NORMAL EDGE-TRANSITIVE AND $\frac{1}{2}$-ARC-TRANSITIVE CAYLEY GRAPHS ON NON-ABELIAN GROUPS OF ODD ORDER $3 p q$, p AND q ARE PRIMES

BIJAN SOLEIMANI AND ALI REZA ASHRAFI

Abstract

Suppose p and q are odd prime numbers. In this paper, the connected Cayley graph of groups of order $3 p q$, for primes p and q, are investigated and all connected normal $\frac{1}{2}$-arc-transitive Cayley graphs of group of these orders will be classified.

1. Introduction

Throughout this paper all groups are assumed to be finite. Terms and definitions not defined here are follow from Biggs [2]. Suppose $\Gamma=(V, E)$ is a simple graph with vertex set $V=V(\Gamma)$ and edge set $E=E(\Gamma)$. The automorphism group $A u t(\Gamma)$ is acting naturally on the set of all vertices, edges and arcs of Γ. If this action is transitive on vertices, edges or arcs of Γ, then the graph Γ is said to be vertex-, edge- or arc-transitive, respectively. If Γ is vertexand edge-transitive but not arc-transitive, then Γ is called $1 / 2-\operatorname{arc}-$ transitive.

Suppose G is a finite group and $S \subseteq G$ is non-empty. We assume further that $S=S^{-1}$ and $S \subseteq G \backslash\{1\}$. The Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is defined by $V(\Gamma)=G$ and $E(\Gamma)=\{\{g, s g\} \mid g \in G, s \in$ $S\}$. It is easy to see that for each element $g \in G$, the mapping $\rho_{g}: G \rightarrow G$ given by $\rho_{g}(x)=x g$ is an automorphism of Γ. This implies that $R(G)=\left\{\rho_{g} \mid g \in G\right\}$ is a subgroup of $\operatorname{Aut}(\Gamma)$ isomorphic to G. Moreover, $\operatorname{Aut}(G, S)=\{\alpha \in \operatorname{Aut}(G) \mid \alpha(S)=S\}$ is a subgroup of $\operatorname{Aut}(\Gamma)$. Following Xu [13], the Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is called normal, if $R(G) \unlhd \operatorname{Aut}(\Gamma)$. A Cayley graph Γ is called normal edge-transitive or normal arc-transitive if $N_{\text {Aut(T) }}(R(G))$ acts transitively on the set of edges or arcs of Γ, respectively. If $\Gamma=\operatorname{Cay}(G, S)$ is normal edge-transitive, but not normal arc-transitive, then Γ is called normal $1 / 2-\operatorname{arc}-$ transitive. Wang et al. [12] in their seminal paper, constructed all disconnected normal Cayley graphs on a finite group and so for studying the problem of normality in Cayley graphs, it suffices to consider the connected Cayley graphs. For the sake of completeness, we mention here a collection of results which are crucial throughout this paper:

[^0]Theorem 1.1. Let $\Gamma=\operatorname{Cay}(G, S)$ and $A=\operatorname{Aut}(\Gamma)$, then the following hold:

1. ([6]) $N_{A}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S)$. The group $R(G)$ is normal in A if and only if $A=R(G) \rtimes$ $\operatorname{Aut}(G, S)$.
2. ([6]) Γ is normal if and only if $A_{1}=\operatorname{Aut}(G, S)$;
3. ([11]) Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected Cayley graph on S. Then Γ is normal edge-transitive if and only if $\operatorname{Aut}(G, S)$ is either transitive on S, or has two orbits in S in the form of T and T^{-1}, where T is a non-empty subset of S such that $S=T \cup T^{-1}$;
4. ([3, Corollary 2.3]) Let $\Gamma=\operatorname{Cay}(G, S)$ and H be the subset of all involutions of the group G. If $\langle H\rangle \neq G$ and Γ is connected normal edge-transitive, then its valency is even;
5. ([6]) If $\Gamma=\operatorname{Cay}(G, S)$ is a connected Cayley graph on S then Γ is normal arc-transitive if and only if $\operatorname{Aut}(G, S)$ acts transitively on S;
6. ([3, Corollary 2.5]) IfG is a Cayley graph of an abelian group, then G is not a normal $\frac{1}{2}$-arctransitive Cayley graph.

It is well-known that there are two non-abelian groups of order 27 presented as follows:

$$
\begin{aligned}
& G_{1}=\left\langle a, b \mid a^{9}=b^{3}=1, b^{-1} a b=a^{4}\right\rangle \\
& G_{2}=\left\langle a, b, c \mid a^{3}=b^{3}=c^{3}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle .
\end{aligned}
$$

Suppose U_{n} denotes the group of units of the ring Z_{n}. Then,
Theorem 1.2 (See [7]). Up to isomorphism, there are three non-abelian groups of order $9 p$, for a prime $p>3$. These are presented as follows:

$$
\begin{aligned}
& G_{3}=\left\langle a, b \mid a^{p}=b^{9}=1, b^{-1} a b=a^{r}\right\rangle, \text { where } r \in U_{p} \text { and } o(r)=3 ; \\
& G_{4}=\left\langle a, b \mid a^{p}=b^{9}=1, b^{-1} a b=a^{s}\right\rangle, \text { where } s \in U_{p} \text { and } o(s)=9 ; \\
& G_{5}=\left\langle a, b, c \mid a^{p}=b^{3}=c^{3}=[b, c]=[a, b]=1, c^{-1} a c=a^{t}\right\rangle \text {, where } t \in U_{p} \text { and } o(t)=3 .
\end{aligned}
$$

The automorphism groups of these five groups can be computed as follows:

$$
\begin{aligned}
\operatorname{Aut}\left(G_{1}\right) & =\left\{\sigma_{i, j, k} \mid \sigma_{i, j, k}(a)=a^{i} b^{j}, \sigma_{i, j, k}(b)=a^{3 k} b,(i, 9)=1,0 \leq j \leq 2,0 \leq k \leq 2\right\}, \\
\operatorname{Aut}\left(G_{2}\right) & =\left\langle\alpha_{1}, \alpha_{2} \mid \alpha_{1}(a)=b, \alpha_{1}(b)=a^{-1}, \alpha_{1}(c)=c, \alpha_{2}(a)=b, \alpha_{2}(b)=a, \alpha_{2}(c)=c\right\rangle \\
& \cong D_{8}, \\
\operatorname{Aut}\left(G_{3}\right) & =\left\{\sigma_{i, j, k} \mid \sigma_{i, j, k}(a)=a^{i}, \sigma_{i, j, k}(b)=a^{j} b^{3 k+1}, 1 \leq i \leq p-1,0 \leq j \leq p-1,0 \leq k \leq 2\right\}, \\
\operatorname{Aut}\left(G_{4}\right) & =\left\{\sigma_{i, j} \mid \sigma_{i, j}(a)=a^{i}, \sigma_{i, j}(b)=a^{j} b, 1 \leq i \leq p-1,0 \leq j \leq p-1\right\},
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Aut}\left(G_{5}\right)= & \left\{\sigma_{i, j, k, l} \mid \sigma_{i, j, k, l}(a)=a^{i}, \sigma_{i, j, k, l}(b)=b^{j}, \sigma_{i, j, k, l}(c)=a^{k} b^{l} c, 1 \leq i \leq p-1,\right. \\
& 1 \leq j \leq 2,0 \leq k \leq p-1,0 \leq l \leq 2\} .
\end{aligned}
$$

