
TAMKANG JOURNAL OF MATHEMATICS
Volume 48, Number 1, 95-122, March 2017
doi:10.5556/j.tkjm.48.2017.2271

-
+

+

-

-
-

-
-

This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

LEVITIN-POLYAK WELL-POSEDNESS OF COMPLETELY

GENERALIZED MIXED VARIATIONAL INEQUALITIES

IN REFLEXIVE BANACH SPACES

LU-CHUAN CENG AND CHING-FENG WEN

Abstract. Let X be a real reflexive Banach space. In this paper, we first introduce the con-

cept of Levitin-Polyak well-posedness of a completely generalized mixed variational in-

equality in X , and establish some characterizations of its Levitin-Polyak well-posedness.

Under suitable conditions, we prove that the Levitin-Polyak well-posedness of a com-

pletely generalized mixed variational inequality is equivalent both to the Levitin-Polyak

well-posedness of a corresponding inclusion problem and to the Levitin-Polyak well-

posedness of a corresponding fixed point problem. We also derive some conditions un-

der which a completely generalized mixed variational inequality in X is Levitin-Polyak

well-posed. Our results improve, extend and develop the early and recent ones in the

literature.

1. Introduction

In 1966, Tykhonov [1] first introduced the concept of Tykhonov well-posedness of a min-

imization problem. More precisely, this concept consists of the existence and uniqueness

of minimizers, and the convergence of every minimizing sequence to the unique minimizer.

In many practical situations, there are more than one minimizer for a minimization prob-

lem. In a natural way, the concept of Tykhonov well-posedness in the generalized sense was

introduced, which means the existence of minimizers and the convergence of some sub-

sequence of every minimizing sequence to a minimizer. Without question, the concept of

well-posedness is motivated by the numerical methods producing optimizing sequences. Be-

cause it plays an important role in the study of optimization problems, various concepts of
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well-posedness have been introduced and studied widely for minimization problems in past

decades. A great deal of effort has gone into those concepts; see, e.g., [2]-[4] and the references

therein.

The Tykhonov well-posedness of a constrained minimization problem requires that every

minimizing sequence should lie in the constraint set. It is well known that in many practical

situations, the minimizing sequence produced by a numerical optimization method usually

fails to be feasible but gets closer and closer to the constraint set. Such a sequence is called

a generalized minimizing sequence for constrained minimization problems. Taking into ac-

count this case, Levitin and Polyak [5] strengthened the concept of Tykhonov well-posedness

by requiring the existence and uniqueness of minimizers, and the convergence of every gen-

eralized minimizing sequence to the unique minimizer, which is called Levitin and Polyak

(for short, LP) well-posedness. There have been a large number of results involving Tykhonov

well-posedness, LP well-posedness and their generalizations for minimization problems. For

details, we refer the readers to [1, 2, 3, 5, 6, 7].

In 2008, Fang, Huang and Yao [11] considered and studied the well-posedness of a mixed

variational inequality in a real Hilbert space H , which includes as a special case the classical

variational inequality, and derived some results for the well-posedness of such a mixed vari-

ational inequality, the corresponding inclusion problem and the corresponding fixed-point

problem. Subsequently, Ceng and Yao [9] extended the concept of well-posedness to a gen-

eralized mixed variational inequality in H , which includes as a special case the mixed varia-

tional inequality, and gave some characterizations of its well-posedness. Under suitable con-

ditions, the authors [9] proved that the well-posedness of the generalized mixed variational

inequality is equivalent both to the well-posedness of the corresponding inclusion problem

and to the corresponding fixed-point problem, and derived some conditions under which the

generalized mixed variational inequality is well-posed. Recently, some authors made the fur-

ther extension and development on the concept of well-posedness; see, e.g., [20]−[24] and

the references therein.

On the other hand, Hu and Huang [14] considered the Levitin-Polyak well-posedness of

a general variational inequality in Rn . They derived some characterizations of the Levitin-

Polyak well-posedness by considering the size of Levitin-Polyak approximating solution sets

of general variational inequalities. They also proved that the Levitin-Polyak well-posedness

of a general variational inequality is closely related to the Levitin-Polyak well-posedness of

a minimization problem and a fixed point problem. Finally, they proved that under suitable

conditions, the Levitin-Polyak well-posedness of a general variational inequality is equivalent

to the uniqueness and existence of its solutions.

Let X be a real reflexive Banach space. In 2012, Li and Xia [19] extended the notion of

Levitin-Polyak well-posedness to a generalized mixed variational inequality in X , and gave
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some characterizations of its Levitin-Polyak well-posedness. Under suitable conditions, they

proved that the Levitin-Polyak well-posedness of a generalized mixed variational inequality

is closely related to the Levitin-Polyak well-posedness of a corresponding inclusion problem

and a corresponding fixed point problem, and derived some conditions under which a gen-

eralized mixed variational inequality is Levitin-Polyak well-posed. However, there is no re-

sult for the Levitin-Polyak well-posedness of a completely generalized mixed variational in-

equality. Therefore, it is worth studying implementable results for the Levitin-Polyak well-

posedness of a completely generalized mixed variational inequality.

Motivated and inspired by the research work going on this field, we extend the notion

of Levitin-Polyak well-posedness to a completely generalized mixed variational inequality in

a real reflexive Banach space X , and give some characterizations of its Levitin-Polyak well-

posedness. Under suitable conditions, we prove the Levitin-Polyak well-posedness of a com-

pletely generalized mixed variational inequality is closely related to the Levitin-Polyak well-

posedness of a corresponding inclusion problem and a corresponding fixed point problem.

Finally, we derive some conditions under which a completely generalized mixed variational

inequality is Levitin-Polyak well-posed. Our results improve, extend and develop the early

and recent ones announced by some others, e.g., Ceng and Yao [9] and Li and Xia [19].

2. Preliminaries

Let X be a real reflexive Banach space with its dual X ∗ and K be a nonempty, closed and

convex subset of X . Let g : X → X be a single-valued mapping, N : X ∗×X ∗ → X ∗ be a single-

valued mapping, and F,E : X → 2X ∗

be two set-valued mappings. Let φ : X ×X → R∪ {+∞} be

such that for each x ∈ X , φ(·, x) is a proper, convex and lower semicontinuous functional. For

each x ∈ X , we denote by domφ(·, x) the domain of φ(·, x), i.e.,

domφ(·, x) = {y ∈ X : φ(y, x)<+∞}.

In this paper we always assume that g (X )∩domφ(·, x)∩K 6= ; for each x ∈ X . Consider the fol-

lowing completely generalized mixed variational inequality associated with (N (F,E ), g ,φ,K ):

CGMVI(N (F,E ), g ,φ,K ) : find x ∈ K such that g (x) ∈ K and

〈N (u, v), g (x)− y〉+φ(g (x), x)−φ(y, x)≤ 0, ∀y ∈ K ,

for some u ∈ F (x) and v ∈ E (x).

It is easy to see that the CGMVI(N (F,E ), g ,φ,K ) is equivalent to the following inclusion prob-

lem associated with N (F,E )+∂(φ+δK )◦ g :

IP(N (F,E )+∂(φ+δK )◦ g ,K ) : find x ∈ K such that g (x) ∈ K and

0 ∈ N (F (x),E (x))+∂(φ(·, x)+δK )(g (x)),
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where δK denotes the indicator function associated with K (i.e., δK (x) = 0 if x ∈ K and +∞

otherwise) and for a fixed x ∈ X , ∂(φ(·, x)+δK )(g (x)) denotes the subdifferential of the convex

function φ(·, x)+δk at g (x). It is clear that CGMVI(N (F,E ), g ,φ,K ) includes as a special case

the following generalized mixed variational inequality associated with (F,φ,K ) (considered in

[19]):

GMVI(F,φ,K ) : find x ∈ K such that for some u ∈ F (x),

〈u, x − y〉+φ(x)−φ(y)≤ 0, ∀y ∈ K .

Moreover, IP(N (F,E )+∂(φ+δK ) ◦ g ,K ) obviously includes as a special case the following in-

clusion problem associated with F +∂(φ+δK ) (considered in [19]):

IP(F +∂(φ+δK ),K ) : find x ∈ K such that 0 ∈ F (x)+∂(φ+δK )(x).

It is not hard to find that there holds the following:

Proposition 2.1. Let K be a nonempty, closed and convex subset of X . Let g : X → X be a

single-valued mapping, N : X ∗× X ∗ → X ∗ be a single-valued mapping, and F,E : X → 2X ∗

be

two nonempty set-valued mappings. Let φ : X×X → R∪{+∞} be such that for each x ∈ X , φ(·, x)

is a proper, convex and lower semicontinuous functional. Then the following conclusions are

equivalent:

(i) x solves CGMVI(N (F,E ), g ,φ,K );

(ii) x solves IP(N (F,E )+∂(φ+δK )◦ g ,K ).

Definition 2.1. Let A,B be nonempty subsets of X . The Hausdorff metric H (·, ·) between A

and B is defined by

H (A,B )= max{e(A,B ),e(B , A)},

where e(A,B )= supa∈A d (a,B ) with d (a,B )= infb∈B ‖a −b‖.

