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STURM-LIOUVILLE DIFFERENTIAL OPERATORS

WITH DEVIATING ARGUMENT

S. A. BUTERIN, M. PIKULA AND V. A. YURKO

Abstract. Non-selfadjoint second-order differential operators with a constant delay are
studied. We establish properties of the spectral characteristics and investigate the in-
verse problem of recovering operators from their spectra. For this inverse problem the
uniqueness theorem is proved.

1. Introduction

We study an inverse spectral problem for non-selfadjoint Sturm-Liouville differential op-

erators on a finite interval with a constant delay and with complex-valued potentials. In-

verse spectral problems consist in recovering operators from their spectral characteristics.

The greatest success in the inverse spectral theory has been achieved for the classical Sturm–

Liouville operator (see the monographs [1–5] and the references therein) and afterwards for

higher-order differential operators and other classes of differential operators and systems

[4]−[7]. The classical methods of inverse spectral theory (transformation operator method

[1]−[4] and method of spectral mappings [3]−[6]), which allow obtaining global solutions

of inverse problems for differential operators, are not applicable for differential operators

with deviating argument as well as for other classes of nonlocal operators such as integro-

differential, integral and other operators. Therefore, the general inverse spectral theory for

nonlocal operators has not yet been constructed and there are only isolated results in this

direction not forming the general picture [8]−[21].

In the present paper we consider the boundary value problems L j = L j (q,h), j = 0,1, of

the form

−y ′′(x)+q(x)y(x −a) = λy(x), x ∈ (0,π), (1)

y ′(0)−h y(0) = y ( j )(π) = 0, (2)
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where λ is the spectral parameter, a ∈ (0,π), h is a complex number, q(x) is a complex-valued

function, q(x)∈ L(a,π), and q(x)= 0 for x ∈ [0, a].

The following inverse problem is studied: given the spectra of the problems L j , j = 0,1,

find the potential q(x) and the coefficient h. Differential equations with delay arise in various

problems of mathematics as well as in applications (see the monographs [22]−[25] and the

references therein). Some results on the spectral theory of differential operators with delay

can be found in [10, 18, 24, 26] and other works. The presence of delay in a mathematical

model produces serious qualitative changes in the study of spectral problems. Therefore, up

to now there are no comprehensive results in the inverse problem theory for operators with

delay.

In the next section we study spectral properties of the boundary value problems (1)−(2),

in particular, properties of the characteristic functions and the eigenvalues of L j . In Section 3

we consider the inverse spectral problem of recovering the potential q(x) and the coefficient

h from the given two spectra of the boundary value problems L0 and L1. We provide a unique-

ness result for this inverse problem. More precisely, we prove that if the eigenvalues of L j (q,h)

are the same as for the zero potential, then q can be only zero.

2. Characteristic functions and spectra

Let N ∈N be such that aN <π≤ a(N +1), i.e. a ∈ [π/(N +1),π/N ). Let C (x,λ), S(x,λ) and

ϕ(x,λ) be solutions of Eq. (1) under the initial conditions

C (0,λ) = S ′(0,λ) =ϕ(0,λ) = 1, S(0,λ)=C ′(0,λ) = 0, ϕ′(0,λ) = h.

For each fixed x, and ν= 0,1 the functions C (ν)(x,λ), S(ν)(x,λ) and ϕ(ν)(x,λ) are entire in λ of

order 1/2, and

ϕ(x,λ) =C (x,λ)+hS(x,λ). (3)

Let λ= ρ2 and ρ =σ+ iτ, i.e. σ=Re ρ, τ= Imρ.

Lemma 1. The following representations hold

ϕ(x,λ) = ϕ0(x,λ)+ϕ1(x,λ)+ . . .+ϕN (x,λ), S(x,λ)= S0(x,λ)+S1(x,λ)+ . . .+SN (x,λ), (4)

where

ϕ0(x,λ) = cosρx +h
sinρx

ρ
, S0(x,λ) =

sinρx

ρ
, x ≥ 0,

ϕk (x,λ) =
∫x

ka

sinρ(x − t )

ρ
q(t )ϕk−1(t −a,λ)d t ,

Sk (x,λ) =
∫x

ka

sinρ(x − t )

ρ
q(t )Sk−1(t −a,λ)d t ,















(5)
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for x ≥ k a, and ϕk (x,λ) = Sk (x,λ) = 0 for x ≤ k a. Moreover, for |ρ| →∞, ν= 0,1, uniformly in

x the following estimates hold:

ϕ(ν)
k

(x,λ) =O(ρν−k exp(|τ|(x −k a))), S(ν)
k

(x,λ) =O(ρν−k−1 exp(|τ|(x −k a))). (6)

Proof. The functions ϕ(x,λ) and S(x,λ) are the solutions of the integral equations

ϕ(x,λ) = cosρx +h
sinρx

ρ
+

∫x

0

sinρ(x − t )

ρ
q(t )ϕ(t −a,λ)d t ,

S(x,λ)=
sinρx

ρ
+

∫x

0

sinρ(x − t )

ρ
q(t )S(t −a,λ)d t .



















(7)

Solving integral equations (7) by the method of successive approximations we arrive at (4),

where the functions ϕk (x,λ) and Sk (x,λ), k = 1, N , are defined by (5). Moreover, it follows

from (5) that

ϕ′
k

(x,λ) =
∫x

ka
cosρ(x − t )q(t )ϕk−1(t −a,λ)d t ,

S ′
k

(x,λ) =
∫x

ka
cosρ(x − t )q(t )Sk−1(t −a,λ)d t ,



















(8)

for x ≥ k a. Clearly, ϕ(ν)
0 (x,λ) = O(ρνexp(|τ|x)), S(ν)

0 (x,λ) = O(ρν−1 exp(|τ|x)). Using (5) and

(8), we arrive at (6) by induction. ���

Corollary 1. The following representation holds

C (x,λ) = C0(x,λ)+C1(x,λ)+ . . .+CN (x,λ), (9)

C0(x,λ) = cosρx, x ≥ 0,

Ck (x,λ) =
∫x

ka

sinρ(x − t )

ρ
q(t )Ck−1(t −a,λ)d t , (10)

for x ≥ k a, and Ck (x,λ) = 0 for x ≤ k a. Moreover, for |ρ| → ∞, ν = 0,1, uniformly in x the

following estimate holds:

C (ν)
k

(x,λ) =O(ρν−k exp(|τ|(x −k a))). (11)

Relations (9), (10) and (11) follow from (4), (5) and (6), respectively, with h = 0.

Remark 1. The functions C1(x,λ),S1(x,λ) and ϕ1(x,λ) depend linearly on the potential q. In
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particular, taking (5) and (10) into account, we calculate for x ≥ a:

C1(x,λ) =
sinρ(x −a)

2ρ

∫x

a
q(t )d t +

1

2ρ

∫x

a
q(t )sinρ(x −2t +a)d t ,

C ′
1(x,λ) =

cosρ(x −a)

2

∫x

a
q(t )d t +

1

2

∫x

a
q(t )cosρ(x −2t +a)d t ,

S1(x,λ) = −
cosρ(x −a)

2ρ2

∫x

a
q(t )d t +

1

2ρ2

∫x

a
q(t )cosρ(2t −x −a)d t ,

S ′
1(x,λ) =

sinρ(x −a)

2ρ

∫x

a
q(t )d t +

1

2ρ

∫x

a
q(t )sinρ(2t −x −a)d t .































































(12)

Denote ∆ j (λ) := ϕ( j )(π,λ), j = 0,1. The functions ∆ j (λ) are entire in λ of order 1/2. The

zeros of ∆ j (λ) coincide with the eigenvalues of the boundary value problems L j (q,h) (count-

ing with multiplicities). The function ∆ j (λ) is called the characteristic function for L j (q,h).

Lemma 2. For |ρ|→∞ the following asymptotical formulae are valid:

∆0(λ) = cosρπ+h
sinρπ

ρ
+

sinρ(π−a)

2ρ

∫π

a
q(t )d t +o

( 1

ρ
exp(|τ|(π−a))

)

, (13)

∆1(λ) = −ρ sinρπ+h cosρπ+
cosρ(π−a)

2

∫π

a
q(t )d t +o

(

exp(|τ|(π−a))
)

. (14)

Proof. Using (9), (11) and (12), we obtain

C (π,λ) = cosρπ+
sinρ(π−a)

2ρ

∫π

a
q(t )d t +

1

2ρ

∫π

a
q(t )sinρ(π−2t +a)d t

+O(ρ−2 exp(|τ|(π−2a))).