If p is a prime and $q \mid p-1$, then we define $F_{p, q}$ to be a group of order $p q$ presented by $F_{p, q}=\left\langle a, b \mid a^{p}=b^{q}=1, b^{-1} a b=a^{u}\right\rangle$, where u is an element of order q in U_{p}, see [9] for details. We denote this group by $T_{p, q}$, when q is also prime. Ghorbani and Nowroozi Laraki [5] calculated all groups of order $3 p q$ and their automorphism groups, p and q are distinct primes. They proved that:

Theorem 1.3. A group of order $3 p q, p>q$ are primes, is isomorphic to one of the following groups:

$$
\begin{aligned}
& H_{1}=Z_{3 p q} \\
& H_{2}=Z_{3} \times T_{p, q}(q \mid p-1), \\
& H_{3}=Z_{q} \times T_{p, 3}(3 \mid p-1), \\
& H_{4}=F_{p, 3 q}(3 q \mid p-1), \\
& H_{5}=Z_{p} \times T_{q, 3}(3 \mid q-1) \\
& H_{6}=\left\langle a, b, c \mid a^{p}=b^{q}=c^{3}=1,[a, b]=1, c^{-1} b c=b^{w}, c^{-1} a c=a^{s}\right\rangle \\
& H_{7}=\left\langle a, b, c \mid a^{p}=b^{q}=c^{3}=1,[a, b]=1, c^{-1} b c=b^{w^{2}}, c^{-1} a c=a^{s}\right\rangle
\end{aligned}
$$

wheres and w are elements of order 3 in U_{p} and U_{q}, respectively.
By [5, Theorem 2.7] and some easy calculations, one can see that:
Theorem 1.4. The automorphism groups of $H_{2}, H_{3}, H_{4}, H_{5}, H_{6}$ and H_{7} are computed as follows:

$$
\begin{aligned}
\operatorname{Aut}\left(H_{2}\right)= & \left\{\sigma_{i, j, k} \mid \sigma_{i, j, k}(a)=a^{i}, \sigma_{i, j, k}(b)=b a^{j}, \sigma_{i, j, k}(c)=c^{k}, 1 \leq i \leq p-1,0 \leq j \leq p-1,\right. \\
& 1 \leq k \leq 2\} \cong Z_{2} \times F_{p, p-1}, \\
\text { Aut }\left(H_{3}\right)= & \left\{\sigma_{i, j, k} \mid \sigma_{i, j, k}(a)=a^{i}, \sigma_{i, j, k}(b)=b^{j}, \sigma_{i, j, k}(c)=c a^{k}, 1 \leq i \leq p-1,1 \leq j \leq q-1,\right. \\
& 0 \leq k \leq p-1\} \cong Z_{q-1} \times F_{p, p-1}, \\
\text { Aut }\left(H_{4}\right)= & \left\{\sigma_{i, j} \mid \sigma_{i, j}(a)=a^{i}, \sigma_{i, j}(b)=b a^{j}, 1 \leq i \leq p-1,0 \leq j \leq p-1,0 \leq k \leq p-1\right\} \\
\cong & F_{p, p-1}, \\
\text { Aut }\left(H_{5}\right)= & \left\{\sigma_{i, j, k} \mid \sigma_{i, j, k}(a)=a^{i}, \sigma_{i, j, k}(b)=b^{j}, \sigma_{i, j, k}(c)=c b^{k}, 1 \leq i \leq p-1,1 \leq j \leq q-1,\right. \\
& 0 \leq k \leq q-1\} \cong Z_{p-1} \times F_{q, q-1}, \\
\text { Aut }\left(H_{6}\right)= & \left\{\sigma_{i, j, k, l} \mid \sigma_{i, j, k, l}(a)=a^{i}, \sigma_{i, j, k}(b)=b^{j}, \sigma_{i, j, k}(c)=c a^{k} b^{l}, 1 \leq i \leq p-1,1 \leq j \leq q-1,\right. \\
& 0 \leq k \leq p-1,0 \leq l \leq p-1\} \cong F_{p, p-1} \times F_{q, q-1} .
\end{aligned}
$$

Note that $\operatorname{Aut}\left(H_{6}\right) \cong \operatorname{Aut}\left(H_{7}\right) \cong F_{p, p-1} \times F_{q, q-1}$.

We encourage the interested readers to consult $[4,7,8,10]$ for more information on this topic. Our work is a continuation of recent papers [3, 1]. We will classify all normal edgetransitive and $\frac{1}{2}$-arc-transitive Cayley graphs on non-abelian groups of orders $9 p$ and $3 p q$, when p and q are distinct odd primes.

2. Cayley graphs on groups of odd order $9 p, p$ is prime

It is clear that a Cayley graph $\Gamma=\operatorname{Cay}(G, S)$ is connected if and only if G is generated by S. In this section, the connected Cayley graphs of groups of odd order $9 p, p$ is prime, are investigated. All Cayley graphs considered here are assumed to be undirected.

Theorem 2.1. The Cayley graph $\Gamma_{1}=\operatorname{Cay}\left(G_{1}, S\right)$ is normal $\frac{1}{2}$-arc transitive if and only if the following conditions are satisfied:

1. $|S|>2$ is even, $G_{1}=\langle S\rangle$ and $S=S^{-1}$,
2. $S=T \cup T^{-1}$, where T is an orbit of $\operatorname{Aut}\left(G_{1}, S\right)$ and $T \subseteq\left\{a^{i} b \mid(i, 9)=1\right\}$ or $T \subseteq\left\{a^{i} b \mid i=\right.$ $3 k, k=1,2\}$.

