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LIAR’S DOMINATION IN GRAPHS UNDER SOME OPERATIONS

CARLITO B. BALANDRA AND SERGIO R. CANOY, JR.

Abstract. A set S ⊆ V (G) is a liar’s dominating set (ld s) of graph G if |NG [v]∩S| ≥ 2 for

every v ∈V (G) and |(NG [u]∪NG [v])∩S| ≥ 3 for any two distinct vertices u, v ∈V (G). The

liar’s domination number of G, denoted by γLR(G), is the smallest cardinality of a liar’s

dominating set of G. In this paper we study the concept of liar’s domination in the join,

corona, and lexicographic product of graphs.

1. Introduction

Let G = (V (G),E (G)) be a simple graph. The open neighborhood of v ∈ V (G) is the set

NG(v) = {x ∈V (G) : xv ∈ E (G)} and its closed neighborhood is NG [v ]= NG (v)∪{v}. If S ⊆V (G),

then the open neighborhood of S is the set NG (S)=∪v∈S NG (v) and the closed neighborhood

of S is the set NG [S]= S∪NG(S) of a graph G . A vertex z is an external private neighbor (epn) of

v ∈ S if z ∈V (G)\S and N (z)∩S = {v}. The set of all external private neighbors of v is denoted

by epnG(v ;S).

A set S ⊆ V (G) is a dominating set of G if for every v ∈ V (G) \ S, there exists u ∈ S such

that uv ∈ E (G), that is, NG [S] = V (G). It is a total dominating set of G if NG (S) = V (G). S is a

2-dominating set of G if for every v ∈V (G)\S, |NG (v)∩S| ≥ 2. A total dominating set S of G is a

double dominating set of G if it is also 2-dominating. The domination (resp. total domination,

2-domination, and double domination) number of G , denoted by γ(G) (resp. γt (G), γ2(G),

and γ×2(G)), is the smallest cardinality of a dominating (resp. total dominating, 2-dominating

, and double dominating) set of G . Any dominating (resp. total dominating, 2-dominating,

double dominating) set of G of cardinality γ(G) (resp. γt (G), γ2(G), and γ×2(G)) is referred to

as a γ-set (resp. γt -set, γ2-set, and γ×2-set) of G .
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A subset S of V (G) is called an almost dominating set of G if |V (G) \ N [S]| ≤ 1. The a-

domination number of G , denoted by γa (G), is the smallest cardinality of an almost dominat-

ing set of G . An almost dominating set of G with cardinality γa (G) is referred to as a γa-set of

G . Since every dominating set of G is an almost dominating set, it follows that γa(G) ≤ γ(G).

Moreover, if γa (G) < γ(G), then γa(G) = γ(G)−1. Domination in graphs as well as some of its

variations can be found in [1].

In 2009, P.J. Slater et al. in [3] and [4] introduced the concept of liar‘s dominating set in the

following way: Consider a network (modelled by a graph, say, G) where each vertex indicates

a location and an intruder might be present in any of the locations in the given network. In

some locations of the network are monitors or sensors which are responsible for reporting on

the presence and location of the possible intruders in their respective closed neighborhoods.

It is assumed that in any point of time at most one intruder can occur in the network. Further,

if S ⊆V (G) is the set of monitors (or the locations of the monitors), it is assumed that at most

one monitor x ∈ S fails to report the existence of the intruder in its closed neighborhood or

gives a wrong location y of the intruder when the intruder is at v , where y, v ∈ NG[x].

Slater defined a set S ⊆V (G) to be a liar’s dominating set of G if for any designated vertex

v ∈V (G) (the location of an intruder) all or all but one of the vertices in NG[v ]∩S report vertex

v , and at most one vertex w ∈ NG [v ]∩S reports a vertex y ∈ NG[w ] \ {v} or fails to report any

vertex, then the vertex v can be correctly identified as the designated vertex. Slater et al. in

[3] characterized this concept as follows: A subset S of V (G) is a liar’s dominating set of G

if and only if |NG [v ]∩ S| ≥ 2 for every v ∈ V (G) (that is, S is a double dominating set of G),

and |(NG [u]∪NG[v ])∩S| ≥ 3 for any two distinct vertices u, v ∈ V (G). The liar’s domination

number of G , denoted by γLR (G), is the smallest cardinality of a liar’s dominating set of G . Any

liar’s dominating set of G with cardinality γLR (G) is called a γLR -set of G . Liar’s domination

and its variants are also investigated by Nikodem in [2].

