GROWTH OF COMPOSITE ENTIRE FUNCTIONS

R. CHANKANYAL AND S. K. VAISH

Abstract. The growth of maximum term of a composite entire function is compared with that of the maximum term of its left and right factors.

1. Introduction.

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an entire function. Then as usual $\mu(r, f) = \max_{n \ge 0} |a_n| r^n$ is called the maximum term of f(z) on |z| = r and $M(r, f) = \max_{|z|=r} |f(z)|$ is called the maximum modulus of f(z) on |z| = r.

The numbers $\rho_f(p,q)$ and $\lambda_f(p,q)$ are, respectively, called the (p,q)-order and lower (p,q)-order of f(z) having index-pair (p,q) and are defined as [1]:

$$\lim_{r \to \infty} \frac{\sup \log^{[p]} M(r, f)}{\inf \log^{[q]} r} = \frac{\rho_f \equiv \rho_f(p, q)}{\lambda_f \equiv \lambda_f(p, q)},\tag{1.1}$$

where p and q are integers such that $p \ge q \ge 1$, $\log^{[0]} x = x$, and $\log^{[n]} x = \log(\log^{[n-1]} x)$ for $0 < \log^{[n-1]} x < \infty$, $n = 1, 2, 3, \ldots$

Some theorems that will be of use to us are:

Theorem A. (Singh [2]). For $0 \le r < R$, we have

$$\mu(r,f) \le M(r,f) \le \frac{R}{R-r}\mu(R,f).$$

$$(1.2)$$

Theorem B. (Juneja, Kapoor and Bajpai [1]). If f(z) is an entire function then

$$\lim_{r \to \infty} \frac{\sup \log^{[p]} \mu(r, f)}{\inf \log^{[q]} r} = \frac{\rho_f \equiv \rho_f(p, q)}{\lambda_f \equiv \lambda_f(p, q)}.$$
(1.3)

Definition 1. Let g(z) be an entire function of finite lower (p, q)-order λ_g . A function $\lambda_g(r)$ is called a lower proximate (p, q)-order of g(z) relative to $\mu(r, g)$ if (i) $\lambda_g(r)$ is real,

Received September 27, 2002.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30 D20.$

Key words and phrases. Composite entire function, (p,q)-order, proximate order, maximum term.

continuous and piecewise differentiable for sufficiently large values of $r \ge r_0$,

(ii)
$$\lim_{r \to \infty} \lambda_g(r) = \lambda_g,$$

(iii)
$$\lim_{r \to \infty} \wedge_{[q]}(r) \lambda'_g(r) = 0 \quad \text{and}$$

(iv)
$$\liminf_{r \to \infty} \frac{\log^{[p-1]} \mu(r,g)}{(\log^{[q-1]} r)^{\lambda_g(r)}} = 1,$$

(1.4)

where $\wedge_{[q]}(r) = \prod_{i=0}^{q} \log^{[i]} r.$

The purpose of this paper is to compare the maximum term of a composite entire function with that of its left and right factors. Throughout this paper f(z), g(z) and h(z) will stand for entire functions.

2. Main Results

Firstly, in some theorems we will compare the growth of the maximum term of a composite entire function with that of its left factor.

Theorem 1. If ρ_f , ρ_g are finite and $\lambda_f > 0$ then for $x > \frac{\rho_g}{\lambda_f} - 1$ and p > q,

$$\lim_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))^{1+x}} = 0.$$

Proof. Let $x > \frac{\rho_g}{\lambda_f} - 1$ and $0 < \varepsilon < \min\{\lambda_f, \frac{(1+x)\lambda_f - \rho_g}{x+2}\}$. Then in view of (1.3) it follows that for all sufficiently large values of r,

$$\mu(r, f) < \exp^{[p-1]}((\log^{[q-1]} r)^{\rho_f + \varepsilon})$$
(2.1)

and

$$\mu(r, f) > \exp^{[p-1]}((\log^{[q-1]} r)^{\rho_f - \varepsilon}).$$
(2.2)