Moreover, if $\Gamma_{1}=\operatorname{Cay}\left(G_{1}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive and $|S|=2 d$ then $d \mid 54$.
Proof. Since G_{1} does not have elements of order two, by Theorem 1.1(4), $|S|$ is an even integer. If $|S|=2$ then G_{1} is cyclic which is not possible. So, we can assume that $|S|>2$. By Table 1, there is no automorphism that maps $a^{i} b^{j}$ to $a^{3 k} b^{j^{\prime}}$, where $(i, 9)=1$. On the other hand, there is no automorphism that maps $a^{l} b$ to $\left(a^{l} b\right)^{-1}$. To prove, we first note that $\left(a^{l} b\right)^{-1}=a^{-4 l} b^{2}=$ $b^{2} a^{-4^{3} l}$ and $\sigma_{i, j, k}\left(a^{l} b\right)=b^{l j+1} a^{4\left(i\left(4^{l j}+\cdots 4+1\right)\right)+3 k}$. Suppose $b^{l j+1} a^{4\left(i\left(4^{l j}+\cdots+4+1\right)\right)+3 k}=b^{2} a^{-4^{3} l}$. Then $b^{2-l j-1}=a^{4\left(i\left(4^{l j}+\cdots+4+1\right)\right)+3 k+4^{3} l}=a^{4\left(i\left(4^{l j}+\cdots+4+1\right)+4^{2} l l\right)+3 k}$ which implies by Table 1 that $2-l j-1 \equiv 0 \bmod 3)$ and $\left.4\left(i\left(4^{l j}+\cdots+4+1\right)+4^{2} l\right)+3 k \equiv 0 \bmod 9\right)$. Thus, $\left.l j \equiv 1 \bmod 3\right)$ and the following cases can be occurred:

$$
\left\{\begin{array} { l }
{ j = 1 , l = 1 } \\
{ j = 1 , l = 4 } \\
{ j = 1 , l = 7 }
\end{array} \text { and } \left\{\begin{array}{l}
j=2, l=2 \\
j=2, l=5 ; 0 \leq j \leq 2 \& 1 \leq l \leq 8 \\
j=2, l=8
\end{array} ;\right.\right.
$$

We now consider the following cases:

1. $j=l=1$. Since $\left.\left.4\left(i\left(4^{l j}+\cdots+4+1\right)+4^{2} l\right)+3 k \equiv 0 \bmod 9\right), 2 i+3 k+1 \equiv 0 \bmod 9\right)$. So, we have the following three cases: $k=0, i=4 ; k=1, i=7$ or $k=2, i=1$. If $k=0$, $i=4$ then $\sigma_{4,1,0}\left(a^{-4} b^{2}\right)=\sigma_{4,1,0}\left(a^{5} b^{2}\right)=b^{7} a^{4^{3}\left(4^{5}+\cdots+4+1\right)}=a b=b a^{4}$ and so $a^{2}=1$, a contradiction. We now assume that $k=1$ and $i=7$. Then $\sigma_{7,1,1}\left(a^{-4} b^{2}\right)=\sigma_{7,1,1}\left(a^{5} b^{2}\right)=$

Table 1: The Orders of Elements in $G_{i}, 1 \leq i \leq 5$.

Order	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}
a^{i}	$\left\{\begin{array}{l}9(i, 9)=1 \\ 33 \mid i\end{array}\right.$	3	p	p	p
b^{j}	3	3	9	$\left\{\begin{array}{l}9(j, 9)=1 \\ 33 \mid j\end{array}\right.$	3
$a^{i} b^{j}$	$\begin{cases}9(i, 9)=1 \\ 33 \mid i\end{cases}$	3	$\left\{\begin{array}{l}9(j, 9)=1 \\ 33 \mid j\end{array}\right.$	9	$3 p$
$a^{i} c^{k}$	-	3	-	-	3
$b^{j} c^{k}$	-	3	-	-	3
$a^{i} b^{j} c^{k}$	-	3	-	-	3
c^{k}	-	3	-	-	3

$b^{7} a^{7 \cdot 4^{2}\left(4^{5}+\cdots+4+1\right)+6}=a b=b a^{4}$ leaded us to $a=1$ which is impossible. Finally, we assume that $k=2$ and $i=1$. Then $\sigma_{1,1,2}\left(a^{-4} b^{2}\right)=\sigma_{1,1,2}\left(a^{5} b^{2}\right)=b^{7} a^{4^{2}\left(4^{5}+\cdots+4+1\right)+120}=a b=b a^{4}$ that implies our final contradiction $a^{5}=1$.
2. $j=1, l=4$. In this case, $5 i+3 k+4 \equiv 0 \bmod 9)$ that leaded us to the following subcases: $k=0, i=1 ; k=1, i=4$ and $k=2, i=7$. If $k=0, i=1$ then $\sigma_{1,1,0}\left(a^{-16} b^{2}\right)=\sigma_{1,1,0}\left(a^{2} b^{2}\right)=$ $b^{4} a^{4^{3} \cdot 5}=b a^{7}$ and so $a^{2}=1$, a contradiction. If $k=2, i=7$ then $\sigma_{4,1,1}\left(a^{2} b^{2}\right)=b^{4} a^{8}=$ $b a^{7}$ which leads to the contradiction $a=1$. Finally, we assume that $k=2, i=7$. Hence $\sigma_{7,1,2}\left(a^{2} b^{2}\right)=b^{4} a^{2}=b a^{7}$ and so $a^{5}=1$ which is our final contradiction.
3. By a similar argument as above, the cases $j=1, l=7 ; j=l=2 ; j=2, l=5$ and $j=2, l=8$ cannot be occurred.

This proves that there is no automorphism that maps $a^{l} b$ to $\left(a^{l} b\right)^{-1}$. Since $\operatorname{Aut}\left(G_{1}, S\right) \leq$ $\operatorname{Aut}\left(G_{1}\right)$, each orbit of $\operatorname{Aut}\left(G_{1}, S\right)$ under its natural action on S is a subset of an orbit of $\operatorname{Aut}\left(G_{1}\right)$ under its action on G_{1}. So, $S=T \cup T^{-1}$, where $T \subseteq\left\{a^{i} b \mid(i, 9)=1\right\}$ or $T \subseteq\left\{a^{i} b \mid\right.$ $i=3 k, k=1,2\}$. If $|S|=2 d$ then since $\operatorname{Aut}\left(G_{1}, S\right)$ has a transitive action on T,
$|T|\left|\left|A u t\left(G_{1}, S\right)\right|\right|\left|A u t\left(G_{1}\right)\right|=2.3^{3}$. On the other hand, the equation $|S|=|T|+\left|T^{-1}\right|=2|T|$ implies that $|T|=d$ and so $d \mid 2.3^{3}$.

In the following example, we apply previous theorem to prove that $\operatorname{Cay}\left(G_{1}, S\right),|S|=4$, is normal $\frac{1}{2}-\operatorname{arc}$ transitive.