Lemma 2.1 (Nadler’s Theorem [7]). Let (X ,‖ · ‖) be a normed vector space and H (·, ·) be the

Hausdorff metric on the collection C B (X ) of all nonempty, closed and bounded subsets of X ,

induced by a metric d in terms of d (u, v)= ‖u−v‖, which is defined by H (U ,V )= max{e(U ,V ),

e(V ,U )} for U and V in C B (X ) where e(U ,V ) = supx∈U d (x,V ) with d (x,V ) = infy∈V ‖x − y‖. If

U and V lie in C B (X ), then for any ǫ> 0 and any u ∈U , there exists v ∈ V such that ‖u − v‖ ≤

(1+ ǫ)H (U ,V ). In particular, whenever U and V are compact subsets in X , one has ‖u − v‖ ≤

H (U ,V ).

Definition 2.2. A single-valued mapping N : X ∗× X ∗ → X ∗ is called mixed Lipschitz contin-

uous with respect to the first and second arguments if there exists a pair of constants ζ,ξ > 0

such that

‖N (u1, v1)−N (u2, v2)‖ ≤ ζ‖u1 −u2‖+ξ‖v1 −v2‖, ∀(ui , vi ) ∈ X ∗
×X ∗, i = 1,2.
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Definition 2.3. Let F : X →C B (X ∗) be a set-valued mapping. Then,

(i) F is called H -continuous at a point x0 ∈ X , if for any ǫ> 0 there exists δ> 0 such that for

all x ∈ X with ‖x−x0‖< δ, one has H (F (x),F (x0)) < ǫ. If F is H -continuous at each point

x ∈ X , then F is called H -continuous.

(ii) F is called H -uniformly continuous [9], if for any ǫ> 0 there exists δ> 0 such that for all

x, y ∈ X with ‖x − y‖< δ, one has H (F (x),F (y)) < ǫ.

Definition 2.4. Let X and Y be two topological spaces and x ∈ X . A set-valued mapping

F : X → 2Y is said to be upper semicontinuous (in short, u.s.c) at x, if for any neighborhood

V of F (x), there exists a neighborhood U of x such that F (y) ⊂ V ,∀y ∈U . If F is u.s.c at each

point of X , we say that F is u.s.c on X .

Definition 2.5 ([15]). Let A be a nonempty subset of X . The measure of noncompactness µ

of the set A is defined by

µ(A) = inf{ǫ> 0 : A ⊂

n⋃

i=1

Ai , diamAi < ǫ, i = 1,2, . . . ,n},

where diam means the diameter of a set.

3. Levitin-Polyak Well-Posedness of CGMVI(N (F,E ), g ,φ,K )

In this section, we extend the concept of Levitin-Polyak well-posedness to the completely

generalized mixed variational inequality and establish its metric characterizations. In the se-

quel, we always denote by → and * the strong convergence and weak convergence, respec-

tively. Let α ≥ 0 be a given number, and let X ,K , N ,F,E , g ,φ be defined as in the previous

section.

Definition 3.1. A sequence {xn} ⊂K is called a LP α-approximating sequence for

CGMVI(N (F,E ), g ,φ,K ), if there exists wn ∈ X with wn → 0 and 0 < ǫn → 0 such that g (xn)+

wn ∈ K for all n ≥ 1, and there exist un ∈ F (xn) and vn ∈ E (xn) such that

g (xn) ∈ domφ(·, xn), 〈N (un, vn), g (xn )− y〉+φ(g (xn), xn)−φ(y, xn) ≤
α

2
‖g (xn)− y‖2

+ǫn

for all y ∈ K and n ≥ 1. If α1 > α2 ≥ 0, then every LP α2-approximating sequence is LP α1-

approximating. When α= 0, we say that {xn} is a LP approximating sequence for

CGMVI(N (F,E ), g ,φ,K ).

Definition 3.2. We say that CGMVI(N (F,E ), g ,φ,K ) is strongly (resp. weakly) LP α-well-posed

if CGMVI(N (F,E ), g ,φ,K ) has a unique solution and every LPα-approximating sequence con-

verges strongly (resp. weakly) to the unique solution. In the sequel, strong (resp. weak) LP 0-

well-posedness is always known as strong (resp. weak) LP well-posedness. If α1 >α2 ≥ 0, then

strong (resp. weak) LP α1-well-posedness implies strong (resp. weak) LP α2-well-posedness.
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Definition 3.3. We say that CGMVI(N (F,E ), g ,φ,K ) is strongly (resp. weakly) LP α-well-posed

in the generalized sense if CGMVI(N (F,E ), g ,φ,K ) has nonempty solution set S and every

LP α-approximating sequence has a subsequence which converges strongly (resp. weakly)

to some point of S. In the sequel, strong (resp. weak) LP 0-well-posedness in the generalized

sense is always known as strong (resp. weak) LP well-posedness in the generalized sense. If

α1 > α2 ≥ 0, then strong (resp. weak) LP α1-well-posedness in the generalized sense implies

strong (resp. weak) LP α2-well-posedness in the generalized sense.

Remark 3.1. When CGMVI(N (F,E ), g ,φ,K ) = GMVI(F,φ,K ), Definitions 3.1, 3.2 and 3.3 re-

duce to the Definitions 3.1, 3.2 and 3.3 in [19], respectively. When X is a real Hilbert space,

K = X and wn ≡ 0, Definitions 3.2 and 3.3 in [19] reduce to the Definitions 3.2 and 3.3 in [11],

respectively. When X = Rn , α = 0, φ = δK and F is single-valued, Definitions 3.2 and 3.3 in

[19] reduce to the Definitions 3.3 and 3.4 in [14], respectively.

To derive the metric characterizations of LP α-well-posedness, we consider the following

LP α-approximating solution set of CGMVI(N (F,E ), g ,φ,K ):

Ωα(ǫ)= {x ∈ X : g (x) ∈ domφ(·, x), d (g (x),K ) ≤ ǫ, and

there exists u ∈ F (x) and v ∈ E (x) such that ∀y ∈ K ,

〈N (u, v), g (x)− y〉+φ(g (x), x)−φ(y, x)≤ α
2 ‖g (x)− y‖2 +ǫ}, ∀ǫ≥ 0.

Theorem 3.1. Let K be a nonempty, closed and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings which both are H -continuous. Let g : X → X be a con-

tinuous mapping and N : X ∗×X ∗ → X ∗ be mixed Lipschitz continuous with respect to the first

and second arguments. Assume that φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) φ is proper, convex and lower semicontinuous in the first argument;

(C2) φ is upper semicontinuous in the second argument;

(C3) liminfn→∞ infy∈domφ(·,xn )(φ(y, xn)−φ(y, x̄)) ≥ 0, ∀{xn} ⊂ K : xn → x̄ (n →∞).

Then CGMVI(N (F,E ), g ,φ,K ) is strongly LP α-well-posed if and only if

Ωα(ǫ) 6= ;, ∀ǫ> 0 and diam(Ωα(ǫ)) → 0 as ǫ→ 0. (3.1)

Proof. Suppose that CGMVI(N (F,E ), g ,φ,K ) is strongly LP α-well-posed and x∗ ∈ K is the

unique solution of CGMVI(N (F,E ), g ,φ,K ). It is obvious that x∗ ∈Ωα(ǫ). If diam(Ωα(ǫ)) 6→ 0

as ǫ→ 0, then there exist constant l > 0 and sequences {ǫn} ⊂ R+ with ǫn → 0, and {x(1)
n }, {x(2)

n }

with x(1)
n , x(2)

n ∈Ωα(ǫn) such that

‖x(1)
n −x(2)

n ‖> l , ∀n ≥ 1. (3.2)
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Since x(1)
n , x(2)

n ∈Ωα(ǫn), for x(1)
n we have

d (g (x(1)
n ),K ) ≤ ǫn < ǫn +

1

n
,

and there exists un ∈ F (x(1)
n ) and vn ∈ E (x(1)

n ) such that

〈N (un , vn), g (x(1)
n )− y〉+φ(g (x(1)

n ), x(1)
n )−φ(y, x(1)

n ) ≤
α

2
‖g (x(1)

n )− y‖2
+ǫn , ∀y ∈ K .

Since K is closed and convex, then there exists x̄(1)
n ∈ K such that ‖g (x(1)

n )− x̄(1)
n ‖ < ǫn +

1
n

.

Putting wn = x̄(1)
n −g (x(1)

n ), we have wn+g (x(1)
n ) = x̄(1)

n ∈ K and ‖wn‖ = ‖g (x(1)
n )− x̄(1)

n ‖→ 0. This

implies that wn → 0. Thus, {x(1)
n } is a LP approximating sequence for CGMVI(N (F,E ), g ,φ,K ).

By the similar argument, we obtain that {x(2)
n } is a LP approximating sequence for

CGMVI(N (F,E ), g ,φ,K ). So they have to converge strongly to the unique solution of

CGMVI(N (F,E ), g ,φ,K ), a contradiction to (3.2).