Now, from Lemma 1 [2] for all sufficiently large values of r,

$$\begin{split} &\log\mu(r,fog)\leq 2\log\mu(4\mu(2r,g),f),\\ &\log^{[p-1]}\mu(r,fog)\leq 2\log^{[p-1]}\mu(4\mu(2r,g),f), \end{split}$$

or,

$$\log^{[p]} \mu(r, fog) < \log 2 + (\rho_f + \varepsilon) \log^{[q]} (4\mu(2r, g)) = \log 2 + (\rho_f + \varepsilon) \log^{[q]} \mu(2r, g) + o(1).$$
(2.3)

Using (2.1), we have

$$\log^{[p]} \mu(r, fog) < \log 2 + (\rho_f + \varepsilon) \exp^{[p-q-1]} ((\log^{[q-1]}(2r))^{\rho_g + \varepsilon}) + o(1).$$
(2.4)

Also from (2.2), we have

$$(\log^{[p]} \mu(r))^{1+x} > \{\exp^{[p-q-1]} (\log^{[q-1]} r)^{\lambda_f - \varepsilon}\}^{1+x}.$$
(2.5)

So for all sufficiently large values of r,

$$\frac{\log^{[p]}\mu(r,fog)}{(\log^{[q]}\mu(r))^{1+x}} < \frac{\log 2 + (\rho_f + \varepsilon)\exp^{[p-q-1]}((\log^{[q-1]}2r)^{\rho_g + \varepsilon}) + o(1)}{(\exp^{[p-q-1]}((\log^{[q-1]}r)^{\lambda_f - \varepsilon}))^{1+x}}$$

which implies that

$$\lim_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r))^{1+x}} = 0.$$

Theorem 2. If ρ_f , ρ_g , λ_f , λ_g are finite and $\lambda_f > 0$, then

$$\limsup_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))^{1+x}} = \infty, \quad \text{where } x < \max\left\{\frac{\lambda_g}{\lambda_f} - 1, \frac{\rho_g}{\rho_f} - 1\right\} \quad \text{and} \quad p > q.$$

Proof. Let $x < \frac{\lambda_g}{\lambda_f} - 1$ and $\varepsilon > 0$ be such that $\varepsilon < \lambda_f$, if $2 + x \le 0$ and $\varepsilon < \min\{\lambda_f, (\lambda_g - (1+x)\lambda_f)/(2+x)\}$ if 2 + x > 0. For all sufficiently large values of r, we get from Lemma 2 [2],

$$\begin{split} \log \mu(r, fog) &\geq \log \frac{1}{2} + \log \mu \left[\frac{1}{8} \mu \left(\frac{r}{4}, g \right) - |g(0)|, f \right] \\ &\geq \frac{1}{2} \log \mu \left[\frac{1}{8} \mu \left(\frac{r}{4}, g \right) - |g(0)|, f \right], \\ &\log^{[p]} \mu(r, fog) \geq \frac{1}{2} \log^{[p]} \mu \left[\frac{1}{8} \mu \left(\frac{r}{4}, g \right) - |g(0)|, f \right]. \end{split}$$

Using (1.3), we have,

or,

$$\log^{[p]} \mu(r, fog) > \frac{1}{2} (\lambda_f - \varepsilon) \log^{[q]} \left[\frac{1}{8} \mu\left(\frac{r}{4}, g\right) \right]$$

$$= \frac{1}{2} (\lambda_f - \varepsilon) \log^{[q]} \mu\left(\frac{r}{4}, g\right) + o(1)$$

$$> \frac{1}{2} (\lambda_f - \varepsilon) \exp^{[p-q-1]} \left(\left(\log^{[q-1]}\left(\frac{r}{4}\right) \right)^{\lambda_g - \varepsilon} \right) + o(1).$$
(2.6)

Also, for a sequence of values of r tending infinity, we have

$$\log^{[q]}\mu(r,f) < \exp^{[p-q-1]}\left(\left(\log^{[q-1]}r\right)^{\lambda_f+\varepsilon}\right).$$
(2.7)