Example 2.2. Suppose $S=\left\{a^{i} b, a^{-i} b,\left(a^{i} b\right)^{-1},\left(a^{-i} b\right)^{-1}\right\}$. Since $\left(a^{i} b\right)\left(a^{-i} b\right)^{-1}=a^{i} b a^{4 i} b^{2}=$ $a^{2 i} \in\langle S\rangle, a^{-4 i} \in\langle S\rangle$. This shows that $a^{-4 i} a^{4 i} b^{2} \in\langle S\rangle$ and so $b^{2} \in\langle S\rangle$. Thus, $b^{-1} \in\langle S\rangle$. On the other hand, $a^{i} b b^{-1}=a^{i} \in\langle S\rangle$ and so $a \in\langle S\rangle$. Hence $G=\langle S\rangle$ which proves that $\operatorname{Cay}\left(G_{1}, S\right)$ is connected. Consider the automorphism $\sigma_{-1,0,0}$. Since $\sigma_{-1,0,0}\left(a^{i} b\right)=a^{-i} b, \sigma_{-1,0,0}\left(a^{4 i} b^{2}\right)=$
$a^{-4 i} b^{2}, \sigma_{-1,0,0}\left(a^{-i} b\right)=a^{i} b$ and $\sigma_{-1,0,0}\left(a^{-4 i} b^{2}\right)=a^{4 i} b^{2}, T=\left\{a^{i} b, a^{-i} b\right\}$ and $T^{-1}=\left\{a^{4 i} b^{2}\right.$, $\left.a^{-4 i} b^{2}\right\}$ are orbits of $\operatorname{Aut}\left(G_{1}, S\right)$ on S. So, by previous theorem, Cay $\left(G_{1}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive.

Theorem 2.3. The Cayley graph $\Gamma_{2}=\operatorname{Cay}\left(G_{2}, S\right)$ is normal $\frac{1}{2}$-arc transitive if and only if the following conditions are satisfied:

1. $|S|>2$ is even, $G_{2}=\langle S\rangle$ and $S=S^{-1}$,
2. $S=T \cup T^{-1}$, where T is an orbit of $\operatorname{Aut}\left(G_{2}, S\right)$ and $T \subseteq\left\{c a^{i} b^{j} \mid i \neq j ; 1 \leq i, j \leq 2\right\}$ or $T \subseteq\left\{c^{2} a^{i} b^{i} \mid 1 \leq i \leq 2\right\}$ or $T=\left\{c a, c a^{2}, c b, c b^{2}\right\}$.

Moreover, if $\Gamma_{2}=\operatorname{Cay}\left(G_{2}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive and $|S|=2 d$ then $d=2,4$.

Proof. The proof of Part (1) is similar to Theorem 2.1 and so it is omitted. To prove (2), we note that the orbits of $\operatorname{Aut}\left(G_{2}\right)$ on G_{2} are as follows:

$$
\begin{gathered}
\{1\},\{c\},\left\{c^{2}\right\},\left\{c a b, c a^{2} b, c a b^{2}, c a^{2} b^{2}\right\},\left\{c^{2} a b, c^{2} a^{2} b, c^{2} a b^{2}, c^{2} a^{2} b^{2}\right\} \\
\left\{c a, c a^{2}, c b, c b^{2}\right\},\left\{c^{2} a, c^{2} a^{2}, c^{2} b, c^{2} b^{2}\right\},\left\{a b, a^{2} b, a b^{2}, a^{2} b^{2}\right\},\left\{a, a^{2}, b, b^{2}\right\} .
\end{gathered}
$$

Since there is no orbit L of size four such that $G=\langle L\rangle$ and $L=L^{-1}$, by Theorem 1.1 (3) S has the form $T \cup T^{-1}$ for an orbit T. Finally, we assume that $\Gamma_{2}=\operatorname{Cay}\left(G_{2}, S\right)$ is normal $\frac{1}{2}$-arc transitive and $|S|=2 d$. Since $|S|=|T|+\left|T^{-1}\right|$ and T is an orbit of $\operatorname{Aut}\left(G_{2}, S\right)$ on S, $|T|\left|\left|A u t\left(G_{2}, S\right)\right|\right|\left|A u t\left(G_{2}\right)\right|=8$. Therefore, $|T|=2,4,8$. But T is a subset of an orbit of $\operatorname{Aut}\left(G_{2}\right)$ on G_{2}, so $|T|=2$ or 4 . Hence the result.

To explain the previous theorem, we investigates the case of $|S|=4$.
Example 2.4. Suppose $S=\left\{c a^{2} b, c a b^{2}, a^{2} b, a b^{2}\right\}$. Since $\alpha_{1}^{2}\left(c a^{2} b\right)=c a b^{2}, \alpha_{1}^{2}\left(a^{2} b\right)=a b^{2}$, $\alpha_{1}^{2}\left(c a b^{2}\right)=c a^{2} b$ and $\alpha_{1}^{2}\left(a b^{2}\right)=a^{2} b, \alpha_{1}^{2} \in \operatorname{Aut}\left(G_{2}, S\right)$. Thus, if $T=\left\{c a^{2} b, c a b^{2}\right\}$ then $S=$ $T \cup T^{-1}$ and so $\operatorname{Cay}\left(G_{2}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive.

Theorem 2.5. The Cayley graph $\Gamma_{3}=\operatorname{Cay}\left(G_{3}, S\right)$ is normal $\frac{1}{2}$-arc transitive if and only if the following conditions are satisfied:

1. $|S|>2$ is even, $G_{3}=\langle S\rangle$ and $S=S^{-1}$,
2. $S=T \cup T^{-1}$, where T is an orbit of $\operatorname{Aut}\left(G_{3}, S\right)$ and

$$
\begin{aligned}
& T \subseteq\left\{a^{l} b, a^{k} b^{4}, a^{t} b^{7} \mid 1 \leq l, t, k \leq p-1 ; l \neq t ; l \neq k ; t \neq k\right\}, \\
& T \subseteq\left\{a^{l} b^{3}, a^{k} b^{3} \mid 1 \leq l, k \leq p-1 ; l \neq k\right\} .
\end{aligned}
$$

Moreover, if $\Gamma_{3}=\operatorname{Cay}\left(G_{3}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive and $|S|=2 d$ then $d \mid 3 p(p-1)$.
Proof. Since each orbit of $\operatorname{Aut}\left(G_{3}, S\right)$ on S is a subset of an orbit of $\operatorname{Aut}\left(G_{3}\right)$ under its natural action on G_{3} and there is no orbit containing elements of the form x and x^{-1}, a similar argument like Theorem 2.1 leaded us to the proof of this theorem.

