖u‖C +‖ux‖C ≤CS ‖u‖X ≤ 1−θ,

by (3), which implies that u is a solution of (1). Otherwise there is a finite time T0 > 0 at which

‖u( · ,T0)‖X = (1−θ)/CS . We can choose θ1 ∈ (0,θ) and apply the contraction mapping theorem

to (6) with θ replaced by θ1. We may extend u(x, t ) uniquely to an interval (0,T ′
0) with T0 < T ′

0

such that ‖u( · , t )‖X ≤ (1− θ1)/CS for [0,T ′
0). Since we can take θ1 ∈ (0,θ) arbitrarily small,

u(x, t ) is a solution of (1) on I × [0,T ′
0) as long as ‖u( · , t )‖X <C−1

S . ���

Remark 1. Lemma 1 and (3) play an important role in the proof of Theorem 1. Hence un-

der an appropriate setting, the method is applicable to a higher dimensional domain Ω. For

the sake of simplicity, we concentrate on the case n = 2,3 and a bounded domain Ω⊂R
n with
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smooth boundary∂Ω. In the proof, by modifying the construction of Fθ(p) and aθ(q1, q2, . . . , qn)

in order to satisfy

Fθ ∈W 3,∞(R), and aθ(q1, q2, . . . , qn) ∈W 3,∞(Rn),

we have the following theorem.

Theorem 4. Assume that Ω is a bounded domain in R
n for n = 2,3 with smooth boundary ∂Ω.

Let X ≡ H 3(Ω)∩H 1
0 (Ω), Y ≡ H 2(Ω)∩H 1

0 (Ω), D ≡ X ×Y and H ≡ Y ×H 1
0 (Ω). For any λ> 0, δ> 0

and (u0,u1) ∈ D with

‖u0‖X ≤
1−θ

CS
,

for 0 < θ < 1, there exists a unique solution of (1) with

φ=
(

u

ut

)

∈C ([0,T );D)∩C 1 ([0,T ); H ) ,

for sufficiently small T > 0. The solution u can be continued as long as ‖u(·, t )‖X < C−1
S . Here

CS > 0 is an embedding constant which depends only on Ω determined by

‖u‖C +‖∇u‖C ≤CS ‖u‖X .

3. Global existence

In Theorem 3.1 in [28], the authors establish necessary estimates for a nonlocal problem.

We follow their method. As in Theorem 1 in this paper, we truncate the nonlinear term by

aθ(ux ) to deal with the estimate of ‖u‖X . On the other hand, we consider the case δ = 0 in

Theorem 2 in [31] and utilize the energy function to derive the estimate of ‖u‖C . First of all,

let begin with the fundamental lemma.

Lemma 4. Let a,b ∈R. The following inequalities hold:

0 ≤
1

2
a2 +ab +b2. (9)

|a +2b|2 ≤ 2
(

a2 +4b2
)

≤ 24

(

1

2
a2 +ab +b2

)

. (10)

a2 ≤ 4

(

1

2
a2 +ab +b2

)

. (11)

a2 +b2 ≤ 6

(

1

2
a2 +ab +b2

)

. (12)
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Proof of Theorem 2. We consider the modified problem

ut t +ut = uxx +λF 2
θ +λδGθ ,

where

Fθ = Fθ (u) and Gθ =Gθ (u,ux ) .

Multiplying this equation by u and ut , we have

d

d t

∫

I

(

ut u +
1

2
u2

)

d x +
∫

I

(

−u2
t +u2

x

)

d x =λ

∫

I
u

(

F 2
θ +δGθ

)

d x,

and
d

d t

∫

I

(

u2
t +u2

x

)

d x +2

∫

I
u2

t d x = 2λ

∫

I
ut

(

F 2
θ +δGθ

)

d x,

respectively. Defining Φ(t ) by

Φ(t )=
∫

I

(

ut u +
1

2
u2 +u2

t +u2
x

)

d x,

we have from (2), (9) and Young’s inequality

0≤Φ(t ) ≤
3

2

∫

I
u2

t d x +
(

1+C 2
P

)

∫

I
u2

x d x ≤D

∫

I

(

u2
t +u2

x

)

d x,

for u ∈ X and ut ∈ H 1
0 (I ), where

D = max

(

3

2
, 1+C 2

P

)

.