From (2.6) and (2.7), we get

$$\frac{\log^{[p]}\mu(r, fog)}{(\log^{[q]}\mu(r, f))^{1+x}} > \frac{\frac{1}{2}(\lambda_f - \varepsilon)\exp^{[p-q-1]}((\log^{[q-1]}(r/4))^{\lambda_g - \varepsilon}) + o(1)}{(\exp^{[p-q-1]}((\log^{[q-1]}r)^{\lambda_f + \varepsilon}))^{1+x}}$$
(2.8)

for a sequence of values of r tending to infinity. This gives

$$\limsup_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))^{1+x}} = \infty$$

We omit the proof for $x < \frac{\rho_g}{\rho_f} - 1$ because it runs parallel to that of the case for $x < \frac{\lambda_g}{\lambda_f} - 1$. This completes the proof of the theorem.

Theorem 3. If ρ_f and ρ_g are finite, p > q, $\lambda_f > 0$ and either $\lambda_f = \rho_f$, or $\lambda_g = \rho_g$, or both, then

$$T(x) = \limsup_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))^{1+x}}$$

has a jumped discontinuity with an infinite jump from zero to infinity at $x = \frac{\rho_g}{\lambda_f} - 1$.

Proof. Since under the conditions of the theorem $\frac{\rho_g}{\lambda_f} - 1 = \max\{\frac{\rho_g}{\rho_f} - 1, \frac{\lambda_g}{\lambda_f} - 1\}$, the theorem follows from Theorem 1 and Theorem 2.

Theorem 4. If ρ_f , ρ_g are finite, $\lambda_f > 0$ and $\lambda_g \rho_f < \lambda_f \rho_g$, then

$$\liminf_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))^{1+x}} = 0$$
(2.9)

and

$$\limsup_{r \to \infty} \frac{\log^{[p]} \mu(r, f o g)}{(\log^{[q]} \mu(r, f))^{1+x}} = \infty,$$
(2.10)

for any x, with $\frac{\lambda_g}{\lambda_f} - 1 < x < \frac{\rho_g}{\rho_f} - 1$ and so the corresponding limit does not exist.

Proof. Let $x > \frac{\lambda_g}{\lambda_f} - 1$ and $0 < \varepsilon < \min\{\lambda_f, \frac{(1+x)\lambda_f - \lambda_g}{x+2}\}$. From (2.3) and (1.3) we get for all sufficiently large values of r,

$$\log^{[p]} \mu(r, fog) < \log 2 + (\rho_f + \varepsilon) + (\exp^{[p-q-1]}((\log^{[q-1]}(2r))^{\lambda_g - \varepsilon})) + o(1).$$
(2.11)

Dividing (2.11) by (2.5) and taking limit infimum, we get

$$\liminf_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))^{1+x}} = 0.$$

Since under the given conditions $\frac{\rho_g}{\rho_f} - 1 = \max[\frac{\lambda_g}{\lambda_f} - 1, \frac{\rho_g}{\rho_f} - 1] > \frac{\lambda_g}{\lambda_f} - 1$, it follows from Theorem 2 that

$$\limsup_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))^{1+x}} = \infty$$

Hence the corresponding limit does not exist.

138

Corollary 1. If $\lambda_g < \lambda_f \leq \rho_f < \rho_g < \infty$, then

$$\liminf_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))} = 0 \quad and \quad \limsup_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{(\log^{[q]} \mu(r, f))} = \infty$$

and so the corresponding limit does not exist.

3. In this section we shall compare the growth of the maximum term of a composite entire function with that of its right factor. In first three theorems of this section we use the following definition:

Definition 2. For the entire functions f(z) and g(z), we define

$$A(x) = \limsup_{r \to \infty} \frac{\log^{[p]} \mu(r, fog)}{\log^{[q]} \mu((1+x)r, g)}, \text{ for } x \ge 0 \text{ and } p > q.$$

Obviously A(x) is a non-increasing function of x.

Theorem 5. If $\rho_g < \infty$, then $A(0) \leq \rho_f$.