Example 2.6. Set $S=\left\{a^{l} b, a^{l} b^{4}, a^{l} b^{7},\left(a^{l} b\right)^{-1},\left(a^{l} b^{4}\right)^{-1},\left(a^{l} b^{7}\right)^{-1}\right\}$ and $T=\left\{a^{l} b, a^{l} b^{4}, a^{l} b^{7}\right\}$. Since,

$$
\begin{array}{ll}
\sigma_{1,0,1}\left(a^{l} b\right)=a^{l} b^{4} & \sigma_{1,0,1}\left(a^{l} b^{4}\right)=a^{l} b^{7} \\
\sigma_{1,0,1}\left(a^{l} b^{7}\right)=a^{l} b & \sigma_{1,0,1}\left(a^{l l\left(r^{2}+1\right)} b^{8}\right)=a^{-l\left(r^{2}+1\right)} b^{5} \\
\sigma_{1,0,1}\left(a^{-l\left(r^{2}+1\right)} b^{5}\right)=a^{-l\left(r^{2}+1\right)} b^{2} & \sigma_{1,0,1}\left(a^{-l\left(r^{2}+1\right)} b^{2}\right)=a^{-l\left(r^{2}+1\right)} b^{8} \\
\sigma_{1,0,2}\left(a^{l} b\right)=a^{l} b^{7} & \sigma_{1,0,2}\left(a^{l} b^{4}\right)=a^{l} b \\
\sigma_{1,0,2}\left(a^{l} b^{7}\right)=a^{l} b^{4} & \sigma_{1,0,2}\left(a^{-l\left(r^{2}+1\right)} b^{8}\right)=a^{-l\left(r^{2}+1\right)} b^{2} \\
\sigma_{1,0,2}\left(a^{-l\left(r^{2}+1\right)} b^{5}\right)=a^{-l\left(r^{2}+1\right)} b^{8} & \sigma_{1,0,2}\left(a^{-l\left(r^{2}+1\right)} b^{2}\right)=a^{-l\left(r^{2}+1\right)} b^{5}
\end{array}
$$

by consdiering $S=T \cup T^{-1}, \Gamma_{3}=\operatorname{Cay}\left(G_{3}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive Cayley graph.
Example 2.7. Set $S=\left\{a^{i} b^{3}, a^{-i} b^{3}, a^{i} b^{6}, a^{-i} b^{6}\right\}$ and $T=\left\{a^{i} b^{3}, a^{-i} b^{3}\right\}$. Since $S=T \cup T^{-1}$, $\sigma_{-1,0,1}\left(a^{i} b^{3}\right)=a^{-i} b^{3}, \sigma_{-1,0,1}\left(a^{-i} b^{3}\right)=a^{i} b^{3}, \sigma_{-1,0,1}\left(a^{i} b^{6}\right)=a^{-i} b^{6}$ and $\sigma_{-1,0,1}\left(a^{-i} b^{6}\right)=a^{i} b^{6}$, $\Gamma_{3}=\operatorname{Cay}\left(G_{3}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive Cayley graph.

Using a similar argument as Theorems 2.1, it is possible to investigate the normal $\frac{1}{2}-\operatorname{arc}$ transitive Cayley graphs constructed by groups G_{4} and G_{5}. We mention here these results without proof.

Theorem 2.8. The Cayley graph $\Gamma_{4}=\operatorname{Cay}\left(G_{4}, S\right)$ is normal $\frac{1}{2}$-arc transitive if and only if the following conditions are satisfied:

1. $|S|>2$ is even, $G_{4}=\langle S\rangle$ and $S=S^{-1}$,
2. $S=T \cup T^{-1}$, where T is an orbit of $\operatorname{Aut}\left(G_{4}, S\right)$ and for a fix positive integer $j, 1 \leq j \leq 9$, we have $T \subseteq\left\{a^{l} b^{j} \mid 1 \leq l \leq p-1\right\}$.

Moreover, if $\Gamma_{4}=\operatorname{Cay}\left(G_{4}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive and $|S|=2 d$ then $d=p$ or $d \mid p-1$.
Theorem 2.9. The Cayley graph $\Gamma_{5}=\operatorname{Cay}\left(G_{5}, S\right)$ is normal $\frac{1}{2}$-arc transitive if and only if the following conditions are satisfied:

1. $|S|>2$ is even, $G_{5}=\langle S\rangle$ and $S=S^{-1}$,
2. $S=T \cup T^{-1}$, where T is an orbit of $\operatorname{Aut}\left(G_{5}, S\right)$ and $T \subseteq\left\{a^{i} b^{j} c \mid 1 \leq i \leq p-1 ; 1 \leq j \leq 2\right\}$

Table 2: The Orbits of $\operatorname{Aut}\left(\mathrm{H}_{2}\right)$.

$\{1\},\left\{a^{i} \mid 1 \leq i \leq p-1\right\}$,	$\left\{c b, c b a, \cdots, c b a^{p-1}\right\} \cup\left\{c^{2} b, c^{2} b a, \cdots, c^{2} b a^{p-1}\right\}$
$\left\{c, c^{2}\right\},\left\{c a^{i}, c^{2} a^{i} \mid 1 \leq i \leq p-1\right\}$,	$\left\{c b^{2}, c b^{2} a, \cdots, c b^{2} a^{p-1}\right\} \cup\left\{c^{2} b^{2}, c^{2} b^{2} a, \cdots, c^{2} b^{2} a^{p-1}\right\}$
$\left\{b, b a, b a^{2}, \cdots, b a^{p-1}\right\}$,	$\left\{c b^{3}, c b^{3} a, \cdots, c b^{3} a^{p-1}\right\} \cup\left\{c^{2} b^{3}, c^{2} b^{3} a, \cdots, c^{2} b^{3} a^{p-1}\right\}$
\vdots	
$\left\{b^{q-1}, b^{q-1} a, b^{q-1} a^{2}, \cdots, b^{q-1} a^{p-1}\right\}$,	$\left\{c^{i} b^{q-1}, c^{i} b^{q-1} a, \cdots, c^{i} b^{q-1} a^{p-1} \mid i=1,2\right\}$

Moreover, if $\Gamma_{5}=\operatorname{Cay}\left(G_{5}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive and $|S|=2 d$ then $d \mid 6 p(p-1)$.

3. Cayley graphs on groups of odd order $3 p q, p$ and q are distinct primes

In this section, the connected Cayley graphs of groups of odd order $3 p q, p$ and q are distinct primes, are investigated. All Cayley graphs considered here are assumed to be undirected.

Apply Theorem 1.4 to compute the orbits of $\operatorname{Aut}\left(H_{i}\right)$ under natural action on $H_{i}, 3 \leq i \leq$ 7. Suppose $n_{i}, 3 \leq i \leq 7$, denote the number of orbits of $\operatorname{Aut}\left(H_{i}\right)$ on H_{i}. Then by a tedious calculation, one can see that $n_{3}=7, n_{4}=3 q+2, n_{5}=8, n_{6}=n_{7}=6$. Moreover, we assume that $\Omega_{i}^{j}, 3 \leq j \leq 7$ and $1 \leq i \leq n_{j}$, denote the $i^{\text {th }}$ orbit of $\operatorname{Aut}\left(H_{j}\right)$ on H_{j}. Our calculations are recorded in Table 4.