Hence adding these inequalities together, we obtain

Φ
′+

1

D
Φ ≤ λ

∫

I
|u +2ut | ·

∣

∣F 2
θ +δGθ

∣

∣ d x

≤
1

2

(

1

24D

∫

I
|u +2ut |2 d x +24λ2D

∫

I

∣

∣F 2
θ +δGθ

∣

∣

2
d x

)

≤
1

2D
Φ+24λ2D

∫

I
F 4
θ d x +24λ2δ2D

∫

I
G2

θ d x

≤
1

2D
Φ+24λ2DL4

θ+24λ2δ2DL4
θ

∫

I
a2
θ(ux )u4

x d x

≤
1

2D
Φ+24λ2DL4

θ

(

1+δ2L2
θ

)

,

by (8), (10) and Young’s inequality and finally

Φ
′+

1

2D
Φ≤ 24λ2DL4

θ

(

1+δ2L2
θ

)

.

Multiplying this inequality by exp{(2D)−1t } and integrating it over (0, t ), we have

Φ(t ) ≤ e− 1
2D

t
Φ(0)+48λ2D2L4

θ

(

1+δ2L2
θ

)

.
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Setting

v = ut and Ψ(t )=
∫

I

(

vt v +
1

2
v 2 +v 2

t +v 2
x

)

d x,

we have

Ψ
′+

1

D
Ψ≤λ

∫

I
|v +2vt | ·

∣

∣

(

F 2
θ +δGθ

)

t

∣

∣ d x, (13)

in the same way as Φ and u. Now the following estimate holds:

∥

∥

∥

(

F 2
θ (u)+δGθ (u,ux )

)

t

∥

∥

∥

2
≤ 2

∥

∥Fθ(u)F ′
θ(u)v

∥

∥

2
+δ

∥

∥a′
θ (ux )F 2

θ (u)u2
x vx

∥

∥

2

+2δ
∥

∥aθ (ux ) Fθ(u)F ′
θ(u)u2

x v
∥

∥

2
+2δ

∥

∥aθ (ux ) F 2
θ (u)ux vx

∥

∥

2

≤ 2L2
θ ‖v‖2 +δL3

θ ‖vx‖2 +2δL3
θ ‖v‖2 +2δL3

θ ‖vx‖2

= 2L2
θ (1+δLθ)‖v‖2 +3δL3

θ ‖vx‖2 ,

and moreover

∥

∥

∥

(

F 2
θ (u)+δGθ (u,ux )

)

t

∥

∥

∥

2

2
≤ 32L4

θ (1+δLθ)2
Ψ+18δ2L6

θΨ≤EΨ,

from (11), where E = 64L4
θ
+82δ2L6

θ
. We multiply (13) by exp{(2D)−1t }, utilize (10) and inte-

grate it over (0, t ) to obtain

∫t

0
e

1
2D

s
Ψ

′(s)d s +
1

D

∫t

0
e

1
2D

s
Ψ(s)d s

≤
1

2

∫t

0
e

1
2D

s d s

(

1

48D

∫

I
|v +2vt |2 d x +48λ2D

∫

I

∣

∣

(

F 2
θ +δGθ

)

t

∣

∣

2
d x

)

≤
1

4D

∫t

0
e

1
2D

s
Ψ(s)d s +24λ2DE

∫t

0
e

1
2D

s
Ψd s

=
( 1

4D
+1536λ2DL4

θ+1968λ2δ2DL6
θ

)

∫t

0
e

1
2D

s
Ψ(s)d s

<
1

2D

∫t

0
e

1
2D

s
Ψ(s)d s,

as long as both

λ2 <
1

12288D2L4
θ

and λ2δ2 <
1

15744D2L6
θ

.