Proof. Since for $\rho_f = \infty$ the result is trivially true, we suppose that $\rho_f < \infty$. By the maximum modulus principle, we have

$$M(r, fog) \le M(M(r, g), f). \tag{3.1}$$

(1.2) and (3.1) give,

$$\log^{[p]} \mu(r, fog) \le \log^{[p]} M(M(r, g), f).$$

Thus, for given $\varepsilon > 0$, we get for all sufficiently large values of r,

$$\log^{[p]} \mu(r, fog) \le (\rho_f + \varepsilon) \log^{[q]} M(r, g).$$
(3.2)

Since $\rho_g < \infty$, $\lim_{r\to\infty} \frac{\log^{[q]} M(r,g)}{\log^{[q]} \mu(r,g)} = 1$ by [3], so that for all sufficiently large values of r,

$$\log^{[q]} M(r,g) < (1+\varepsilon) \log^{[q]} \mu(r,g).$$
(3.3)

Therefore, from (3.2) and (3.3), we get for all sufficiently large values of r,

$$\frac{\log^{[p]}\mu(r,fog)}{\log^{[q]}\mu(r,g)} < (1+\varepsilon)(\rho_f+\varepsilon).$$

From which the theorem follows because $\varepsilon > 0$ is arbitrary.

Theorem 6. $\lim_{x\to 0^+} A(x) \leq \rho_f$.

Proof. Since for $\rho_f = \infty$ the result is trivially true, we suppose that $\rho_f < \infty$.

Putting R = (1 + x)r, x > 0, in (1.2), we get

$$\mu(r,g) \le \left(1 + \frac{1}{x}\right) \mu((1+x)r,g),$$

$$\log \mu(r,g) \le \log \left(1 + \frac{1}{x}\right) + \log \mu((1+x)r,g),$$

$$\log^{[q]} \mu(r,g) \le \log^{[q]} \mu((1+x)r,g) + o(1).$$
(3.4)

or, or,

From (3.2), (3.3) and (3.4), we get

$$\log^{[p]}\mu(r, fog) < (1+\varepsilon)(\rho_f + \varepsilon)(\log^{[q]}\mu((1+x)r, g) + o(1))$$

for all sufficiently large values of r.

Since g(z) is non-constant and $\varepsilon > 0$ is arbitrary, it follows from above that $A(x) \leq \rho_f$ for every x > 0. Also since A(x) is a non-increasing function of x, $\lim_{x\to 0^+} A(x)$ exists and $\lim_{x\to 0^+} A(x) \leq \rho_f$.

Theorem 7. If $\sup_{r>0} \frac{\log^{[p]} \mu(r, fog)}{\log^{[q]} \mu((1+x)r, g)}$ is not attained for any $x \ge 0$ and p > q, then $A(0) \le \rho_f$.

Proof. Let $B(x) = \sup_{r>0} \frac{\log^{[p]} \mu(r, fog)}{\log^{[q]} \mu((1+x)r, g)}$ for $x \ge 0$. Since B(x) is not attained, for each $x \ge 0$ there exists a sequence $\{r_n\}, n = 1, 2, 3, \ldots$ tending to infinity such that

$$B(x) - \frac{1}{n} < \frac{\log^{[p]} \mu(r_n, fog)}{\log^{[q]} \mu((1+x)r_n, g)},$$

which implies that $B(x) \leq A(x)$ and so B(x) = A(x) for all $x \geq 0$ because $B(x) \geq A(x)$ follows easily from the definitions.