2. Liar’s domination in the join of graphs

The join of two graphs G and H is the graph G+H with vertex-set V (G+H )=V (G)∪V (H )

and edge-set E (G +H )= E (G)∪E (H )∪ {uv : u ∈V (G), v ∈V (H )}.

Theorem 2.1. Let G be a connected graph of order n ≥ 3 and K1 = 〈{v}〉. Then S ⊆V (K1 +G) is

a liar’s dominating set of K1 +G if and only if one of the following holds:

(i) S is a liar’s dominating set of G;

(ii) S = S1∪{v}, where S1 is a dominating set of G such that for each x ∈ S1, either |epnG(x;S1)|

= 0, or |epnG(x;S1)| = 1 and x ∈ NG(S1).
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Proof. Suppose that S is an l d s of K1 +G . If v ∉ S, then, clearly, S is an l d s of G . Thus (i )

holds. Suppose that v ∈ S. Then S = S1 ∪ {v}, where ∅ 6= S1 ⊆ V (G). Since S is a double

dominating set of K1 +G , it follows that S1 is a dominating set of G . Let x ∈ S1. Suppose that

|epnG(x;S1)| > 1. Then there exist y, z ∈ epnG(x;S1) such that y 6= z. Thus, |(NG [y]∪NG[z])∩

S1| = 1. Hence, |(NK1+G [y]∪NK1+G [z])∩S| = |{v}|+|(NG [y]∪NG[z])∩S1| = 2. This implies that

S is not an l d s of K1 +G , contrary to our assumption. Hence, |epnG(x;S1)| ≤ 1. Suppose now

that |epnG(x;S1)| = 1, say z ∈ epnG(x;S1). Since S is an l d s of G +K1, |(NK1+G [z]∪NK1+G [x])∩

S| = 1+|(NG [z]∪NG[x])∩S1| = 1+1+|NG (x)∩S1| ≥ 3. This implies that |NG (x)∩S1| ≥ 1, that

is, x ∈ NG (S1). This proves (ii).

For the converse, suppose first that (i) holds. Then, clearly, S is an l d s of K1 +G . Next,

suppose that (ii) holds. Then S = S1∪{v}, where S1 is a dominating set of G satisfying the given

conditions in (ii). Let x ∈ V (K1 +G). If x ∈ V (G) \ S1, then there exists y ∈ S1 ∩NG (x). Since

v ∈ NK1+G (x), it follows that |NG+K1
[x]∩S| = |{v}∪ (NG [x]∩S1)| ≥ 2. If x = v , then |NK1+G [x]∩

S| = |{x}∪S1| ≥ 2. If x ∈ S1, then |NK1+G [x]∩S| = |NG [x]∩S1| +1 ≥ 2. This shows that S is a

double dominating set of K1 +G .

Next, let x, y ∈V (K1 +G) such that x 6= y . Consider the following cases:

Case 1. x = v and y ∈ S1.

If epnG(y ;S1) = ∅, then |S1| ≥ 2. Hence, |NK1+G [x]∩S| = 1+ |S1| ≥ 3. This implies that

|(NK1+G [v ]∪NK1+G[y])∩S| ≥ 3. Suppose |epnG(y ;S1)| = 1. Then, by assumption, there exists

z ∈ S1 ∩NG (y). Hence, |(NK1+G[v ]∪NK1+G [y])∩S| ≥ 3.

Case 2. x = v and y ∈V (G) \ S1.