Conversely, suppose that the conclusion (3.1) holds. Let {xn} ⊂ K be a LPα-approximating

sequence for CGMVI(N (F,E ), g ,φ,K ). Then there exists wn ∈ X with wn → 0 and 0 < ǫ′n → 0

such that g (xn)+wn ∈ K for all n ≥ 1, and there exist un ∈ F (xn) and vn ∈ E (xn) such that

g (xn) ∈ domφ(·, xn), 〈N (un, vn), g (xn)−y〉+φ(g (xn), xn)−φ(y, xn) ≤
α

2
‖g (xn)−y‖2

+ǫ′n (3.3)

for all y ∈ K and n ≥ 1. Since g (xn)+wn ∈ K , then there exists kn ∈ K such that g (xn)+wn = kn .

It is easy to see that d (g (xn),K ) ≤ ‖g (xn)−kn‖ = ‖wn‖→ 0. Set ǫn = max{ǫ′n ,‖wn‖}, it follows

that xn ∈ Ωα(ǫn). From (3.1), we deduce that {xn} is a Cauchy sequence and so it converges

strongly to a point x̄ ∈ K . Since g (xn)+wn ∈ K , wn → 0 and g is continuous, we know that

g (x̄) ∈ K . So, it follows from (3.3) and conditions (C1)−(C3) that

liminf
n→∞

(φ(g (xn), xn)−φ(g (xn ), x̄)) ≥ liminf
n→∞

inf
y∈domφ(·,xn )

(φ(y, xn)−φ(y, x̄)) ≥ 0,

and

liminf
n→∞

〈N (un, vn), g (xn)− y〉+φ(g (x̄), x̄)−φ(y, x̄)

≤ liminf
n→∞

〈N (un, vn), g (xn)− y〉+ liminf
n→∞

φ(g (xn), x̄)+ liminf
n→∞

(φ(g (xn ), xn)−φ(g (xn ), x̄))

+liminf
n→∞

(−φ(y, xn))

≤ liminf
n→∞

{〈N (un, vn), g (xn )− y〉+φ(g (xn), x̄)+φ(g (xn ), xn)−φ(g (xn ), x̄)−φ(y, xn)}

= liminf
n→∞

{〈N (un, vn), g (xn )− y〉+φ(g (xn), xn)−φ(y, xn)}

≤ liminf
n→∞

{
α

2
‖g (xn)− y‖2

+ǫ′n}

=
α

2
‖g (x̄)− y‖2. (3.4)

Since F and E are nonempty compact-valued mappings, in terms of Lemma 2.1, for each un ∈

F (xn) and vn ∈ E (xn) there exist ūn ∈ F (x̄) and v̄n ∈ E (x̄) such that ‖un− ūn‖ ≤H (F (xn),F (x̄))
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and ‖vn − v̄n‖ ≤ H (E (xn),E (x̄)). Since F and E both are H -continuous, one deduces that

‖un − ūn‖ ≤ H (F (xn),F (x̄)) → 0 and ‖vn − v̄n‖ ≤ H (E (xn),E (x̄)) → 0 as n → ∞. Since F (x̄)

and E (x̄) both are compact, without loss of generality we may assume that ūn → ū ∈ F (x̄) and

v̄n → v̄ ∈ E (x̄) as n →∞. Thus, we conclude that

‖un − ū‖ ≤ ‖un − ūn‖+‖ūn − ū‖≤H (F (xn),F (x̄))+‖ūn − ū‖→ 0,

and

‖vn − v̄‖≤ ‖vn − v̄n‖+‖v̄n − v̄‖ ≤H (E (xn),E (x̄))+‖v̄n − v̄‖→ 0.

This implies that un → ū and vn → v̄ as n →∞. Note that N is mixed Lipschitz continuous

with respect to the first and second arguments. Hence there exists a pair of constants ζ,ξ> 0

such that

‖N (un , vn)−N (ū, v̄)‖≤ ζ‖un − ū‖+ξ‖vn − v̄‖→ 0 as n →∞,

which together with (3.4), immediately yields

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤
α

2
‖g (x̄)− y‖2, ∀y ∈ K .

For any y ∈ K , put yt = g (x̄)+ t (y − g (x̄)) for all t ∈ [0,1]. Since K is a nonempty, closed and

convex subset, this implies that yt ∈ K . Then

〈N (ū, v̄), g (x̄)− yt 〉+φ(g (x̄), x̄)−φ(yt , x̄) ≤
α

2
‖g (x̄)− yt‖

2.

Since φ is convex in the first argument, we have

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤
αt

2
‖g (x̄)− y‖2, ∀y ∈ K . (3.5)

Letting t → 0+, from (3.5) we get

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤ 0, ∀y ∈ K .

Therefore, x̄ solves CGMVI(N (F,E ), g ,φ,K ).

To complete the proof, we need only to prove that CGMVI(N (F,E ), g ,φ,K ) has a unique

solution. Assume by contradiction that CGMVI(N (F,E ), g ,φ,K ) has two distinct solutions x1

and x2 in K . Then it is easy to see that x1, x2 ∈Ωα(ǫ) for all ǫ> 0 and

0 <‖x1 −x2‖≤ diam(Ωα(ǫ)) → 0,

a contradiction to (3.1). The proof is complete. ���
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Theorem 3.2. Let K be a nonempty, closed and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings which both are upper semicontinuous. Let g : X → X

be a continuous mapping and N : X ∗×X ∗ → X ∗ be mixed Lipschitz continuous with respect to

the first and second arguments. Assume that φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) φ is proper, convex and lower semicontinuous in the first argument;

(C2) φ is upper semicontinuous in the second argument;

(C3) liminfn→∞ infy∈domφ(·,xn)(φ(y, xn)−φ(y, x̄)) ≥ 0, ∀{xn } ⊂ K : xn → x̄ (n →∞).

Then CGMVI(N (F,E ), g ,φ,K ) is strongly LP α-well-posed in the generalized sense if and

only if

Ωα(ǫ) 6= ;, ∀ǫ> 0 and µ(Ωα(ǫ)) → 0 as ǫ→ 0. (3.6)

Proof. Suppose that CGMVI(N (F,E ), g ,φ,K ) is strongly LP α-well-posed in the generalized

sense. Let S be the solution set of CGMVI(N (F,E ), g ,φ,K ). Then S is nonempty and com-

pact. Indeed, let {xn} be any sequence in S. Then {xn} is a LP α-approximating sequence for

CGMVI(N (F,E ), g ,φ,K ). Since CGMVI(N (F,E ), g ,φ,K ) is strongly LP α-well-posed in the gen-

eralized sense, {xn} has a subsequence which converges strongly to some point of S. Thus S

is compact. It is obvious that ; 6= S ⊂Ωα(ǫ) for all ǫ> 0. Now we show that

µ(Ωα(ǫ)) → 0 as ǫ→ 0.

Observe that for every ǫ> 0,

H (Ωα(ǫ),S)=max{e(Ωα(ǫ),S),e(S,Ωα(ǫ))} = e(Ωα(ǫ),S).

Taking into account the compactness of S, we get

µ(Ωα(ǫ)) ≤ 2H (Ωα(ǫ),S)+µ(S)= 2e(Ωα(ǫ),S).

To prove (3.6), it is sufficient to show that

e(Ωα(ǫ),S)→ 0 as ǫ→ 0.

Indeed, if e(Ωα(ǫ),S) 6→ 0 as ǫ→ 0, then there exist l > 0 and {ǫn} ⊂ R+ with ǫn → 0, and xn ∈

Ωα(ǫn) such that

xn 6∈ S +B (0, l ), ∀n ≥ 1, (3.7)

where B (0, l ) is the closed ball centered at 0 with radius l . By the definition of Ωα(ǫn), we know

d (g (xn),K )≤ ǫn < ǫn +
1
n , and there exists un ∈ F (xn) and vn ∈ E (xn) such that

〈N (un, vn), g (xn)− y〉+φ(g (xn), xn)−φ(y, xn) ≤
α

2
‖g (xn)− y‖2

+ǫn , ∀y ∈ K .
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Thus, there exists kn ∈ K such that ‖kn − g (xn)‖ < ǫn +
1
n . Let wn = kn − g (xn ), then we have

wn + g (xn ) ∈ K with wn → 0. So {xn} is a LP α-approximating sequence for CGMVI(N (F,E ), g ,

φ,K ). Since CGMVI(N (F,E ), g ,φ,K ) is strongly LP α-well-posed in the generalized sense,

there exists a subsequence {xni
} of {xn} which converges strongly to some point of S. This

contradicts (3.7) and so

e(Ωα(ǫ),S)→ 0 as ǫ→ 0.