Theorem 3.1. The Cayley graph $\Delta_{2}=\operatorname{Cay}\left(H_{2}, S\right)$ is normal $\frac{1}{2}-$ arc transitive if and only if the following conditions are satisfied:

1. $|S|>2$ is even, $H_{2}=\langle S\rangle$ and $S=S^{-1}$,
2. $S=T \cup T^{-1}$, where T is an orbit of $A u t\left(H_{2}, S\right)$ and for a fixed $j, T \subseteq\left\{c^{i} b^{j} a^{k} \mid 1 \leq i \leq 2 ; 0 \leq\right.$ $k \leq p-1\}$.

Moreover, if $\Delta_{2}=\operatorname{Cay}\left(H_{2}, S\right)$ is normal $\frac{1}{2}-\operatorname{arc}$ transitive and $|S|=2 d$ then $d=p$ or $d \mid 2(p-1)$.
Proof. It is clear that each orbit of $\operatorname{Aut}\left(H_{2}, S\right)$ under its natural action on S is a subset of an orbit of $\operatorname{Aut}\left(\mathrm{H}_{2}\right)$ on H_{2}. Note that the orbits in the second column of Table 2, is generated the group H_{2}.

Since for each orbit O in the second column, $O \cap O^{-1}=\varnothing, S$ can be written as $T \cup T^{-1}$, where T is an orbit of $\operatorname{Aut}\left(H_{2}, S\right)$. Thus, Δ_{2} is normal $\frac{1}{2}-\operatorname{arc}$ transitive. To prove (2), we notice that $\left|A u t\left(H_{2}\right)\right|=2 p(p-1)$ and by a similar argument as Theorem 2.1(2), $d=p$ or $d \mid 2(p-1)$.

Since each orbit of $\operatorname{Aut}\left(H_{i}, S_{i}\right)$ under natural action on S_{i} is a subset of the orbits of $\operatorname{Aut}\left(H_{i}\right)$ on H_{i} and Tables 3 and 4, we have the following theorem:

Table 3: The Orders of Elements in $H_{i}, 1 \leq i \leq 7$.

Orders	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	H_{7}
$O\left(a^{i}\right)$	p	p	p	p	p	p
$O\left(b^{j}\right)$	q	q	$\frac{3 q}{(3 q, j)}$	$p q$	q	q
$O\left(c^{k}\right)$	3	3	(3q, ${ }^{\text {a }}$	3	3	3
$O\left(a^{i} b^{j}\right)$	q	-	-	$p q$	$p q$	$p q$
$O\left(a^{i} c^{k}\right)$	$3 p$	-	-	$3 p$	-	-
$O\left(b^{j} c^{k}\right)$	$3 q$	-	-	-	-	-
$O\left(b^{j} a^{i}\right)$	-	$p q$	$\left\{\begin{array}{l}3 p(j, 3 q)=q \\ 3 q(j, 3 q)=1 \\ q(j, 3 q)=3\end{array}\right.$	-	-	-
$O\left(c^{k} a^{i}\right)$	-	3	-	-	3	3
$O\left(c^{k} b^{j} a^{i}\right)$	-	$3 q$	-	-	3	3
$O\left(a^{i} b^{j} c^{k}\right)$	$3 q$	-	-	-	-	
$O\left(a^{i} c^{k} b^{j}\right)$	-	-	-	$3 p$	-	-

Theorem 3.2. The Cayley graph $\Delta_{i}=\operatorname{Cay}\left(H_{i}, S\right), 3 \leq i \leq 7$, is normal $\frac{1}{2}$-arc-transitive if and only if the following conditions are satisfied:

1. $|S|>2$ is even, $H_{i}=\langle S\rangle$ and $S=S^{-1}$,
2. $S=T_{i} \cup T_{i}^{-1}$, where T_{i} is an orbit of $\operatorname{Aut}\left(H_{i}, S\right), T_{3} \subseteq\left\{c b^{i} a^{j} \mid 1 \leq j \leq p-1\right\}, 1 \leq i \leq q-1$, $T_{4} \subseteq\left\{b^{i} a^{j} \mid 1 \leq j \leq p-1\right\}, 1 \leq i \leq 3 q-1, T_{5} \subseteq\left\{c a^{i} b^{j} \mid 1 \leq j \leq q-1\right\}, 1 \leq i \leq p-1$, and $T_{6}, T_{7} \subseteq\left\{c a^{i} b^{j} \mid 1 \leq i \leq p-1 \& 1 \leq j \leq q-1\right\}$.

Moreover, $i f\left|S_{i}\right|=2 d_{i}$ and $\Delta_{i}=\operatorname{Cay}\left(H_{i}, S_{i}\right), 3 \leq i \leq 7$, is normal $\frac{1}{2}-\operatorname{arc}-$ transitive then $d_{3} \mid p(p-$ 1) $(q-1), d_{4}\left|p(p-1), d_{5}\right| q(p-1)(q-1)$ and $d_{6}, d_{7} \mid p q(p-1)(q-1)$.

Proposition 3.3. Suppose $S=\left\{c^{i} b a^{k}, c^{i} b a^{l},\left(c^{i} b a^{k}\right)^{-1},\left(c^{i} b a^{l}\right)^{-1}\right\}, l \neq k$. Then $\operatorname{Cay}\left(H_{2}, S\right)$ is normal $\frac{1}{2}$-arc-transitive and $\operatorname{Aut}\left(H_{2}, S\right)$ is a cyclic group of order 2 .

Proof. It is clear that,

$$
\begin{aligned}
\sigma_{-1, l+k, 1}\left(c^{i} b a^{k}\right) & =c^{i} b a^{l}, \\
\sigma_{-1, l+k, 1}\left(c^{i} b a^{l}\right) & =c^{i} b a^{k}, \\
\sigma_{-1, l+k, 1}\left(c^{3-i} b^{q-1} a^{-k\left(u^{q}-1\right)}\right) & =c^{3-i} b^{q-1} a^{-l\left(u^{q}-1\right)}, \\
\sigma_{-1, l+k, 1}\left(c^{3-i} b^{q-1} a^{-l\left(u^{q}-1\right)}\right) & =c^{3-i} b^{q-1} a^{-k\left(u^{q}-1\right)} .
\end{aligned}
$$

There is no automorphism $\alpha \in \operatorname{Aut}\left(H_{2}\right)$ with this property that for an element $t \in S$, $\alpha(t)=t^{-1}$. Thus, if $T=\left\{c^{i} b a^{k}, c^{i} b a^{l}\right\}$ then $S=T \cup T^{-1}$ where T is an orbit of $\operatorname{Aut}\left(H_{2}, S\right)$ and

Table 4: The Orbits of $\operatorname{Aut}\left(H_{i}\right)$ on H_{i} under Natural Group Action, $3 \leq i \leq 7$.