Since S1 is a dominating set of G , there exists w ∈ NG (y)∩ S1. If y ∉ epnG(w ;S1), then

there exists p ∈ S1 ∩NG(y) with p 6= w . Hence, |S1| ≥ 2 and |(NK1+G [v ]∪NK1+G [y])∩S| ≥ 3. If

y ∈ epnG(w ;S1), then w ∈ NG (S1). Hence, |S1| ≥ 2 and |(NK1+G [v ]∪NK1+G [y])∩S| ≥ 3.

Case 3. x, y ∈ S1.

Then x, y, v ∈ (NK1+G[x]∪NK1+G[y])∩S. Thus, |(NK1+G [x]∪NK1+G [y])∩S| ≥ 3.

Case 4. x, y ∈V (G) \ S1.

Since S1 is a dominating set of G , there exist z1, z2 ∈ S1 such that xz1, y z2 ∈ E (G). If z1 6= z2,

then |(NG+K1
[x]∪ NG+K1

[y])∩ S| ≥ 3 since v ∈ NK1+G (x)∩ NK1+G (y). Suppose z1 = z2. Since

|epnG(z1;S1)| ≤ 1, it follows that one of x and y , say x, is not in epn(z1;S1). Thus, |(NG+K1
[x]∪

NG+K1
[y])∩S| = 1+|(NG (x)∪NG (y))∩S1| ≥ 3. Therefore, S is an lds of G +K1.

Case 5. x ∈ S1 and y ∈V (G) \ S1

Since S1 is a dominating set of G , there exists z ∈ S1 ∩NG (y). If x 6= z, then |(NK1+G [x]∪

NK1+G [y])∩S| ≥ 3. If x=z, then, by the additional property of S1, |(NK1+G [x]∪NK1+G [y])∩S|≥3.
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Accordingly, S is an lds of K1 +G .

Throughout the remaining sections we let ΩG = {D : D is a dominating set of G such that

for each x ∈ D, either |epnG(x;D)| = 1 and x ∈ NG (D) or |epnG(x;D)| = 0}, and γ
⋆(G) = min

{|D| : D ∈ΩG }. Any set S ∈ΩG with γ
⋆(G) = |S| will be called a γ⋆-set of G .

Lemma 2.2. Let G be connected graph of order n ≥ 3. Then γ
⋆(G)+1 ≤γLR (G).

Proof. Let D be a γLR -set of G and let v ∈ D. Since D is a total dominating set of G , there exists

y ∈ D ∩ NG (v). Let D⋆ = D \ {y}. Since D is a 2-dominating set of G , it follows that D⋆ is a

dominating set of G . Let x ∈ D⋆ and suppose that |epnG(x;D⋆)| ≥ 2. Let p, q ∈ epnG(x;D⋆),

where p 6= q . If one of p and q is y , say p = y , then pq ∈ E (G) since D is a 2-dominating

set of G . Hence, |(NG [p]∪ NG[q])∩D| = 2. If p 6= y and q 6= y , then p y, q y ∈ E (G) since D

is a 2-dominating set of G . Again, this implies that |NG [p]∪ NG(q))∩D| = 2. Thus, in both

cases, we find that D is not a liar’s dominating set of G , contrary to our assumption. Therefore

|epnG(x;D⋆)| ≤ 1 for each x ∈ D⋆.

Next, let x ∈ D⋆ with |epnG(x;D⋆)| = 1, say {z} = epnG(x;D⋆). Suppose further that

x ∉ NG (D⋆). Then y is the only neighbor of x in D. Hence, (NG [z]∪NG[x])∩D = {x, y}, con-

tradicting the assumption that D is an lds. Hence, x ∈ NG (D⋆). Since x was arbitrarily chosen,

it follows that D⋆ ∈ΩG . Consequently, γ⋆(G) ≤ |D⋆| = γLR (G)−1.

The next result is a direct consequence of Theorem 2.1 and Lemma 2.2.

Corollary 2.3. Let G be connected graph of order n ≥ 3. Then

γLR (K1 +G) = γ
⋆(G)+1.

Example 2.4. Consider the graphs K1 +G and K1 +K4 in Figure 1.