Conversely, assume that (3.6) holds. We first show that Ωα(ǫ) is closed for all ǫ > 0. Let

{xn} ⊂Ωα(ǫ) with xn → x̄. Then there exists un ∈ F (xn) and vn ∈ E (xn) such that d (g (xn ),K ) ≤ ǫ

and

〈N (un, vn), g (xn )− y〉+φ(g (xn), xn)−φ(y, xn) ≤
α

2
‖g (xn)− y‖2

+ǫ, ∀y ∈ K ,n ≥ 1. (3.8)

Since F and E are nonempty compact-valued mappings which both are upper semicontin-

uous, there exist subsequences {uni
} ⊂ {un} and {vni

} ⊂ {vn} such that uni
→ ū and vni

→ v̄

for some ū ∈ F (x̄) and v̄ ∈ E (x̄). Note that g is continuous and N is mixed Lipschitz con-

tinuous with respect to the first and second arguments. So it follows that g (xni
) → g (x̄) and

N (uni
, vni

) → N (ū, v̄) as i → ∞. Therefore, utilizing the similar argument process to that in

the proof of Theorem 3.1, we obtain from (3.8) and conditions (C1)−(C3) that

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤
α

2
‖g (x̄)− y‖2

+ǫ, ∀y ∈ K .

It is easy to see that d (x̄,K ) ≤ ǫ. This shows that x̄ ∈ Ωα(ǫ) and so Ωα(ǫ) is nonempty closed

for all ǫ> 0. Observe that

S =
⋂

ǫ>0

Ωα(ǫ).

Since µ(Ωα(ǫ)) → 0, the theorem in page 412 of [15] can be applied and one concludes that S

is nonempty and compact with

e(Ωα(ǫ),S)=H (Ωα(ǫ),S)→ 0.

Let {x̂n} ⊂K be a LP α-approximating sequence for CGMVI(N (F,E ), g ,φ,K ). Then there exists

wn ∈ X with wn → 0 such that g (x̂n)+ wn ∈ K , and there exist ûn ∈ F (x̂n), v̂n ∈ E (x̂n) and

0 < ǫ′n → 0 such that

〈N (ûn, v̂n), g (x̂n)− y〉+φ(g (x̂n), x̂n)−φ(y, x̂n) ≤
α

2
‖g (x̂n)− y‖2

+ǫ′n , ∀y ∈ K ,n ≥ 1.

Since g (x̂n)+wn ∈ K , then there exists kn ∈ K such that g (x̂n)+wn = kn . It follows that

d (g (x̂n),K ) ≤ ‖g (x̂n)−kn‖ = ‖wn‖→ 0.
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Set ǫn =max{‖wn‖,ǫ′n}, we get x̂n ∈Ωα(ǫn). From (3.6) and the definition of Ωα(ǫn), we have

d (x̂n ,S)≤ e(Ωα(ǫn),S)→ 0.

Since S is compact, there exists pn ∈ S such that

‖pn − x̂n‖= d (x̂n ,S)→ 0.

Again from the compactness of S, there exists a subsequence {pni
} of {pn} which converges

strongly to p̄ ∈ S. Hence the corresponding subsequence {x̂ni
} of {x̂n} converges strongly to

p̄ ∈ S. Therefore, CGMVI(N (F,E ), g ,φ,K ) is strongly LP α-well-posed in the generalized sense.

The proof is complete. ���

Remark 3.2. Our Theorems 3.1 and 3.2 improve, extend and develop Theorems 3.1 and 3.2 in

[19] to a great extent because our CGMVI(N (F,E ), g ,φ,K ) is more general than the GMVI(F,φ,

K ) in [19].

4. Links with Levitin-Polyak Well-Posedness of Inclusion Problems

In this section, we shall show that the Levitin-Polyak well-posedness of a completely gen-

eralized mixed variational inequality is closely related to the Levitin-Polyak well-posedness of

a inclusion problem. Let g : X → X be a single-valued mapping and A : X ×X → 2X ∗

be a set-

valued mapping. The inclusion problem associated with (A, g ,K ) is defined by

IP(A, g ,K ) : find x ∈ K such that 0 ∈ A(x, g (x)).

Definition 4.1. A sequence {xn} ⊂ K is called a LP approximating sequence for IP(A, g ,K ) if

there exists wn ∈ X with wn → 0 such that g (xn)+wn ∈ K and d (0, A(xn , g (xn))) → 0 as n →∞,

or equivalently, there exists yn ∈ A(xn , g (xn)) such that ‖yn‖→ 0 as n →∞.

Definition 4.2. We say that IP(A, g ,K ) is strongly (resp. weakly) LP well-posed if it has a unique

solution and every LP approximating sequence converges strongly (resp. weakly) to the unique

solution of IP(A, g ,K ). IP(A, g ,K ) is said to be strongly (resp. weakly) LP well-posed in the

generalized sense if the solution set S of IP(A, g ,K ) is nonempty and every LP approximating

sequence has a subsequence which converges strongly (resp. weakly) to a point of S.

Remark 4.1. When g = I , Definitions 4.1 and 4.2 coincide with the Definitions 4.1 and 4.2 in

[19], respectively. When X is a real Hilbert space, g = I , K = X and wn ≡ 0, Definitions 4.1 and

4.2 coincide with the Definitions 4.1 and 4.2 in [11], respectively.
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Theorem 4.1. Let K be a nonempty, compact and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings which both are H -continuous. Let g : X → X be a con-

tinuous mapping and N : X ∗×X ∗ → X ∗ be mixed Lipschitz continuous with respect to the first

and second arguments. Assume that φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) φ is proper, convex and lower semicontinuous in the first argument;

(C2) φ is upper semicontinuous in the second argument;

(C3) liminfn→∞ infy∈domφ(·,xn )(φ(y, xn)−φ(y, x̄)) ≥ 0, ∀{xn} ⊂ K : xn → x̄ (n →∞).

If CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed, then IP(N (F,E )+∂(φ+δK ) ◦ g ,K ) is

strongly LP well-posed.

Proof. Suppose that CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed and x∗ is the unique so-

lution of CGMVI(N (F,E ), g ,φ,K ). By Proposition 2.1, we obtain that x∗ is also the unique so-

lution of IP(N (F,E )+∂(φ+δK )◦g ,K ). Let {xn} be a LP approximating sequence for IP(N (F,E )+

∂(φ+δK )◦ g ,K ). Then, there exists wn ∈ X with wn → 0 such that g (xn)+wn ∈ K , and there

exists yn ∈ N (F (xn),E (xn))+∂(φ(·, xn)+δK )(g (xn )) such that ‖yn‖→ 0 as n →∞. It is easy to

see that there exist un ∈ F (xn) and vn ∈ E (xn) such that

φ(y, xn)−φ(g (xn ), xn) ≥ 〈yn −N (un , vn), y − g (xn)〉, ∀y ∈ K . (4.1)

Let {xni
} be any subsequence of {xn} such that xni

→ x̄ as i → ∞. Clearly x̄ ∈ K . Since

{g (xn )} ⊂ K and g is continuous, we obtain from g (xn)+wn ∈ K and wn → 0 that g (x̄) ∈ K . So,

it follows from (4.1), ‖yn‖→ 0 and conditions (C1)−(C3) that

liminf
i→∞

(φ(g (xni
), xni

)−φ(g (xni
), x̄)) ≥ liminf

i→∞
inf

y∈domφ(·,xni
)
(φ(y, xni

)−φ(y, x̄)) ≥ 0,

and

liminf
i→∞

〈N (uni
, vni

), g (xni
)− y〉+φ(g (x̄), x̄)−φ(y, x̄)

≤ liminf
i→∞

〈N (uni
, vni

)− yni
, g (xni

)− y〉+ liminf
i→∞

φ(g (xni
), x̄)

+liminf
i→∞

(φ(g (xni
), xni

)−φ(g (xni
), x̄))+ liminf

i→∞
(−φ(y, xni

)) (4.2)

≤ liminf
i→∞

{〈N (uni
, vni

)− yni
, g (xni

)− y〉+φ(g (xni
), x̄)

+φ(g (xni
), xni

)−φ(g (xni
), x̄)−φ(y, xni

)} (4.3)

= liminf
i→∞

{〈N (uni
, vni

)− yni
, g (xni

)− y〉+φ(g (xni
), xni

)−φ(y, xni
)}

≤ 0. (4.4)

Since F and E are nonempty compact-valued mappings, in terms of Lemma 2.1, for each un ∈

F (xn) and vn ∈ E (xn) there exist ūn ∈ F (x̄) and v̄n ∈ E (x̄) such that ‖un − ūn‖≤H (F (xn),F (x̄))

and ‖vn − v̄n‖ ≤ H (E (xn),E (x̄)). Since F and E both are H -continuous, one deduces that

‖uni
− ūni

‖≤H (F (xni
),F (x̄)) → 0 and ‖vni

− v̄ni
‖≤H (E (xni

),E (x̄)) → 0 as i →∞. Since F (x̄)
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and E (x̄) both are compact, without loss of generality we may assume that ūni
→ ū ∈ F (x̄) and

v̄ni
→ v̄ ∈ E (x̄) as i →∞. Thus, we conclude that

‖uni
− ū‖≤ ‖uni

− ūni
‖+‖ūni

− ū‖→ 0 as i →∞,

and

‖vni
− v̄‖ ≤ ‖vni

− v̄ni
‖+‖v̄ni

− v̄‖→ 0 as i →∞.

That is, uni
→ ū and vni

→ v̄ as i →∞. Note that N is mixed Lipschitz continuous with respect

to the first and second arguments. Hence there exists a pair of constants ζ,ξ> 0 such that

‖N (uni
, vni

)−N (ū, v̄)‖ ≤ ζ‖uni
− ū‖+ξ‖vni

− v̄‖→ 0 as i →∞.