$$
\begin{aligned}
& \Omega_{1}^{3}=\Omega_{1}^{4}=\Omega_{1}^{5}=\Omega_{1}^{6}=\Omega_{1}^{7}=\{1\}, \\
& \Omega_{2}^{3}=\left\{c^{2} a^{i} \mid 0 \leq i \leq p-1\right\}, \quad \Omega_{3}^{3}=\left\{c a^{i} \mid 0 \leq i \leq p-1\right\}, \\
& \Omega_{4}^{3}=\left\{b^{i} a^{j} \mid 1 \leq i \leq q-1,1 \leq j \leq p-1\right\}, \\
& \Omega_{5}^{3}=\left\{c b^{i} a^{j} \mid 1 \leq i \leq q-1,1 \leq j \leq p-1\right\}, \\
& \Omega_{6}^{3}=\left\{c^{2} b^{i} a^{j} \mid 1 \leq i \leq q-1,1 \leq j \leq p-1\right\}, \Omega_{2}^{4}=\left\{a^{i} \mid 1 \leq i \leq p-1\right\}, \\
& \Omega_{3}^{4}=\left\{b a^{i} \mid 0 \leq i \leq p-1\right\}, \ldots, \Omega_{3 q+2}^{4}=\left\{b^{3 q-1} a^{i} \mid 0 \leq i \leq p-1\right\}, \\
& \Omega_{2}^{5}=\left\{a^{i} \mid 1 \leq i \leq p-1\right\}, \Omega_{3}^{5}=\left\{b^{i} \mid 1 \leq i \leq q-1\right\}, \\
& \Omega_{4}^{5}=\left\{c b^{j} \mid 0 \leq j \leq q-1\right\}, \Omega_{5}^{5}=\left\{c^{2} b^{j} \mid 0 \leq j \leq q-1\right\}, \\
& \Omega_{6}^{5}=\left\{a^{i} b^{j} \mid 1 \leq i \leq p-1 \& 1 \leq j \leq q-1\right\}, \Omega_{7}^{5}=\left\{c a^{i} b^{j} \mid 1 \leq i \leq p-1 \& 0 \leq j \leq q-1\right\}, \\
& \Omega_{8}^{5}=\left\{c^{2} a^{i} b^{j} \mid 1 \leq i \leq p-1 \& 0 \leq j \leq q-1\right\}, \\
& \Omega_{2}^{6}=\left\{a^{i} \mid 1 \leq i \leq p-1\right\}, \Omega_{3}^{6}=\left\{b^{j} \mid 1 \leq j \leq q-1\right\}, \\
& \Omega_{4}^{6}=\left\{a^{i} b^{j} \mid 1 \leq i \leq p-1 \& 1 \leq j \leq q-1\right\}, \Omega_{5}^{6}=\left\{c a^{i} b^{j} \mid 0 \leq i \leq p-1 \& 0 \leq j \leq q-1\right\}, \\
& \Omega_{6}^{6}=\left\{c^{2} a^{i} b^{j} \mid 0 \leq i \leq p-1 \& 0 \leq j \leq q-1\right\}, \\
& \Omega_{2}^{7}=\left\{a^{i} \mid 1 \leq i \leq p-1\right\}, \Omega_{3}^{7}=\left\{b^{j} \mid 1 \leq j \leq q-1\right\}, \\
& \Omega_{4}^{7}=\left\{a^{i} b^{j} \mid 1 \leq i \leq p-1 \& 1 \leq j \leq q-1\right\}, \Omega_{5}^{7}=\left\{c a^{i} b^{j} \mid 0 \leq i \leq p-1 \& 0 \leq j \leq q-1\right\}, \\
& \Omega_{6}^{7}=\left\{c^{2} a^{i} b^{j} \mid 0 \leq i \leq p-1 \& 0 \leq j \leq q-1\right\} .
\end{aligned}
$$

so $\operatorname{Cay}\left(H_{2}, S\right)$ is normal $\frac{1}{2}$-arc-transitive. To prove $\operatorname{Aut}\left(H_{2}, S\right) \cong Z_{2}$, we notice that $H_{2}=\langle S\rangle$ and $\operatorname{Aut}\left(H_{2}, S\right)$ has a faithful action on S. This implies that $\operatorname{Aut}\left(H_{2}, S\right)$ is isomorphic to a subgroup of H_{2}. We first prove that $\operatorname{Aut}\left(H_{2}, S\right)$ does not have an element of order 3 and 4. If $\sigma \in$ $\operatorname{Aut}\left(\mathrm{H}_{2}, \mathrm{~S}\right)$ has order 3, then the automorphism σ is fixed an element $y \in S$. This implies that y^{-1} is another fixed element of σ, which is impossible. We now assume that $\sigma \in \operatorname{Aut}\left(\mathrm{H}_{2}, \mathrm{~S}\right)$ has order 4, $x=c^{i} b a^{l}$ and $y=c^{i} b a^{k}$. Then σ has the forms $g=\left(x y^{-1} x^{-1} y\right)$ or $h=\left(x y x^{-1} y^{-1}\right)$. Next $\sigma \in \operatorname{Aut}\left(H_{2}, S\right) \subseteq \operatorname{Aut}\left(H_{2}\right)$ and so there exist $r, s, t, 1 \leq r \leq p-1,0 \leq s \leq p-1$ and $1 \leq t \leq 2$ such that $\sigma=\sigma_{r, s, t}$. If $\sigma=g$ then $\sigma(x)=y^{-1}$ which implies that $\sigma_{r, s, t}\left(c^{i} b a^{l}\right)=$ $c^{3-i} b^{q-1} a^{-k\left(u^{q}-1\right)}$. But $\sigma_{r, s, t}\left(c^{i} b a^{l}\right)=c^{i t} b a^{s+l r}$ and so $c^{i t} b a^{s+l r}=c^{3-i} b^{q-1} a^{-k\left(u^{q}-1\right)}$. Thus, we have $c^{3-i-i t}=b^{2-q} a^{s+l r+k\left(u^{q}-1\right)}$ and therefore $b^{2-q} a^{s+l r+k\left(u^{q}-1\right)} \neq e$. Othewise, $b^{2-q}=$ $a^{s+l r+k\left(u^{q}-1\right)}$. Since $q>3, b^{q-2} \neq e$ and $O\left(b^{2-q}\right) \neq O\left(a^{s+l r+k\left(u^{q}-1\right)}\right), c^{3-i-i t} \neq e$. On the other hand, $O\left(c^{3-i-i t}\right)=3$ and $O\left(b^{2-q} a^{s+l r+k u^{q-1}}\right)=q$ that leaded us to another contradiction. If $h=\sigma_{r, s, t}$ then a similar argument as above gives a contradiction. This proves that there is no automorphism of order 4.