Since
∫π

a
q(t )sinρ(π−2t +a)d t =

1

2

∫(π−a)

−(π−a)
q((π+a −ξ)/2)sinρξdξ= o(exp(|τ|(π−a))),

it follows that

C (π,λ) = cosρπ+
sinρ(π−a)

2ρ

∫π

a
q(t )d t +o(|ρ|−1 exp(|τ|(π−a))). (15)

Analogously we calculate

C ′(π,λ) = −ρ sinρπ+
cosρ(π−a)

2

∫π

a
q(t )d t +o(exp(|τ|(π−a))),

S(π,λ) =
sinρπ

ρ
−

cosρ(π−a)

2ρ2

∫π

a
q(t )d t +o(|ρ|−2 exp(|τ|(π−a))),

S ′(π,λ) = cosρπ+
sinρ(π−a)

2ρ

∫π

a
q(t )d t +o(|ρ|−1 exp(|τ|(π−a))).











































(16)
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By virtue of (3), one has

∆ j (λ) =C ( j )(π,λ)+hS( j )(π,λ), j = 0,1. (17)

Substituting (15)−(16) into (17), we arrive at (13)−(14). ���

Lemma 3. The boundary value problem L j has a countable set of eigenvalues {λn j }n≥0, j = 0,1

(counting with multiplicities) and for n →∞ :

ρn0 :=
√

λn0 =

(

n +
1

2

)

+
h

πn
+

cos(n +1/2)a

2πn

∫π

a
q(t )d t +o

( 1

n

)

, (18)

ρn1 :=
√

λn1 = n +
h

πn
+

cos na

2πn

∫π

a
q(t )d t +o

( 1

n

)

. (19)

Proof. It follows from (14) that

∆1(λ) =−ρ sinρπ+ g (λ), |g (λ)| ≤C exp(|τ|π). (20)

Here and below, the symbol ”C” denotes various positive constants in estimates. Fix δ > 0.

Denote Gδ := {ρ : |ρ−k | ≥ δ, k ∈Z}. Since |sinρπ| ≥C exp(|τ|π) for ρ ∈Gδ, it follows from (20)

that

|ρ sinρπ| > |g (λ)|, ρ ∈Gδ, |ρ| ≥ ρ∗, (21)

for sufficiently large ρ∗. Let Γn := {λ : |λ| = (n +1/2)2}. Using (20), (21) and Rouché’s theorem

[27, p.125], we conclude that the number of zeros of ∆1(λ) inside Γn is equal to n +1. Thus, in

the circle |λ| < (n +1/2)2 there exist exactly n +1 eigenvalues of the boundary value problem

L1: λ01, . . . ,λn1. Applying now Rouche’s theorem to the circle γn(δ) := {ρ : |ρ −n| ≤ δ}, we

conclude that for sufficiently large n, in γn there is exactly one zero of ∆(ρ2), namely ρn1 =
√

λn1. Since δ> 0 is arbitrary, it follows that

ρn1 =n +εn , εn = o(1), n →∞. (22)

Since ∆1(ρ2
n1) = 0, it follows from (14) and (22) that

ρn1 sinρn1π=h cosρn1π+
cosρn1(π−a)

2

∫π

a
q(t )d t +o(1), n →∞,

and, consequently,

n sinεnπ=h +
cos na

2

∫π

a
q(t )d t +o(1), n →∞.

This yields

εn =
h

πn
+

cos na

2πn

∫π

a
q(t )d t +o

( 1

n

)

, n →∞,

and we arrive at (19). Relation (18) can be obtained by similar arguments. ���
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Lemma 4. The specification of the spectrum {λn j }n≥0 uniquely determines the characteristic

function ∆ j (λ) by the formulae

∆0(λ) =
∞
∏

n=0

λn0 −λ

(n +1/2)2
, ∆1(λ) =π(λ01 −λ)

∞
∏

n=1

λn1 −λ

n2
. (23)

Proof. By Hadamard‘s factorization theorem [27, p.289], ∆1(λ) is uniquely determined up to

a multiplicative constant by its zeros:

∆1(λ) =C
∞
∏

n=0

(

1−
λ

λn1

)

(24)

(the case when ∆1(0) = 0 requires minor modifications). Consider the function

∆̃1(λ) =−ρ sinρπ=−λπ
∞
∏

n=1

(

1−
λ

n2

)

.