Now, for given $\varepsilon > 0$ there exists a $\xi > 0$ such that

$$A(0) - \varepsilon = B(0) - \varepsilon < \frac{\log^{[p]} \mu(\xi, fog)}{\log^{[q]} \mu(\xi, g)}.$$
(3.5)

Also,

$$\lim_{x \to 0^+} \frac{\log^{[p]} \mu(\xi, fog)}{\log^{[q]} \mu((1+x)\xi, g)} = \frac{\log^{[p]} \mu(\xi, fog)}{\log^{[q]} \mu(\xi, g)}$$

so there exists $x_1 > 0$ such that

$$\frac{\log^{[p]}\mu(\xi, fog)}{\log^{[q]}\mu(\xi, g)} < \frac{\log^{[p]}\mu(\xi, fog)}{\log^{[q]}\mu((1+x_1)\xi, g)} + \varepsilon.$$

Therefore, from (3.5) we get

$$A(0) - \varepsilon < \frac{\log^{[p]} \mu(\xi, fog)}{\log^{[q]} \mu((1+x_1)\xi, g)} + \varepsilon \le B(x_1) + \varepsilon = A(x_1) + \varepsilon \le \lim_{x \to 0^+} A(x) + \varepsilon.$$

140

Since ε is arbitrary, the theorem follows from Theorem 6.

Theorem 8. If ρ_f and λ_g are finite, then

$$\liminf_{r \to \infty} \frac{\log^{[p-q]} (\log^{[p-1]} \mu(r, fog))^{1/\rho_f}}{\log^{[p-1]} \mu(r, g)} \le \frac{2^{\lambda g}}{1}, \quad \text{if } (p, q) = (2, 1)}{1, \quad \text{if } (p, q) \neq (2.1)}$$

Proof. From (1.2) and (3.1), we have

$$\log^{[p]} \mu(r, fog) \le \log^{[p]} M(M(r, g), f).$$
(3.6)

Also, from (1.1) for all sufficiently large values of r and for any given $\varepsilon > 0$,

$$\log^{[p]} M(r, f) < (\rho_f + \varepsilon) \log^{[q]} r.$$
(3.7)

(3.6) and (3.7) give

$$\log^{[p-q]} (\log^{[p-1]} \mu(r, fog))^{1/(\rho_f + \varepsilon)} < \log^{[p-1]} M(r, g)$$

for all sufficiently large values of r. This implies that

$$\liminf_{r \to \infty} \frac{\log^{[p-q]}(\log^{[p-1]}\mu(r, fog))^{1/(\rho_f + \varepsilon)}}{\log^{[p-1]}\mu(r, g)} \le \liminf_{r \to \infty} \frac{\log^{[p-1]}M(r, g)}{\log^{[p-1]}\mu(r, g)}.$$
 (3.8)

Now, for a sequence of value of r tending to infinity, (1.2) and (1.4) give,

$$\log^{[p-1]} M(r,g) \leq \log^{[p-1]} \mu(2r,g) + o(1) \leq (1+\varepsilon) (\log^{[q-1]}(2r))^{\lambda_g(r)} + o(1) = (1+\varepsilon) \frac{(\log^{[q-1]}(2r))^{\lambda_g+\delta}}{(\log^{[q-1]}(2r))^{\lambda_g+\delta-\lambda_g(r)}} + o(1),$$
(3.9)

where $\delta > 0$ is arbitrary. Since

$$\frac{d}{dr}\{(\log^{[q-1]}r)^{\lambda_g+\delta-\lambda_g(r)}\} = \{\lambda_g+\delta-\lambda_g(r)-\lambda'_g(r)\wedge_{[q]}(r)\}\frac{(\log^{[q-1]}r)^{\lambda_g+\delta-\lambda_g(r)}}{\wedge_{[q-1]}(r)} > 0$$

for all sufficiently large values of r and $\delta > 0$. This implies that $(\log^{[q-1]} r)^{\lambda_g + \delta - \lambda_g(r)}$ is an increasing function of r. Therefore, for a sequence of values of r tending to infinity, (3.9) gives

$$\log^{[p-1]} M(r,g) < (1+\varepsilon) \frac{(\log^{[q-1]}(2r))^{\lambda_g + \delta}}{(\log^{[q-1]}r)^{\lambda_g + \delta - \lambda_g(r)}} \leq (1+\varepsilon) \frac{(\log^{[q-1]}r)^{\lambda_g + \delta}(1 + L_{q-1}(r))^{\lambda_g + \delta}}{(\log^{[q-1]}r)^{\lambda_g + \delta - \lambda_g(r)}} + o(1) = (1+\varepsilon)(\log^{[q-1]}r)^{\lambda_g(r)}(1 + L_{q-1}(r))^{\lambda_g + \delta} + o(1),$$

where $L_0(r) = 1$, $L_1(r) = \frac{\log 2}{\log r}$ and $L_{q-1}(r) = \{\log(1 + L_{q-2}(r))\}/(\log^{[q-1]}r), q = 3, 4, 5, \dots$