Hence we have

Ψ(t )< e− 1
2D

t
Ψ(0).

We conclude that

‖u‖2
X ≤ 4‖vt‖2

2 +4‖v‖2
2 +4λ2

∥

∥F 2
θ (u)

∥

∥

2

2
+4λ2δ2

∥

∥aθ(ux )F 2
θ (u)u2

x

∥

∥

2

2
+‖ux‖2

2

≤ 24Ψ(t )+4λ2L4
θ

(

1+δ2L2
θ

)

+‖ux‖2
2

< 24e− 1
2D

t
Ψ(0)+4λ2L4

θ

(

1+δ2L2
θ

)

+Φ(t )
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≤ 24Ψ(0)+4λ2L4
θ

(

1+δ2L2
θ

)

+e− 1
2D

t
Φ(0)+48λ2D2L4

θ

(

1+δ2L2
θ

)

≤ 24Ψ(0)+Φ(0)+4λ2 L4
θ

(

1+12D2
)(

1+δ2L2
θ

)

,

thanks to (1), (8), (9) and (12) and that

‖u‖2
X <

(1−θ)2

C 2
S

,

if

Ψ(0) <
(1−θ)2

96C 2
S

, Φ(0) <
(1−θ)2

4C 2
S

,

λ2 < min

(

1

12288D2L4
θ

,
(1−θ)2

16C 2
S L4

θ

(

1+12D2
)

)

,

and

λ2δ2 < min

(

1

15744D2L6
θ

,
(1−θ)2

16C 2
S

L6
θ

(

1+12D2
)

)

. ���

Remark 2. Since we have

Φ(0) ≤ D
(

‖u0‖2
H1

0

+‖u1‖2
2

)

,

for instance, we choose

‖u0‖H1
0
≤

1−θ

2
p

2CS

p
D

and ‖u1‖2 ≤
1−θ

2
p

2CS

p
D

,

so that the condition

Φ(0) <
(1−θ)2

4C 2
S

,

is achieved. In the same way, we obtain

Ψ(0) ≤ D

(

‖u1‖2
H1

0

+
∥

∥

∥

∥

−u1 + (u0)xx +λ
1+δ(u0)2

x

(1−u0)2

∥

∥

∥

∥

2

2

)

≤ D

(

‖u1‖2
H1

0

+3‖u1‖2
2 +3‖(u0)xx‖2

2 +3λ2

∥

∥

∥

∥

1+δ(u0)2
x

(1−u0)2

∥

∥

∥

∥

2

2

)

≤
(

1+3C 2
P

)

D ‖u1‖2
H1

0

+3D ‖u0‖2
X +3Dλ2

(

1+δC 2
S
‖u0‖2

X

)2

(1−CS ‖u0‖X )4

≤
(

1+3C 2
P

)

D ‖u1‖2
H1

0

+3D ‖u0‖2
X +3Dλ2

{

1+δ(1−θ)2
}2

θ4
.

Hence we can take (u0,u1) and (λ,δ) so as to satisfy

Ψ(0) <
(1−θ)2

96C 2
S

.
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Remark 3. To extend the result in Theorem 2 to a higher dimensional domain Ω ⊂ R
n for

n = 2,3, we estimate ‖u‖H3 owing to the inclusion

H 3(Ω) ⊂C 1(Ω).

To achieve this aim, we have to consider, for instance,

X (t )=
∫

Ω

(

∇vt ·∇v +
1

2
|∇v |2 +|∇vt |2 + (∆v)2

)

d x,

in addition to Φ(t ) and Ψ(t ) in the proof of Theorem 2. However, it is difficult to control the

term ‖|∇v |∆u‖2 which appears from X ′(t ). Hence, the extension to n > 1 seems to be open.