Figure 1: The graphs K1 +G and K1 +K4

.
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Clearly, 1+γ⋆(G) = 1+2 = 3 < 4 = γLR (G). Hence, γLR (K1 +G) = 3 = 1+γ⋆(G). Also, it can

easily be verified that γLR (K1 +K4) = 1+γ⋆(K4) = 1+2 = 3 =γLR (K4).

Theorem 2.5. Let G and H be non-trivial connected graphs. Then S ⊆ V (G + H ) is a liar’s

dominating set of G +H if and only if one of the following holds:

(i) S is a liar’s dominating set of G.

(ii) S is a liar’s dominating set of H.

(iii) |S ∩V (G)| ≥ 3 and |S ∩V (H )| ≥ 3.

(iv) S = S1 ∪S2, where S1 ⊆V (G) and S2 ⊆V (H ) and satisfy the following:

(a) S1 is a dominating set of G such that |S1| ≥ 2 and S1 ∈ΩG , and

(b) |S2| = 1, where S2 is an almost dominating set of H whenever |S1| = 2.

(v) S = S1 ∪S2, where S1 ⊆V (G) and S2 ⊆V (H ) and satisfy the following:

(a) S2 is a dominating set of H such that |S2| ≥ 2 and S2 ∈ΩH , and

(b) |S1| = 1, where S1 is an almost dominating set of G whenever |S2| = 2.

(vi) S = S1 ∪S2, where S1 ⊆V (G) and S2 ⊆V (H ) and satisfy the following:

(a) |S1| = 2 and S1 is an almost dominating set of G, and

(b) |S2| = 2 and S2 is an almost dominating set of H.

(vii) S = S1 ∪ S2, where S1 ⊆ V (G) and |S1| = 2 and S2 ⊆ V (H ), |S2| ≥ 3 and S2 is an almost

dominating set of H.

(viii) S = S1 ∪ S2, where S2 ⊆ V (H ) and |S2| = 2 and S1 ⊆ V (G), |S1| ≥ 3 and S1 is an almost

dominating set of G.

Proof. Suppose that S is an l d s of G +H . If S ∩V (H ) =∅ or S ∩V (G) =∅, then S is an lds of

G or H . Thus, (i) or (ii) holds. Now, suppose that S1 = S ∩V (G) 6=∅ and S2 = S ∩V (H ) 6=∅. If

|S1| ≥ 3 and |S2| ≥ 3, then (iii) holds. Consider the following cases:

Case 1. |S1| ≥ 2 and |S2| = 1 or |S1| = 1 and |S2| ≥ 2.

Suppose that |S1| ≥ 2 and |S2| = 1. Since S is a double dominating set of G +H , it follows

that S1 is a dominating set of G . Let x ∈ S1. Suppose further that |epnG(x;S1)| ≥ 2, say y, z ∈

epnG(x;S1), where y 6= z. Then NG+H [y] ∩ S = NG+H [z] ∩ S = {x}∪ S2. This implies that S

is not a liar’s dominating set of G + H , contrary to our assumption. Thus, |epnG(x;S1)| ≤ 1.

Suppose now that |epnG(x;S1)| = 1, say z ∈ epnG(x;S1). Since S is an l d s of G+H , |(NG+H [z]∪

NG+H [x])∩S| = 1+|(NG [z]∪NG[x])∩S1| = 1+1+|NG (x)∩S1| ≥ 3. This implies that |NG (x)∩S1| ≥

1, that is, x ∈ NG (S1). Hence, S1 ∈ ΩG . Next, suppose that |S1| = 2 and suppose further that

|V (H ) \ NH [S2]| ≥ 2. Let a,b ∈ V (H ) \ NH [S2] with a 6= b. Then |(NG+H [a]∪NG+H [b])∩S| =
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|S1| = 2, contrary to the assumption that S is an l d s of G+H . Thus, S2 is an almost dominating

set of H . This shows that (iv) holds. Similarly, (v) holds if |S1| = 1 and |S2| ≥ 2.

Case 2. |S1| = 2 and |S2| = 2.