Then
∆1(λ)

∆̃1(λ)
=

C (λ−λ01)

λ01πλ

∞
∏

n=1

n2

λn1

∞
∏

n=1

(

1+
λn1 −n2

n2 −λ

)

.

Taking (14) and (19) into account we calculate

lim
λ→−∞

∆1(λ)

∆̃1(λ)
= 1, lim

λ→−∞

∞
∏

n=1

(

1+
λn1 −n2

n2 −λ

)

= 1,

and hence

C =πλ01

∞
∏

n=1

λn1

n2
.

Substituting this into (24) we arrive at (23) for ∆1(λ). For the function ∆0(λ), the arguments

are similar. �

Denote

L(ρ) :=∆1(λ)+ iρ∆0(λ). (25)

The function L(ρ) is entire in ρ of exponential type, and L(ρ) is the characteristic function

for the Redge-type boundary value problem for Eq. (1) with the boundary conditions y ′(0)−

h y(0)= y ′(π)+ iρy(π)= 0. Clearly,

L(ρ) = L0(ρ)+L1(ρ)+ . . .+LN (ρ), Lk (ρ)=ϕ′
k (π,ρ)+ iρϕk (π,ρ). (26)

In particular,

L0(ρ)= (−ρ sinρπ+h cosρπ)+ (iρ cosρπ+ i h sinρπ),

and consequently,

L0(ρ)= (iρ+h)exp(iρπ).
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Let us calculate L1(ρ). For this purpose we use (5), (10), (12) and (26):

L1(ρ) = (C ′
1(π,λ)+hS ′

1(π,λ))+ iρ(C1(π,λ)+hS1(π,λ))

=
cosρ(π−a)

2

∫π

a
q(t )d t +

1

2

∫π

a
q(t )cosρ(π−2t +a)d t

+
h sinρ(π−a)

2ρ

∫π

a
q(t )d t +

h

2ρ

∫π

a
q(t )sinρ(2t −π−a)d t

+
i sinρ(π−a)

2

∫π

a
q(t )d t +

i

2

∫π

a
q(t )sinρ(π−2t +a)d t

−
i h cosρ(π−a)

2ρ

∫π

a
q(t )d t +

i h

2ρ

∫π

a
q(t )cosρ(2t −π−a)d t .

Therefore,

L1(ρ) =
(1

2
+

h

2iρ

)

exp(iρ(π−a))
∫π

a
q(t )d t

+

(1

2
−

h

2iρ

)

exp(iρ(π+a))
∫π

a
q(t )exp(−2iρt )d t . (27)

Lemma 5. For τ≥ 0, |ρ|→∞, k ≥ 1, the following estimate holds

Lk (ρ) =O
( 1

ρk−1

∫π

ka
|q(t )exp(−iρ(2t −π−k a))|d t

)

. (28)

Proof. Using (26), (5) and (8), we calculate

Lk (ρ)=
∫π

ka

(

cosρ(π− t )+ i sinρ(π− t )
)

q(t )ϕk−1(t −a,λ)d t ,

and consequently,

Lk (ρ)=
∫π

ka
exp(iρ(π− t ))q(t )ϕk−1(t −a,λ)d t , k ≥ 1. (29)

On the other hand, it follows from (6) that

|ϕk−1(t −a,λ)| ≤C |ρ|1−k
|exp(−iρ(t −k a))|, τ≥ 0. (30)

Substituting (30) into (29), we arrive at (28). ���

3. The inverse problem

In this section we consider the following inverse problem: given two spectra {λn j }n≥0,

j = 0,1, find q(x) and h. In order to formulate a uniqueness result for this inverse problem,

we consider together with L j the boundary value problems L̃ j := L j (q̃ , h̃) of the same form

but with different q̃ and h̃. We agree that if a certain symbol β denotes an object related to L j ,

then β̃ will denote the analogous object related to L̃ j .
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Let {λ̃n j }n≥0, j = 0,1, be the eigenvalues of the boundary value problems L̃ j with q̃(x) ≡ 0.

Let ∆̃ j (λ) be the characteristic functions of L̃ j , and

L̃(ρ)= ∆̃1(λ)+ iρ∆̃0(λ). (31)

Theorem 1. If λn j = λ̃n j for all n ≥ 0, j = 0,1, then q(x) = q̃(x) a.e. on (a,π) and h = h̃.