So, it immediately follows from (4.4) that

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤ 0, ∀y ∈ K .

Thus, x̄ solves CGMVI(N (F,E ), g ,φ,K ). Since CGMVI(N (F,E ), g ,φ,K ) has a unique solution

x∗, we get x̄ = x∗. This shows that xn → x∗ as n →∞. Therefore, IP(N (F,E )+∂(φ+δK )◦ g ,K )

is strongly LP well-posed. The proof is complete. ���

Theorem 4.2. Let K be a nonempty, closed and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings which both are H -uniformly continuous. Let g : X → X

be a homeomorphic mapping and N : X ∗× X ∗ → X ∗ be mixed Lipschitz continuous with re-

spect to the first and second arguments. Assume that φ : X × X → R∪ {+∞} satisfies the condi-

tions:

(C1) φ is proper, convex and subdifferentiable in the first argument, and for each y ∈ X the

subdifferential of φ(·, y) at x ∈ X is denoted by ∂1φ(x, y);

(C2) for each y ∈ X , ∂1φ(·, y) : X → 2X ∗

is a nonempty compact-valued mapping, which is H -

Lipschitz continuous with respect to g , that is, for some λ> 0, one has

H (∂1φ(g (x), y),∂1φ(g (x), z)) ≤λ‖g (y)− g (z)‖, ∀x, y, z ∈ X .

If IP(N (F,E )+∂(φ+δK ) ◦ g ,K ) is strongly LP well-posed, then CGMVI(N (F,E ), g ,φ,K ) is

strongly LP well-posed.

Proof. Let {xn} ⊂ K be a LP approximating sequence for CGMVI(N (F,E ), g ,φ,K ). Then there

exist wn ∈ X with wn → 0 and 0 < ǫn → 0 such that g (xn)+wn ∈ K , and there exist un ∈ F (xn)

and vn ∈ E (xn) satisfying

φ(g (xn), xn) ≥φ(y, xn)+〈N (un , vn), y − g (xn)〉+ǫn , ∀y ∈ K ,n ≥ 1. (4.5)
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Since g (xn)+wn ∈ K , there exists kn ∈ K such that g (xn)+wn = kn .

Define φ̃n : X → R∪ {+∞} as follows:

φ̃n(y) =φ(y, xn)+〈N (un , vn), y − g (xn)〉, ∀y ∈ K ,n ≥ 1.

Since φ is proper, convex and subdifferentiable in the first argument, then we have that φ̃n is

proper, convex and subdifferentiable for all n ≥ 1. It follows from Proposition 2.2.6 of [16] that

φ̃n is Lipschitz continuous. Since ‖wn‖ = ‖kn − g (xn)‖→ 0, then there exists 0 < δn → 0 such

that

φ̃n(kn)− φ̃n (g (xn)) ≤ δn . (4.6)

By (4.5) and (4.6), we have

φ̃n(kn) ≤ φ̃n(y)+δn +ǫn , ∀y ∈ K .

By Ekeland’s theorem [17], there exists x̃n ∈ K such that

‖g (x̃n)−kn‖≤
√
δn +ǫn ,

and

φ̃n(g (x̃n)) ≤ φ̃n(y)+
√

δn +ǫn‖y − g (x̃n)‖, ∀y ∈ K .

Thus, g (x̃n) minimizes the function φ̃n((·)+
√

δn +ǫn‖·−g (x̃n )‖. It follows that 0∗ ∈ ∂(φ̃n ((·)+√
δn +ǫn‖ ·−g (x̃n )‖)(g (x̃n)). That is,

0∗ ∈ ∂φ̃n(g (x̃n ))+
√

δn +ǫnBX ∗ .

So there exists

x∗
n ∈ ∂φ̃n(g (x̃n)) = ∂φ1(g (x̃n), xn)+N (un , vn) (4.7)

such that

‖x∗
n‖≤

√
δn +ǫn .

Since ‖g (xn)−kn‖→ 0 and ‖g (x̃n)−kn‖ → 0, we know that ‖g (x̃n)− g (xn )‖ ≤ ‖g (x̃n)−kn‖+

‖g (xn)−kn‖→ 0. Since F and E are nonempty compact-valued mappings which both are H -

uniformly continuous, by Lemma 2.1 we deduce that for each un ∈ F (xn) and vn ∈ E (xn) there

exist ũn ∈ F (x̃n) and ṽn ∈ E (x̃n) such that ‖un − ũn‖ ≤ H (F (xn),F (x̃n)) → 0 and ‖vn − ṽn‖ ≤

H (E (xn),E (x̃n)) → 0.

On the other hand, putting zn = x∗
n − N (un, vn), from (4.7) we get zn ∈ ∂φ1(g (x̃n), xn).

Since for each y ∈ X , ∂1φ(·, y) : X → 2X ∗

is a nonempty compact-valued mapping, which is

H -Lipschitz continuous with respect to g , we obtain that for each zn ∈ ∂φ1(g (x̃n ), xn), there

exists z̃n ∈ ∂φ1(g (x̃n), x̃n) such that for some λ> 0,

‖zn − z̃n‖≤H (∂φ1(g (x̃n), xn),∂φ1(g (x̃n), x̃n)) ≤λ‖g (xn)− g (x̃n )‖→ 0. (4.8)
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Putting en = zn − z̃n , we deduce from (4.7) that

x∗
n +N (ũn , ṽn)−N (un , vn)−en +∂δK (g (x̃n ))

= N (ũn, ṽn)+ zn −en +∂δK (g (x̃n ))

= N (ũn, ṽn)+ z̃n +∂δK (g (x̃n))

⊂ N (ũn, ṽn)+∂φ1(g (x̃n), x̃n)+∂δK (g (x̃n ))

⊂ N (F (x̃n),E (x̃n)+∂(φ(·, x̃n )+δK )(g (x̃n )).

From 0∗ ∈ ∂δK (g (x̃n )), we have

x∗
n +N (ũn , ṽn)−N (un , vn)−en ∈ N (F (x̃n),E (x̃n)+∂(φ(·, x̃n )+δK )(g (x̃n )).

Since N be mixed Lipschitz continuous with respect to the first and second arguments, there

exists a pair of constants ζ,ξ> 0 such that

‖N (un , vn)−N (ũn , ṽn)‖ ≤ ζ‖un − ũn‖+ξ‖vn − ṽn‖→ 0. (4.9)

Combining (4.7)−(4.9), we get

‖x∗
n +N (ũn , ṽn)−N (un , vn)−en‖ ≤ ‖x∗

n‖+‖N (ũn, ṽn)−N (un , vn)‖+‖en‖→ 0.

This shows that {x̃n} is a LP approximating sequence for IP(N (F,E )+∂(φ+δK )◦g ,K ). Let x∗ be

the unique solution of IP(N (F,E )+∂(φ+δK )◦ g ,K ). By Proposition 2.1, x∗ is also the unique

solution of CGMVI(N (F,E ), g ,φ,K ). If IP(N (F,E )+∂(φ+δK )◦ g ,K ) is strongly LP well-posed,

then x̃n → x∗. Noticing that ‖g (xn)− g (x∗)‖ ≤ ‖g (xn)− g (x̃n)‖+ ‖g (x̃n)− g (x∗)‖, we know

that g (xn) → g (x∗) as n →∞. Since g : X → X is a homeomorphic mapping, we immediately

obtain that xn → x∗ as n →∞. Thus, CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed. ���

Theorem 4.3. Let K be a nonempty, closed and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings. Let g : X → X be a continuous mapping and N : X ∗×

X ∗ → X ∗ be a continuous mapping. Assume that φ : X × X → R∪ {+∞} is proper, convex and

lower semicontinuous in the first argument. If CGMVI(N (F,E ), g ,φ,K ) is strongly (resp. weakly)

LP 1-well-posed in the generalized sense, then IP(N (F,E )+∂(φ+δK ) ◦ g ,K ) is strongly (resp.

weakly) LP well-posed in the generalized sense.

Proof. Let {xn} be a LP approximating sequence for IP(N (F,E )+∂(φ+δK )◦ g ,K ). Then there

exists wn ∈ X with wn → 0 such that g (xn)+wn ∈ K , and there exists yn ∈ N (F (xn),E (xn))+

∂(φ(·, xn)+δK )(g (xn )) such that ‖yn‖→ 0 as n →∞. It is easy to see that there exist un ∈ F (xn)

and vn ∈ E (xn) such that

φ(y, xn)−φ(g (xn ), xn) ≥ 〈yn −N (un , vn), y − g (xn)〉, ∀y ∈ K .
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Thus,

〈N (un , vn), g (xn )− y〉+φ(g (xn), xn)−φ(y, xn)

≤ 〈yn , g (xn)− y〉 ≤ 1
2‖g (xn)− y‖2 +

1
2‖yn‖

2, ∀y ∈ K ,n ≥ 1.