Again, for all sufficiently large values of r, (1.4) gives

$$\log^{[p-1]} \mu(r,g) > (1-\varepsilon) (\log^{[q-1]} r)^{\lambda_g(r)}.$$

Therefore, for a sequence of values of r tending to infinity, we find

$$\log^{[p-1]} M(r,g) < \frac{1+\varepsilon}{1-\varepsilon} (1+L_{q-1}(r))^{\lambda_g+\delta} \log^{[p-1]} \mu(r,g) + o(1).$$
(3.10)

Since ε and δ are arbitrary, the theorem follows from (3.8) and (3.10).

Now, we study the growth of the maximum term of two composite entire functions.

Theorem 9. If ρ_h , ρ_g and λ_f are finite, then

$$\lim_{r \to \infty} \frac{(\log^{[p-2]} \mu(r, hog))^{(\log^{[q-1]} M(r,g))^x}}{\log^{[p-2]} \mu(r, fog)} = 0, \quad \text{for } x < \lambda_f - \rho_h.$$

Proof. Let $x < \lambda_f - \rho_h$ and $0 < \varepsilon < (\lambda_f - \rho_h - x)/2$. From (1.2), we have, for all sufficiently large values of r,

$$\mu(r, hog) \leq M(r, hog)
\leq M(M(r, g), h)
< \exp^{[p-1]} ((\log^{[q-1]} M(r, g))^{\rho_h + \varepsilon}).
\log^{[p-2]} \mu(r, hog) < \exp((\log^{[q-1]} M(r, g))^{\rho_h + \varepsilon}).$$
(3.11)

or,

Also, we can easily prove that for all sufficiently large values of r,

$$\log^{[p-2]} \mu(r, fog) > \exp((\log^{[q-1]} M(r, g))^{\lambda_f - \varepsilon}.$$
(3.12)

From (3.11) and (3.12) for all sufficiently large values of r, we get

$$\frac{(\log^{[p-2]} \mu(r, hog))^{(\log^{[q-1]} M(r,g))^x}}{\log^{[p-2]} \mu(r, fog)} < \frac{\exp((\log^{[q-1]} M(r,g))^{\rho_h + \varepsilon + x})}{\exp((\log^{[q-1]} M(r,g))^{\lambda_f - \varepsilon})} = \frac{1}{\exp((\log^{[q-1]} M(r,g))^{\lambda_f - \rho_h - x - 2\varepsilon})}.$$

Since $\lambda_f - \rho_h - x - 2\varepsilon > 0$ and g(z) is non-constant,

$$\lim_{r \to \infty} \frac{(\log^{[p-2]} \mu(r, hog))^{(\log^{[q-1]} M(r,g))^x}}{\log^{[p-2]} \mu(r, fog)} = 0.$$

Corollary 2. Using (1.2) we get under the assumptions of Theorem 9 that

$$\lim_{r \to \infty} \frac{(\log^{[p-2]} \mu(r, hog))^{(\log^{[q-1]} \mu(r,g))^x}}{\log^{[p-2]} \mu(r, fog)} = 0, \quad \text{for } x < \lambda_f - \rho_h.$$

142

References

- O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an entire function, J. reine angew. Math. 282(1976), 53-67.
- [2] A. P. Aingh, On maximum term of composition of entire functions, Proc. Nat. Acad. Sci. India 59(1989), 103-115.
- [3] G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea Publishing Company, 1949.

Department of Mathematics, G. B. Pant University, Pantnagar-263145, Distt. U.S. Nagar, Uttaranchal, India.

E-mail: drskvaish@yahoo.com