Suppose that |V (G) \ N [S1]| ≥ 2. Then there exist x, y ∈ V (G) such that x, y ∉ N [S1]. This

implies that |(NG+H [x]∪ NG+H [y])∩ S| = 2. Thus, S is not a liar’s dominating set of G + H ,

contrary to our assumption. Hence, |V (G) \ N [S1]| ≤ 1. Similarly, |V (H ) \ N [S2]| ≤ 1. Thus, (vi)

holds.

Case 3. |S1| = 2 and |S2| ≥ 3 or |S1| ≥ 3 and |S2| = 2.

Suppose that |S1| = 2 and |S2| ≥ 3. Suppose further that |V (H ) \ N [S2]| ≥ 2, say x, y ∈

V (H ) \ N [S2], where x 6= y . Then, |(NG+H [x]∪NG+H [y])∩S| = |S1| = 2. This implies that S is

not a liar’s dominating set of G+H , contrary to our assumption. Thus, |V (H )\N [S2]| ≤ 1. This

shows that (vii) holds. Similarly, (viii) holds if |S1| ≥ 3 and |S1| = 2.

The converse is clear.

It is immediate from Theorem 2.5 that 3 ≤ γLR (G +H ) ≤ 6 for any non-trivial connected

graphs G and H . The next results are also consequences of Theorem 2.5.

Corollary 2.6. Let G and H be non-trivial connected graphs. Then γLR (G +H ) = 3 if and only

if at least one of the following holds:

(i) γLR (G) = 3;

(ii) γLR (H )= 3;

(iii) γa(H )= 1 and γ
⋆(G) ≤ 2; or

(iv) γa(G) = 1 and γ
⋆(H )≤ 2.

Corollary 2.7. Let G and H be non-trivial connected graphs such that γLR (G + H ) 6= 3. Then

γLR (G +H ) = 4 if and only if at least one of the following holds:

(i) γLR (G) = 4;

(ii) γLR (H )= 4;

(iii) γa(G) ≤ 2 and γa (H )≤ 2;

(iv) γ
⋆(H )= 3; or

(v) γ
⋆(G) = 3.

Corollary 2.8. Let G and H be non-trivial connected graphs such that γLR (G + H ) > 4. Then

γpLR (G +H ) = 5 if and only if at least one of the following holds:

(i) γLR (G) = 5;
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(ii) γLR (H ) = 5;

(iii) γa(H ) = 3;

(iv) γa(G) = 3;

(v) γ
⋆(G) = 4; or

(vi) γ
⋆(H )= 4.

3. Liar’s domination in the corona of graphs

The corona G ◦ H of two graphs G and H is the graph obtained by taking one copy of G

and |V (G)| copies of H , and then forming the join 〈{v}〉+H v = v +H v , where H v is a copy of

H , for each v ∈V (G).

Theorem 3.1. Let G be any graph and H be any non-trivial graph. Then C ⊆V (G ◦H ) is a liar’s

dominating set of G ◦H if and only if C = A∪ (∪v∈ASv )∪
(

∪u∉ADu

)

, where A ⊆V (G), Sv ∈ΩH v

for each v ∈ A, and Du is a liar’s dominating set of H u for each u ∉ A.

Proof. Suppose that C is an l d s of G ◦ H . Because H is a non-trivial graph, C ∩V (v + H v ) is

a liar’s dominating set of v + H v for each v ∈ V (G). Now let A = C ∩V (G). Let v ∈ A and set

Sv = C ∩V (H v ). By Theorem 2.1(ii), Sv ∈ ΩH v . Next, let u ∉ A and set Du = C ∩V (H u). By

Theorem 2.1(i), Du is a liar’s dominating set of H u .

For the converse, suppose that C has the given form and the given properties. Let z ∈

V (G ◦ H ) and let w ∈ V (G) such that z ∈V (w +H w ). If w ∈ A, then Ew = Sw ∪ {w } is an l d s of

w+H w by assumption and Theorem 2.1. Hence, |NG◦H [z]∩C | ≥ |Nw+H w [z]∩Ew | ≥ 2. If w ∉ A,

then Ew = Dw is an lds of w + H w by assumption and Theorem 2.1. Hence, |NG◦H [z]∩C | ≥

|Nw+H w [z]∩Dw | ≥ 2. Therefore, C is a double dominating set of G ◦H .