This together with ‖yn‖→ 0, implies that {xn} be a LP 1-approximating sequence for

CGMVI(N (F,E ), g ,φ,K ). Since CGMVI(N (F,E ), g ,φ,K ) is strongly (resp. weakly) LP 1-well-

posed in the generalized sense, {xn} has a subsequence which converges strongly (resp. weakly)

to some solution x∗ of CGMVI(N (F,E ), g ,φ,K ). By Proposition 2.1, x∗ is also a solution of

IP(N (F,E )+∂(φ+δK )◦ g ,K ) and so IP(N (F,E )+∂(φ+δK )◦ g ,K ) is strongly (resp. weakly) LP

well-posed in the generalized sense. The proof is complete. ���

Theorem 4.4. Let K be a nonempty, closed and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings which both are H -uniformly continuous. Let g : X → X

be a homeomorphic mapping and N : X ∗× X ∗ → X ∗ be mixed Lipschitz continuous with re-

spect to the first and second arguments. Assume that φ : X × X → R∪ {+∞} satisfies the condi-

tions:

(C1) φ is proper, convex and subdifferentiable in the first argument, and for each y ∈ X the

subdifferential of φ(·, y) at x ∈ X is denoted by ∂1φ(x, y);

(C2) for each y ∈ X , ∂1φ(·, y) : X → 2X ∗

is a nonempty compact-valued mapping, which is H -

Lipschitz continuous with respect to g , that is, for some λ> 0, one has

H (∂1φ(g (x), y),∂1φ(g (x), z)) ≤λ‖g (y)− g (z)‖, ∀x, y, z ∈ X .

If IP(N (F,E )+ ∂(φ+δK ) ◦ g ,K ) is strongly LP well-posed in the generalized sense, then

CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed in the generalized sense.

Proof. The conclusion follows from the similar arguments to those in the proof of Theorem

4.2. ���

Remark 4.2. Our Theorems 4.1−4.4 improve, extend and develop Theorems 4.1−4.4 in [19] to

a great extent because our CGMVI(N (F,E ), g ,φ,K ) and IP(N (F,E )+∂(φ+δK )◦ g ,K ) are more

general than the GMVI(F,φ,K ) and IP(F +∂(φ+δK ),K ) in [19], respectively.

5. Links with Levitin-Polyak Well-Posedness of fixed point problems

In this section, we shall investigate the relations between the Levitin-Polyak well-posedness

of completely generalized mixed variational inequalities and the Levitin-Polyak well-posedness

of the corresponding fixed point problems. Let g : X → X be a single-valued mapping and
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T : X ×X → 2X ∗

be a set-valued mapping. The fixed point problem associated with (T, g ,K ) is

defined by

FP(T, g ,K ) : find x ∈ K such that x ∈ T (x, g (x)).

Let U = {x ∈ X : ‖x‖ = 1} be the unit sphere. A Banach space X is said to be (i) strictly convex

if for any x, y ∈ U , x 6= y ⇒ ‖
x+y

2 ‖ < 1; (ii) smooth if the limit limt→0
‖x+t y‖−‖x‖

t exists for all

x, y ∈U . The modulus of convexity of X is defined by

δX (ǫ) = inf{1−‖
x + y

2
‖ : x, y ∈U , ‖x + y‖≥ ǫ},

and the modulus of smoothness of X is defined by

ρX (τ) = sup{
1

2
(‖x + y‖+‖x − y‖)−1 : x ∈U , ‖y‖≤ τ}.

In this section, we suppose that q > 1 and s > 1 are fixed numbers.

Definition 5.1. A Banach space X is said to be

(i) q-uniformly convex if there exists a constant c > 0 such that δX (ǫ)≥ cǫq for all ǫ ∈ (0,2);

(ii) q-uniformly smooth if there exists a constant k > 0 such that ρX (τ) ≤ kτq .

The generalized duality mapping Jq : X → 2X ∗

is defined by

Jq (x) = { jq (x) ∈ X ∗ : 〈 jq (x), x〉 = ‖x‖q , ‖ jq (x)‖ = ‖x‖q−1}.

In particular, J = J2 is called the normalized duality mapping. It is well known that Jq has the

following properties: (a) Jq is bounded; (b) if X is smooth, then Jq is single-valued; (c) if X is

strictly convex, then Jq is one-to-one and strictly monotone.

Lemma 5.1 (see [18]). Let X be a q-uniformly smooth Banach space. Then there exists a con-

stant Lq > 0 such that

‖Jq (x)− Jq (y)‖≤ Lq‖x − y‖q−1, ∀x, y ∈ X .

Lemma 5.2 (see [18]). Let X be a q-uniformly convex Banach space. Then there exists a con-

stant Kq > 0 such that

〈Jq (x)− Jq (y), x − y〉 ≥Kq‖x − y‖q , ∀x, y ∈ X .

Lemma 5.3 (see [10]). Let X be a q-uniformly convex Banach space and M : X → 2X ∗

be a

maximal monotone operator. Then for every λ > 0, (Jq +λM )−1 is well-defined and single-

valued.
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We denote Π
φ(·,x)

λ
= (Jq +λ∂φ(·, x))−1 for each x ∈ X . By the definition of Π

φ(·,x)

λ
and

Lemma 5.3, it is easy to prove the following proposition.

Proposition 5.1. Let X be a q-uniformly convex Banach space, and K be a nonempty, closed

and convex subset of X . Let g : X → X be a single-valued mapping, N : X ∗× X ∗ → X ∗ be a

single-valued mapping, and F,E : X → 2X ∗

be two nonempty set-valued mappings. Let φ : X ×

X → R∪ {+∞} be such that for each x ∈ X , φ(·, x) is a proper, convex and lower semicontinuous

functional. Then the following conclusions are equivalent:

(i) x solves CGMVI(N (F,E ), g ,φ,K );

(ii) x solves the fixed-point problem FP(I − g +Π
φ+δk

λ
(Jq ◦ g −λN (F,E )),K ):

find x ∈ K such that g (x) ∈Π
φ(·,x)+δk

λ
(Jq (g (x))−λN (F (x),E (x))).

Definition 5.2. A sequence {xn} ⊂ K is called a LP approximating sequence for FP(T, g ,K ) if

there exists wn ∈ X with wn → 0 such that g (xn)+wn ∈ K , and there exists yn ∈ T (xn , g (xn ))

such that ‖xn − yn‖→ 0 as n →∞.

Definition 5.3. We say that FP(T, g ,K ) is strongly (resp. weakly) LP well-posed if it has a

unique solution and every LP approximating sequence for FP(T, g ,K ) converges strongly (resp.

weakly) to the unique solution. FP(T, g ,K ) is said to be strongly (resp. weakly) LP well-posed

in the generalized sense if the solution set S of FP(T, g ,K ) is nonempty and every LP approx-

imating sequence has a subsequence which converges strongly (resp. weakly) to a point of

S.

Remark 5.1. When g = I , Definitions 5.2 and 5.3 coincide with the Definitions 5.2 and 5.3 in

[19], respectively.

Theorem 5.1. Let X be a s-uniformly convex and q-uniformly smooth Banach space and K

be a nonempty, compact and convex subset of X . Let F,E : X → 2X ∗

be nonempty compact-

valued mappings which both are H -continuous. Let g : X → X be a continuous mapping and

N : X ∗×X ∗ → X ∗ be mixed Lipschitz continuous with respect to the first and second arguments.

Assume that φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) φ is proper, convex and lower semicontinuous in the first argument;

(C2) φ is upper semicontinuous in the second argument;

(C3) liminfn→∞ infy∈domφ(·,xn )(φ(y, xn)−φ(y, x̄)) ≥ 0, ∀{xn} ⊂ K : xn → x̄ (n →∞).

If CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed, then FP(I −g +Π
φ+δk

λ
(Jq ◦g −λN (F,E )),K )

is strongly LP well-posed, where λ> 0 is a constant.
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Proof. We suppose that CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed and x∗ is the unique

solution of CGMVI(N (F,E ), g ,φ,K ). By Proposition 5.1, x∗ is the unique solution of FP(I −g +

Π
φ+δk

λ
(Jq ◦g −λN (F,E )),K ). Let {xn} be a LP approximating sequence for FP(I −g +Π

φ+δk

λ
(Jq ◦

g −λN (F,E )),K ), then there exists wn ∈ X with wn → 0 such that g (xn)+wn ∈ K , and there

exists yn ∈ (I − g )(xn )+Π
φ(·,xn )+δk

λ
(Jq (g (xn))−λN (F (xn ),E (xn))) such that ‖xn − yn‖ → 0 as

n →∞. By the definition of Π
φ(·,xn )+δk

λ
, there exist un ∈ F (xn) and vn ∈ E (xn) such that

Jq (g (xn ))− Jq (yn −xn + g (xn))

λ
−N (un , vn) ∈ ∂(φ(·, xn)+δk )(yn −xn + g (xn)).