Proof. 1) By virtue of Lemma 4, one has

∆0(λ) = ∆̃0(λ), ∆1(λ) = ∆̃1(λ).

Using (25) and (31) we get

L(ρ) = L̃(ρ). (32)

Since q̃(x) ≡ 0, it follows from (18)−(19) and (29) that

∫π

a
q(t )d t = 0, h = h̃, L̃(ρ) ≡ L0(ρ)= (iρ+h)exp(iρπ). (33)

In particular, (33) and (27) yield

L1(ρ) =
(1

2
−

h

2iρ

)

exp(iρ(π+a))
∫π

a
q(t )exp(−2iρt )d t . (34)

Denote L+(ρ) := L2(ρ)+. . .+LN (ρ) for N ≥ 2, and L+(ρ) ≡ 0 for N = 1. Using (26), (32) and (33),

we obtain

L1(ρ) ≡−L+(ρ). (35)

2) First of all, we note that if q(x)= 0 a.e. on (2a,π), then q(x)= 0 a.e. on (a,π). Indeed, under

this assumption we have L+(ρ) ≡ 0, and according to (35) we infer L1(ρ) ≡ 0. Using (34) we

obtain
∫π

a
q(t )exp(−2iρt )d t ≡ 0,

and consequently, q(x) = 0 a.e. on (a,π). In particular, this finishes the proof for N = 1, since

in this case we have 2a ≥π and automatically L+(ρ)≡ 0.

3) Let N ≥ 2. Fix ν= 0,2N −3. Let us prove that

i f q(x) = 0 a.e. on
(

π−
νa

2
,π

)

, t hen q(x)= 0 a.e. on
(

π−
(ν+1)a

2
,π

)

. (36)

Indeed, it follows from (28) that

L2(ρ) =O
( 1

ρ

∫π−νa/2

2a
|q(t )exp(−iρ(2t −π−2a))|d t

)

, τ≥ 0, |ρ|→∞.
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Let π−νa/2 > 2a, otherwise we arrive at the situation in 2) and the proof is finished. Then in

the integral we have 2a −π≤ 2t −π−2a ≤π− (ν+2)a, which yields

L2(ρ)=O
( 1

ρ
exp(−iρ(π− (ν+2)a))

)

, τ≥ 0, |ρ|→∞. (37)

For k > 2, the functions Lk (ρ) have less growth than in (37). This means that

L+(ρ) =O
( 1

|ρ|
exp(−iρ(π− (ν+2)a))

)

, τ≥ 0, |ρ|→∞. (38)

It follows from (34), (35) and (38) that

exp(iρ(π+a))
∫π−νa/2

a
q(t )exp(−2iρt )d t =O

( 1

ρ
exp(−iρ(π− (ν+2)a))

)

, τ≥ 0, |ρ|→∞,

or, which is the same,

exp(iρ(2π− (ν+1)a))
∫π−νa/2

a
q(t )exp(−2iρt )d t =O

( 1

ρ

)

, τ≥ 0, |ρ|→∞. (39)

Moreover, one has

∫π−(ν+1)a/2

a
q(t )exp(−2iρt )d t =O

(

exp(−iρ(2π− (ν+1)a)
)

, τ≥ 0, |ρ|→∞. (40)

Let us introduce the function

F (ρ) := exp(iρ(2π− (ν+1)a))
∫π−νa/2

π−(ν+1)a/2
q(t )exp(−2iρt )d t .

The function F (ρ) is entire in ρ. Clearly, F (ρ) = O(1) for τ ≤ 0. On the other hand, it follows

from (39) and (40) that F (ρ)=O(1) for τ≥ 0. By Liouville’s theorem [27, p.77], F (ρ)≡C−const .

Since F (ρ)= o(1) for real ρ, |ρ|→∞, it follows that F (ρ) ≡ 0, i.e.

∫π−νa/2

π−(ν+1)a/2
q(t )exp(−2iρt )d t ≡ 0.

This yields q(x) = 0 a.e. on the interval (π− (ν+1)a/2,π−νa/2), i.e. (36) is proved.

Applying proposition (36) successively for ν = 0,1, . . . ,2N −3, we obtain q(x) = 0 a.e. on

the interval (π− (N −1)a,π) ⊃ (2a,π). According to 2) we get q(x) = 0 a.e. on (a,π). Theorem 1

is proved.
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