Next, let a,b ∈ V (G ◦ H ) such that a 6= b. Let u, v ∈ V (G) such that a ∈ V (u + H u) and

b ∈ V (v + H v ). If u = v , then |(NG◦H [a]∪ NG◦H [b])∩C | ≥ |(Nu+Hu [a]∪ Nu+Hu [b])∩Eu| ≥ 3

since Eu is an lds of u +H u , where Eu = Su ∪ {u} if u ∈ A and Eu = Du if u ∉ A. If u 6= v , then

|(NG◦H [a]∪NG◦H [b])∩C | ≥ |Nu+Hu [a]∪Eu|+ |Nv+H v [b]∩Ev | ≥ 2+2 = 4 since Eu and Ev are

double dominating sets of u + H u and v + H v , respectively, where Eu = Su ∪ {u} if u ∈ A and

Eu = Du if u ∉ A, and Ev = Sv ∪ {v} if v ∈ A and Ev = Dv if v ∉ A. Therefore, C is an l d s of

G ◦H .

Corollary 3.2. Let G be any graph and H be any non-trivial graph. Then

γLR (G ◦H ) = |V (G)|(γ⋆(H )+1).

Proof. Let S be a γ⋆-set of H . For each v ∈V (G), let Sv ⊆V (H v ) such that 〈Sv〉
∼= 〈S〉. By Theo-

rem 3.1, C =V (G)∪(∪v∈V (G)Sv ) is an lds of G ◦H . Hence, γLR (G ◦H ) ≤ |C | = |V (G)|(γ⋆(H )+1).
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Next, suppose that C ′ is a γLR -set of G ◦ H . Then C ′ = A ∪ (∪v∈ASv )∪
(

∪u∉ADu

)

, where

A ⊆V (G) and the sets Sv ’s and Du ’s satisfy the properties given in Theorem 3.1. Thus, γLR (G ◦

H ) = |C ′| = |A|+
∑

v∈A |Sv |+
∑

v∉A |Du | ≥ |A|+ |A|γ⋆(H )+ (|V (G)|− |A|)γLR (H ). By Lemma 2.2,

it follows that γLR (G ◦H ) ≥ |V (G)|(γ⋆(H )+1). This proves the desired equality.

4. Liar’s domination in the lexicographic product of graphs

The lexicographic product of two graphs G and H is the graph G[H ] with vertex-

set V (G[H ]) = V (G)×V (H ) and edge-set E (G[H ]) satisfying the following conditions:

(u1,u2)(v1, v2) ∈ E (G[H ]) if and only if either u1v1 ∈ E (G) or u1 = v1 and u2v2 ∈ E (H ).

Observe that a non-empty subset C of V (G[H ]) = V (G) ×V (H ) can be written as C =
⋃

x∈S

({x}×Tx ), where S ⊆ V (G) and Tx ⊆ V (H ) for every x ∈ S. Henceforth, we shall use this

form to denote any non-empty subset C of V (G[H ]).

Theorem 4.1. Let G and H be connected graphs of orders n ≥ 2 and m ≥ 3, respectively. A non-

empty subset C =
⋃

x∈S({x}×Tx ) of V (G[H ]), where S ⊆V (G) and ∅ 6=Tx ⊆V (H ) for each x ∈ S,

is a liar’s dominating set of G[H ] if and only if S is a dominating set of G and satisfies each of

the following:

(i) Tx is a liar’s dominating set of H for each x ∈ S \ NG(S);

(ii) for each x ∈ S ∩NG(S) such that NG (x)∩S = {y}, one of the following holds:

(a) |Ty | ≥ 3;

(b) Tx is an almost dominating set and |Ty | = 2;

(c) |Ty | = 1 and Tx is a dominating set such that Tx ∈ΩH ;

(iii) Tx is an almost dominating set of H for each x ∈ S ∩NG(S) such that |NG (x)∩S| = 2 and

|Ty | = |Tz | = 1, where NG (x)∩S = {y, z}; and

(iv) for each x ∈V (G) \ S,

(a) |Ty | ≥ 3 whenever NG (x)∩S = {y}; and

(b) |Ty | ≥ 2 or |Tz | ≥ 2 whenever NG(x)∩S = {y, z}.