We now prove that $\operatorname{Aut}\left(H_{2}, S\right)=\left\langle\sigma_{-1, l+k, 1}\right\rangle$. Suppose $\sigma_{r, s, t}$ is an arbitrary element of $\operatorname{Aut}\left(H_{2}, S\right)$. Since there is no automorphism α in $\operatorname{Aut}\left(H_{2}\right)$ such that α maps $c^{i} b^{j} a^{k}$ to $c^{i^{\prime}} b^{j^{\prime}} a^{k^{\prime}}$,
$j \neq j^{\prime}, \sigma_{r, s, t}\left(c^{i} b a^{l}\right)=c^{i} b a^{k}$ and $\sigma_{r, s, t}\left(c^{i} b a^{k}\right)=c^{i} b a^{l}$. Therefore,

$$
\begin{aligned}
\sigma_{r, s, t}\left(c^{3-i} b^{q-1} a^{-k\left(u^{q}-1\right)}\right) & =c^{3-i} b^{q-1} a^{-l\left(u^{q}-1\right)}, \\
\sigma_{r, s, t}\left(c^{3-i} b^{q-1} a^{-l\left(u^{q}-1\right)}\right) & =c^{3-i} b^{q-1} a^{-k\left(u^{q-1}\right)}, \\
\sigma_{r, s, t}\left(c^{i} b a^{l}\right) & =c^{i t} b a^{s+l r}, \\
\sigma_{r, s, t}\left(c^{i} b a^{k}\right) & =c^{i t} b a^{s+k r}, \\
\sigma_{r, s, t}\left(c^{3-i} b^{q-1} a^{-l\left(u^{q}-1\right)}\right) & =c^{t(3-i)} b^{q-1} a^{s\left(u^{q-2}+\cdots+u+1\right)-l r u^{q-1}}, \\
\sigma_{r, s, t}\left(c^{3-i} b^{q-1} a^{-k\left(u^{q}-1\right)}\right) & =c^{t(3-i)} b^{q-1} a^{s\left(u^{q-2}+\cdots+u+1\right)-k r u^{q-1}} .
\end{aligned}
$$

Thus, the following equalities are satisfied:

$$
\begin{aligned}
c^{i} b a^{l} & =c^{i t} b a^{s+l r} \text { and } c^{i} b a^{l}=c^{i t} b a^{s+l r}, \\
c^{3-i} b^{q-1} a^{-k\left(u^{q}-1\right)} & =c^{t(3-i)} b^{q-1} a^{s\left(u^{q-2}+\cdots+u+1\right)-k r u^{q-1}}, \\
c^{3-i} b^{q-1} a^{-l\left(u^{q}-1\right)} & =c^{t(3-i)} b^{q-1} a^{s\left(u^{q-2}+\cdots+u+1\right)-l r u^{q-1}} .
\end{aligned}
$$

This shows that $c^{i(1-t)}=a^{s+k r-l}$. Therefore, $\left.t \equiv 1 \bmod 3\right)$ and $\left.s+k r-l \equiv 0 \bmod p\right)$. On the other hand, $a^{s\left(u^{q-2}+\cdots+u+1\right)-k r u^{q-1}}=a^{-l\left(u^{q-1}\right)}$ and $a^{s\left(u^{q-2}+\cdots+u+1\right)-l r u^{q-1}}=a^{-k\left(u^{q-1}\right)}$. These congruences and above equalities imply that $r \equiv-1 \bmod p$) and $s \equiv k+l \bmod p$) which completes our proof.

By a similar argument as Proposition 3.3, one can prove the following result:

Proposition 3.4. Define

$$
\begin{aligned}
S & =\left\{c b^{j} a^{k}, c b^{j} a^{l},\left(c b^{j} a^{k}\right)^{-1},\left(c b^{j} a^{l}\right)^{-1}\right\}, \\
S^{\prime} & =\left\{b a^{l}, b a^{k},\left(b a^{l}\right)^{-1},\left(b a^{k}\right)^{-1}\right\},
\end{aligned}
$$

where $l \neq k$. Then Cay $\left(H_{3}, S\right)$ and Cay $\left(H_{4}, S^{\prime}\right)$ are normal $\frac{1}{2}$-arc-transitive. Moreover, Aut $\left(H_{3}, S\right)$ and $\operatorname{Aut}\left(H_{4}, S^{\prime}\right)$ are cyclic groups of order 2.

Acknowledgement

The authors would like to express their sincere gratitude to the referee for his/her useful comments. The research of the authors are partially supported by the University of Kashan under grant no 159020/303.

References

[1] A. R. Ashrafi and B. Soleimani, Normal edge-transitive and $\frac{1}{2}$-arc-transitive Cayley graphs on non-abelian groups of order $2 p q, p>q$ are primes, Int. J. Group Theory, î̀̇Ť5(2016), 1-8.
[2] N. Biggs, Algeraic Graph Theory, Cambridge University Press, Cambridge, 1974.
[3] M. R. Darafsheh and A. Assari, Normal edge-transitive Cayley graphs on non-abelian groups of order $4 p$, where p is a prime number, Sci. China Math., 56(2013), 213-219.
[4] X. G. Fang, C. H. Li and M. Y. Xu, On edge-transitive Cayley graphs of valency four, European J. Combin., 25 (2004), 1107-1116.
[5] M. Ghorbani and F. Nowroozi Laraki, Automorphism group of groups of order pqr, Alg. Str. Appl., 1 (2014), 49-56.
[6] C. D. Godsil, On the full automorphism group of a graph, Combinatorica, 1 (1981), 243-256.
[7] S. -T. Guo and Y.-Q. Feng, Tetravalent symmetric graphs of order 9p, J. Korean Math. Soc., 49(2012), 11111121.
[8] P. C. Houlis, Quotients of normal edge-transitive Cayley graphs, MSc Thesis, University of Western Australia, 1998.
[9] G. James and M. Liebeck, Representations and characters of groups, Second edition, Cambridge University Press, New York, 2001.
[10] C. H. Li, Z. P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory Ser. B, 96 (2006), 164-181.
[11] C. E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Aust. Math. Soc., 60 (1999), 207-220.
[12] C. Q. Wang, D. J. Wang and M. Y. Xu, On normal Cayley graphs of finite groups, Sci. China Ser. A, 28 (1998), 131-139.
[13] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., 182 (1998), 309-319.

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran.

E-mail: bijan_s59@yahoo.com
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran.

E-mail: ashrafi@kashanu.ac.ir

[^0]: Received March 16, 2016, accpted January 15, 2018.
 2010 Mathematics Subject Classification. 20D60, 05B25.
 Key words and phrases. Cayley graph, normal edge-transitive, normal arc-transitive.
 Corresponding author: Ali Reza Ashrafi.