It is easy to see that {yn −xn + g (xn)} ⊂K and

〈
Jq (g (xn ))− Jq (yn −xn + g (xn))

λ
−N (un , vn), y − (yn −xn + g (xn ))

〉

≤ φ(y, xn)−φ(yn −xn + g (xn ), xn), ∀y ∈ K ,n ≥ 1. (5.1)

Putting zn =
Jq (g (xn ))−Jq (yn−xn+g (xn ))

λ
, by Lemma 5.1 we deduce from ‖xn − yn‖→ 0 that as n →

∞,

‖zn‖ =

∥∥∥∥
Jq (g (xn))− Jq (yn −xn + g (xn ))

λ

∥∥∥∥≤
Lq‖yn −xn‖

q−1

λ
→ 0. (5.2)

Let {xni
} be any subsequence of {xn} such that xni

→ x̄ as i → ∞. Clearly x̄ ∈ K . Since

{yn−xn+g (xn)} ⊂ K and g is continuous, we know that g (x̄) ∈ K . So, it follows from (5.1), (5.2)

and conditions (C1)−(C3) that

liminf
i→∞

(φ(yni
−xni

+ g (xni
), xni

)−φ(yni
−xni

+ g (xni
), x̄))

≥ liminf
i→∞

inf
y∈domφ(·,xni

)
(φ(y, xni

)−φ(y, x̄)) ≥ 0,

and

liminf
i→∞

〈N (uni
, vni

), yni
−xni

+ g (xni
)− y〉+φ(g (x̄), x̄)−φ(y, x̄)

≤ liminf
i→∞

〈N (uni
, vni

)− zni
, yni

−xni
+ g (xni

)− y〉+ liminf
i→∞

φ(yni
−xni

+ g (xni
), x̄)

+liminf
i→∞

(φ(yni
−xni

+ g (xni
), xni

)−φ(yni
−xni

+ g (xni
), x̄))+ liminf

i→∞
(−φ(y, xni

))

≤ liminf
i→∞

{〈N (uni
, vni

)− zni
, yni

−xni
+ g (xni

)− y〉+φ(yni
−xni

+ g (xni
), x̄)

+φ(yni
−xni

+ g (xni
), xni

)−φ(yni
−xni

+ g (xni
), x̄)−φ(y, xni

)}

= liminf
i→∞

{〈N (uni
, vni

)− zni
, yni

−xni
+ g (xni

)− y〉+φ(yni
−xni

+ g (xni
), xni

)−φ(y, xni
)}

≤ 0. (5.3)

Since F and E are nonempty compact-valued mappings, in terms of Lemma 2.1, for each

un ∈ F (xn) and vn ∈ E (xn) there exist ūn ∈ F (x̄) and v̄n ∈ E (x̄) such that ‖un − ūn‖ ≤H (F (xn),

F (x̄)) and ‖vn − v̄n‖ ≤ H (E (xn),E (x̄)). Since F and E both are H -continuous, one deduces

that ‖uni
− ūni

‖ ≤H (F (xni
),F (x̄)) → 0 and ‖vni

− v̄ni
‖ ≤H (E (xni

),E (x̄)) → 0 as i →∞. Since
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F (x̄) and E (x̄) both are compact, without loss of generality we may assume that ūni
→ ū ∈ F (x̄)

and v̄ni
→ v̄ ∈ E (x̄) as i →∞. Thus, we conclude that

‖uni
− ū‖≤ ‖uni

− ūni
‖+‖ūni

− ū‖→ 0 as i →∞,

and

‖vni
− v̄‖≤ ‖vni

− v̄ni
‖+‖v̄ni

− v̄‖→ 0 as i →∞.

That is, uni
→ ū and vni

→ v̄ as i →∞. Note that N is mixed Lipschitz continuous with respect

to the first and second arguments. Hence there exists a pair of constants ζ,ξ> 0 such that

‖N (uni
, vni

)−N (ū, v̄)‖≤ ζ‖uni
− ū‖+ξ‖vni

− v̄‖→ 0 as i →∞.

This together with uni
→ ū and vni

→ v̄ , implies that N (uni
, vni

) → N (ū, v̄) as i → ∞. So, it

immediately follows from (5.3) that

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤ 0, ∀y ∈ K .

Thus, x̄ solves CGMVI(N (F,E ), g ,φ,K ). Since CGMVI(N (F,E ), g ,φ,K ) has a unique solution

x∗, we get x̄ = x∗. This shows that xn → x∗ as n → ∞. Therefore, FP(I − g +Π
φ+δk

λ
(Jq ◦ g −

λN (F,E )),K ) is strongly LP well-posed. The proof is complete. ���

Theorem 5.2. Let X be a q-uniformly convex Banach space and K be a nonempty, closed and

convex subset of X . Let F,E : X → 2X ∗

be nonempty compact-valued mappings which both are

H -uniformly continuous. Let g : X → X be a homeomorphic mapping and N : X ∗×X ∗ → X ∗

be mixed Lipschitz continuous with respect to the first and second arguments. Assume that

φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) for each x ∈ X , φ(·, x) is a proper, convex and subdifferentiable functional;

(C2) ‖Π
φ(·,x)+δK

λ
(ν∗)−Π

φ(·,y)+δK

λ
(ν∗)‖≤β‖g (x)− g (y)‖,∀x, y ∈ X ,ν∗ ∈ X ∗ for some β> 0.

If FP(I −g +Π
φ+δk

λ
(Jq ◦g −λN (F,E )),K ) is strongly LP well-posed, then CGMVI(N (F,E ), g ,φ, K )

is strongly LP well-posed.

Proof. Let {xn} ⊂ K be a LP approximating sequence for CGMVI(N (F,E ), g ,φ,K ). Then there

exist wn ∈ X with wn → 0 and 0 < ǫn → 0 such that g (xn)+wn ∈ K , and there exist un ∈ F (xn)

and vn ∈ E (xn) satisfying

φ(g (xn ), xn) ≥φ(y, xn)+〈N (un , vn), y − g (xn)〉+ǫn , ∀y ∈ K ,n ≥ 1. (5.4)

Since g (xn)+wn ∈ K , there exists kn ∈ K such that g (xn)+wn = kn . Define φ̃n : X → R∪ {+∞}

as follows:

φ̃n(y) =φ(y, xn)+〈N (un , vn), y − g (xn)〉, ∀y ∈ K ,n ≥ 1.
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Since φ is proper, convex and subdifferentiable in the first argument, then we have that φ̃n is

proper, convex and subdifferentiable for all n ≥ 1. It follows from Proposition 2.2.6 of [16] that

φ̃n is Lipschitz continuous. Since ‖wn‖ = ‖kn − g (xn)‖→ 0, then there exists 0 < δn → 0 such

that

φ̃n(kn)− φ̃n(g (xn )) ≤δn . (5.5)

It follows from (5.4) and (5.5) that

φ̃n(kn) ≤ φ̃n(y)+δn +ǫn , ∀y ∈ K .

By Ekeland’s theorem [17], there exists x̃n ∈ K such that

‖g (x̃n)−kn‖≤
√

δn +ǫn ,

and

φ̃n(g (x̃n)) ≤ φ̃n(y)+
√
δn +ǫn‖y − g (x̃n)‖, ∀y ∈ K .

Thus, g (x̃n) minimizes the function φ̃n((·)+
√

δn +ǫn‖·−g (x̃n )‖. It follows that 0∗ ∈ ∂(φ̃n((·)+√
δn +ǫn‖ ·−g (x̃n )‖)(g (x̃n )). That is,

0∗ ∈ ∂φ̃n(g (x̃n))+
√

δn +ǫnBX ∗ .

So there exists

x∗
n ∈ ∂φ̃n(g (x̃n )) = ∂φ1(g (x̃n ), xn)+N (un , vn) (5.6)

such that

‖x∗
n‖ ≤

√
δn +ǫn .

It follows from (5.6) that

g (x̃n) =Π
φ(·,xn )+δK

λ
(Jq (g (x̃n ))+λx∗

n −λN (un , vn)).

Since ‖g (xn)−kn‖→ 0 and ‖g (x̃n)−kn‖→ 0, we have ‖g (xn)−g (x̃n )‖≤ ‖g (xn)−kn‖+‖g (x̃n)−

kn‖ → 0. Since F,E : X → 2X ∗

are nonempty compact-valued mappings which both are H -

uniformly continuous, in terms of Lemma 2.1 we know that for each un ∈ F (xn) and vn ∈

E (xn) there exist ũn ∈ F (x̃n) and ṽn ∈ E (x̃n) such that ‖un − ũn‖ ≤ H (F (xn),F (x̃n)) → 0 and

‖vn − ṽn‖ ≤ H (E (xn),E (x̃n)) → 0 as n →∞. Note that N is mixed Lipschitz continuous with

respect to the first and second arguments. Hence, it follows that there exists a pair of constants

ζ,ξ> 0 such that

‖N (un , vn)−N (ũn , ṽn)‖ ≤ ζ‖un − ũn‖+ξ‖vn − ṽn‖→ 0,

as n →∞. Since

Π
φ(·,x̃n)+δK

λ
(Jq (g (x̃n))−λN (ũn , ṽn)) ∈Π

φ(·,x̃n )+δK

λ
(Jq (g (x̃n ))−λN (F (x̃n),E (x̃n))),
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and as n →∞,