Proof. Suppose that C is an lds of G[H ]. Since C is a (double) dominating set of G[H ], it

follows that S is a dominating set of G .

Let x ∈ S \ NG (S) and let q ∈ V (H ). Since C is a double dominating set of G[H ], there

exist distinct (z,c), (w, p) ∈C ∩NG[H][(x, q)]. Since x ∉ NG (S), it follows that z = w = x. Thus,

c , p ∈ Tx ∩NH [q]. Since (z,c) and (w, p) are distinct, c 6= p . Thus, |NH [q]∩Tx | ≥ 2. Next, let

q,r ∈ V (H ) such that q 6= r . Then (x, q) 6= (x,r ). Since C is an lds of G[H ] and x ∉ NG(S), it
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follows that |(NG[H][(x, q)]∪NG[H][(x,r )])∩C | = |(NH [q]∪NH [r ])∩Tx | ≥ 3. Therefore, Tx is a

liar’s dominating set of H and shows that (i) holds.

Let x ∈ S ∩NG(S) with |NG (x)∩S| = 1, say NG (x)∩S = {y}. Suppose that |Ty | ≤ 2. First,

suppose that |Ty | = 2 and suppose further that Tx is not an almost dominating set of H . Then

there exist two distinct vertices a,b ∈V (H ) \ Tx such that a,b ∉ NH (Tx ). Thus, |(NG[H](x, a)∪

NG[H]((x,b)))∩C | = |{y}×Ty | = |Ty | = 2, contrary to our assumption that C is an l d s of G[H ].

Hence, Tx is an almost dominating set of H , showing that (b) holds.

Next, suppose that |Ty | = 1. Since C is a double dominating set of G[H ], Tx is a domi-

nating set of H . Let a ∈ Tx and suppose that |epnH (a;Tx | ≥ 2, say l ,m ∈ epnH (a;Tx ) (l 6= m).

Then (x, l ), (x,m) ∉ C and |(NG[H]((x, l ))∪ NG[H]((x,m)))∩C | = |{(x, a)}| + |Ty | = 2, contrary

to our assumption that C is an l d s of G[H ]. Thus, |epnH (a;Tx )| ≤ 1. Suppose now that

|epnH (a;Tx )| = 1, say d ∈ epnH (a;Tx ). Since C is an l d s of G[H ], |(NG[H][(x,d )]∪NG[H][(x, a)])

∩C | = 1+|Ty |+|NH (a)∩Tx | ≥ 3. This implies that |NH (a)∩Tx | ≥ 1, that is, a ∈ NH (Tx ), showing

that Tx ∈ΩH . Therefore, (ii) holds.

Let x ∈ S ∩ NG(S) with NG (x)∩ S = {y, z} and |Ty | = |Tz | = 1. Let Ty = {r } and Tx = {s}.

Suppose that |V (H )\ N [Tx]| ≥ 2. Then there exist p, q ∈V (H )\Tx such that NG[H]((x, p))∩C =

{(y,r ), (z, s)} = NG[H]((x, q)) ∩C . This means that C is not an l d s of G[H ], contrary to our

assumption. Thus, Tx is an almost dominating set of H . This shows that (iii) holds.

Finally, let x ∈ V (G) \ S with |NG (x)∩S| = 1, say NG(x)∩S = {y}. Let a,b ∈ V (H ), where

a 6= b. Then (x, a), (x,b) ∉C . Since C is liar’s dominating set of G[H ], there exist at least three

distinct vertices (v,b), (w,c), (z,d ) ∈ C ∩ (NG[H]((x, a))∪ NG[H]((x,b))). This implies that v =

w = z = y , and b,c ,d ∈ Ty . Hence, |Ty | ≥ 3, showing that (a) holds. Suppose now that NG (x)∩

S = {y, z}. Let r, s ∈V (H ), where r 6= s. Then (x,r ), (x, s) ∉C . Since C is an lds of G[H ], it follows

that |(NG[H][(x,r )]∪NG[H][(x, s)])∩C | = |{y}×Ty |+ |{z}×Tz | = |Ty |+ |Tz | ≥ 3. Hence, |Ty | ≥ 2

or |Tz | ≥ 2. This shows that (iv) holds.