4. Quenching

We apply Kaplan’s method in [21]. The estimates in our proof are quite similar to those in

[24, 32].

Proof of Theorem 3. For the first positive eigenvalue µ=π2 of −d 2/(d x2), let ψ= (π/2)sinπx

be the corresponding eigenfunction i.e.,















−ψxx =µψ x ∈ I ,

ψ(0) =ψ(1) = 0,

ψ> 0 x ∈ I .

Then we have
∫

I ψd x = 1. We set

z(t )=
∫

I
u(x, t )ψ(x)d x.

Differentiating z(t ) twice, we obtain

zt t + zt =−µz +λ

∫

I

1+δu2
x

(1−u)2
ψd x ≥−µz +λ

∫

I

ψ

(1−u)2
d x.

Since the Jensen inequality [41] implies that

∫

I

ψ

(1−u)2
d x ≥

1

(1− z)2
,

we have

zt t + zt ≥
{

λ−µz (1− z)2
} 1

(1− z)2
.

Now we assume that

u(x, t )< 1,
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for x ∈ I and t ≥ 0. Then we have

z(t ) ≤
∫

I
ψ(x)d x = 1.

A simple calculation yields

z (1− z)2 ≤
4

27
,

for z ≤ 1. Hence we get

zt t + zt ≥
(

λ−
4µ

27

)

1

(1− z)2
.

Multiplying this inequality by exp t and integrating it over (0, t ), we have

zt ≥ e−t zt (0)+
(

λ−
4µ

27

)

e−t

∫t

0

e s

(1− z(s))2
d s.

By the assumption, we have

zt (0) =
∫

I
u1(x)ψ(x)d x ≥ 0,

and hence zt (t )> 0 for t > 0 with λ> (4µ)/27. Thus by 0 ≤ z(0) < z(t ) ≤ 1, we have

zt ≥ e−t zt (0)+
(

λ−
4µ

27

)

1

(1− z(0))2

(

1−e−t
)

,

and

z(t )≥ z(0)+
(

1−e−t
)

zt (0)+
(

λ−
4µ

27

)

1

(1− z(0))2

(

t +e−t −1
)

,

by integrating it over (0, t ). Since we have

lim
t→+∞

(

t +e−t −1
)

=+∞ and 1−e−t ∈ [0,1),

for t ≥ 0, we conclude that

max
x∈I

u(x, t )≥
∫

I
u(x, t )ψ(x)d x = z(t )≥ 1,

for sufficiently large t > 0, which leads us to a contradiction. ���

Remark 4. In [39, 40], the authors consider the stationary problem of (1) given by

{

∆u +λ1+δ|∇u|2
(1−u)2 = 0 x ∈Ω,

u(x)= 0 x ∈ ∂Ω.

Assume that Ω is a bounded domain in R
n for n ∈ N with smooth boundary ∂Ω. For fixed

δ > 0, they find a pull-in voltage λ∗
δ

such that there exists a minimal solution v for λ < λ∗
δ

and there is no solution for λ > λ∗
δ

. Moreover in [30, 39], the authors consider the parabolic

problem

ut =∆u +λ
1+δ |∇u|2

(1−u)2
,
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instead of (1). Thanks to the maximal principle, they show that the solution exists globally in

time for λ≤ λ∗
δ

and that quenches in finite time for λ> λ∗
δ

. In our case, λ∗
δ
≤ (4π2)/27 holds.

However, it is not clear that λ∗
δ
= (4π2)/27.

The proof is applicable to a higher dimensional domain Ω. We have the following:

Theorem 5. Under the same assumptions in Theorem 4. Let (u0,u1) ∈ D with u1(x) ≥ 0 in Ω

and

‖u0‖X ≤
1−θ

CS
,

for 0 < θ < 1. If λ> (4µ)/27, then the solution of (1) quenches in finite time, where µ is the first

positive eigenvalue of −∆.
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