For the converse, suppose that S is a dominating set of G and satisfies properties (i), (ii),

(iii) and (iv). Let (x, a) ∈V (G[H ]) and consider the following cases:

Case 1. x ∉ S

Since S is a dominating set of G , it follows that |NG(x)∩S| ≥ 1. Clearly, |NG[H][(x, a)]∩C | ≥

2 if |NG (x)∩ S| ≥ 2. So suppose that |NG (x)∩ S| = 1, say NG(x)∩ S = {y}. Then, by (iv)(a),

|NG[H][(x, a)]∩C | = |Ty | ≥ 3.

Case 2. x ∈ S

If x ∈ S \ NG(S), then Tx is an l d s of H by (i ). Hence, |NG[H][(x, a)]∩C | = |NH [a]∩Tx | ≥ 2.

Suppose that x ∈ S ∩NG(S). Suppose first that |NG (x)∩S| = 1. Then by (a), (b), and (c) of (i i ),
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we have |NG[H][(x, a)]∩C | ≥ 2. Suppose that |NG (x)∩S| = 2. Then |NG[H][(x, a)]∩C | ≥ 2 by

(i i i ).

Therefore, C is a double dominating set of G[H ].

Next, let (x, a), (v,b)∈V (G[H ]), where (x, a) 6= (v,b). If x 6= v , then, by (i), (ii), (iii), and (iv),

it can be easily shown that |(NG[H][(x, a)]∪NG[H][(v,b)])∩C | ≥ 3. Suppose that x = v . Then

a 6= b. Consider the following cases:

Case 1. x ∉ S

Then, by (iv), |(NG[H][(x, a)]∪NG[H][(v,b)])∩C | ≥ 3.

Case 2. x ∈ S

Sub-case 1. x ∉ NG (S)

Then, by (i), Tx is a liar’s dominating set of H . Hence, |(NG[H][(x, a)]∪NG[H][(v,b)])∩C | =

|(NH [a]∪NH [b])∩Tx)| ≥ 3.

Sub-case 2. x ∈ NG (S)

Then, by (ii) and (iii), |(NG[H][(x, a)]∪NG[H][(v,b)])∩C | ≥ 3.

Accordingly, C is a liar’s dominating set of G[H ].

Corollary 4.2. Let G and H be connected graphs of orders n ≥ 2 and m ≥ 3, respectively. Then

γLR (G[H ])≤min{γ(G)γLR (H ),3γt (G)}.

Proof. Let S1 and S2 be γ-set and γt -set of G , respectively, and let D be a γLR -set of H . By

Theorem 4.1, C1 =∪x∈S1
[{x}×Tx ] and C2 =∪y∈S2

[{y}×Ey ], where Tx = D for each x ∈ S1 and

Ey = {a,b,c} ⊆ V (H ) for each y ∈ S2, are l d s of G[H ]. Thus, γLR (G[H ]) ≤ min{|C1|, |C2|} =

mi n{γ(G)γLR (H ),3γt (G)}.

Remark 4.3. Both the upper bound and the strict inequality in Corollary 4.2 can be attained.

To see this, consider P3[P3], P4[P7] in Figure 2, and G[C3] in Figure 3.

It can be verified that γLR (P3[P3]) = 3 = γ(P3)γLR (P3) < 6 = 3γt (P3), γLR (P4[P7]) = 6 = 3γt (P4)

< 12 = γ(P4)γLR (P7), and γLR (G[C3])= 4 < 6 = mi n{γ(G)γLR (C3),3γt (G)}.
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Figure 2: The graphs P3[P3] and P4[P7].

Figure 3: The graphs G ,C3, and G[C3].
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