‖g (x̃n)−Π
φ(·,x̃n )+δK

λ
(Jq (g (x̃n))−λN (ũn , ṽn))‖

= ‖Π
φ(·,xn)+δK

λ
(Jq (g (x̃n))+λx∗

n −λN (un , vn))−Π
φ(·,x̃n )+δK

λ
(Jq (g (x̃n))−λN (ũn , ṽn))‖

≤ ‖Π
φ(·,xn)+δK

λ
(Jq (g (x̃n))+λx∗

n −λN (un , vn))−Π
φ(·,x̃n )+δK

λ
(Jq (g (x̃n))+λx∗

n −λN (un , vn))‖

+‖Π
φ(·,x̃n )+δK

λ
(Jq (g (x̃n ))+λx∗

n −λN (un , vn))−Π
φ(·,x̃n )+δK

λ
(Jq (g (x̃n))−λN (ũn , ṽn))‖

≤ β‖g (xn)− g (x̃n )‖+‖(Jq (g (x̃n))+λx∗
n −λN (un , vn))− (Jq (g (x̃n))−λN (ũn , ṽn))‖

= β‖g (xn)− g (x̃n )‖+‖λx∗
n +λ(N (ũn , ṽn)−N (un , vn))‖

≤ β‖g (xn)− g (x̃n )‖+‖λx∗
n‖+‖λ(N (ũn , ṽn)−N (un , vn))‖→ 0, (5.7)

this shows that

lim
n→∞

‖x̃n − [(I − g )(x̃n )+Π
φ(·,x̃n )+δK

λ
(Jq (g (x̃n ))−λN (ũn , ṽn))]‖ = 0.

Thus, {x̃n} is a LP approximating sequence for FP(I − g +Π
φ+δk

λ
(Jq ◦ g −λN (F,E )),K ). Let x∗

be the unique solution of CGMVI(N (F,E ), g ,φ,K ). By Proposition 5.1, we obtain that x∗ is

also the unique solution of FP(I − g +Π
φ+δk

λ
(Jq ◦ g −λN (F,E )),K ). If FP(I − g +Π

φ+δk

λ
(Jq ◦ g −

λN (F,E )),K ) is strongly LP well-posed, then x̃n → x∗. It follows that

‖g (xn)− g (x∗)‖≤ ‖g (xn)− g (x̃n )‖+‖g (x̃n)− g (x∗)‖→ 0.

Since g is a homeomorphic mapping, we immediately obtain that xn → x∗ as n →∞. Thus,

CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed. ���

Theorem 5.3. Let X be a s-uniformly convex and q-uniformly smooth Banach space and K

be a nonempty, compact and convex subset of X . Let F,E : X → 2X ∗

be nonempty compact-

valued mappings such that F (K )∪E (K ) is bounded. Let g : X → X be a continuous mapping

and N : X ∗× X ∗ → X ∗ be be mixed Lipschitz continuous with respect to the first and second

arguments. Assume that φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) φ is proper, convex and lower semicontinuous in the first argument;

(C2) limn→∞ |φ(en + g (xn ), xn)−φ(g (xn ), xn)| = 0, ∀{xn} ⊂ K : {en + g (xn )} ⊂ K with en → 0.

If CGMVI(N (F,E ), g ,φ,K ) is strongly (resp. weakly) LP 1
λ

-well-posed in the generalized

sense, then FP(I − g +Π
φ+δk

λ
(Jq ◦ g −λN (F,E )),K ) is strongly (resp. weakly) LP well-posed

in the generalized sense.

Proof. Let {xn} ⊂ K be a LP approximating sequence for FP(I −g +Π
φ+δk

λ
(Jq ◦g −λN (F,E )),K ).

Then there exists wn ∈ X with wn → 0 such that g (xn)+ wn ∈ K , and there exists yn ∈ (I −

g )(xn )+Π
φ(·,xn)+δk

λ
(Jq (g (xn))−λN (F (xn),E (xn))) such that ‖xn − yn‖ → 0 as n → ∞. By the
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definition of Π
φ(·,xn)+δk

λ
, we know that {yn − xn + g (xn )} ⊂ K and there exist un ∈ F (xn) and

vn ∈ E (xn) such that

〈
Jq (g (xn ))− Jq (yn −xn + g (xn))

λ
−N (un , vn), y − (yn −xn + g (xn ))

〉

≤ φ(y, xn)−φ(yn −xn + g (xn ), xn), ∀y ∈ K ,n ≥ 1. (5.8)

It follows from (5.8) that for any y ∈ K ,

〈N (un, vn), g (xn )− y〉+φ(g (xn), xn)−φ(y, xn)

≤ 〈N (un, vn), xn − yn〉+φ(g (xn), xn)−φ(yn −xn + g (xn), xn)

+〈
Jq (g (xn))− Jq (yn −xn + g (xn))

λ
, g (xn)− y〉+〈

Jq (g (xn ))− Jq (yn −xn + g (xn))

λ
, yn −xn〉

≤ ‖N (un , vn)‖‖xn − yn‖+|φ(g (xn), xn)−φ(yn −xn + g (xn ), xn)|

+
‖Jq (g (xn))− Jq (yn −xn + g (xn ))‖

λ
‖g (xn)− y‖+

‖Jq (g (xn))− Jq (yn −xn + g (xn))‖

λ
‖yn −xn‖

≤ ‖N (un , vn)‖‖xn − yn‖+|φ(g (xn), xn)−φ(yn −xn + g (xn ), xn)|

+
1

2λ
‖Jq (g (xn ))− Jq (yn −xn + g (xn))‖2

+
1

2λ
‖g (xn)− y‖2

+
‖Jq (g (xn))− Jq (yn −xn + g (xn ))‖

λ
‖yn −xn‖

=
1

2λ
‖g (xn)− y‖2

+ [‖N (un , vn)‖+
1

λ
‖Jq (g (xn))− Jq (yn −xn + g (xn))‖]‖yn −xn‖

+|φ(g (xn ), xn)−φ(yn −xn + g (xn), xn)|+
1

2λ
‖Jq (g (xn))− Jq (yn −xn + g (xn))‖2. (5.9)

Since N is mixed Lipschitz continuous with respect to the first and second arguments, there

exists a pair of constants ζ,ξ> 0 such that

‖N (x1, y1)−N (x2, y2)‖ ≤ ζ‖x1 −x2‖+ξ‖y1 − y2‖, ∀(xi , yi ) ∈ X ×X , i = 1,2,

which together with (un , vn) ∈ F (K )×E (K ) and the boundedness of F (K )∪E (K ), implies that

{N (un , vn)} is bounded. Putting en = yn −xn , from condition (C2) we get

lim
n→∞

|φ(yn −xn + g (xn), xn)−φ(g (xn ), xn)| = lim
n→∞

|φ(en + g (xn ), xn)−φ(g (xn ), xn)| = 0.

Again, by Lemma 5.1 we have

‖Jq (yn −xn + g (xn ))− Jq (g (xn ))‖ ≤ Lq‖yn −xn‖
q−1

→ 0.

It follows from (5.9) that {xn} is a LP 1
λ -approximating sequence for CGMVI(N (F,E ), g ,φ, K ). If

CGMVI(N (F,E ), g ,φ,K ) is strongly LP 1
λ -well-posed in the generalized sense, then {xn} has a

subsequence {xni
} such that xni

→ x∗ as i →∞, where x∗ is a solution of CGMVI(N (F,E ), g ,φ,

K ). By Proposition 5.1, we obtain that x∗ is also a solution of FP(I−g+Π
φ+δk

λ
(Jq ◦g−λN (F,E )),
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K ). Thus, FP(I − g +Π
φ+δk

λ
(Jq ◦ g −λN (F,E )),K ) is strongly LP well-posed in the generalized

sense.

If CGMVI(N (F,E ), g ,φ,K ) is weakly LP 1
λ

-well-posed in the generalized sense, then {xn}

has a subsequence {xni
} such that xni

* x∗ as i →∞, where x∗ is a solution of CGMVI(N (F,E ),

g ,φ,K ). By Proposition 5.1, we obtain that x∗ is also a solution of FP(I − g +Π
φ+δk

λ
(Jq ◦ g −

λN (F,E )), K ). Thus, FP(I −g +Π
φ+δk

λ
(Jq ◦g −λN (F,E )),K ) is weakly LP well-posed in the gen-

eralized sense. ���

Theorem 5.4. Let X be a q-uniformly convex Banach space and K be a nonempty, closed and

convex subset of X . Let F,E : X → 2X ∗

be nonempty compact-valued mappings which both are

H -uniformly continuous. Let g : X → X be a homeomorphic mapping and N : X ∗×X ∗ → X ∗

be mixed Lipschitz continuous with respect to the first and second arguments. Assume that

φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) for each x ∈ X , φ(·, x) is a proper, convex and subdifferentiable functional;

(C2) ‖Π
φ(·,x)+δK

λ
(ν∗)−Π

φ(·,y)+δK

λ
(ν∗)‖≤β‖g (x)− g (y)‖,∀x, y ∈ X ,ν∗ ∈ X ∗ for some β> 0.

If FP(I −g +Π
φ+δk

λ
(Jq ◦g −λN (F,E )),K ) is strongly LP well-posed in the generalized sense, then

CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed in the generalized sense, where λ> 0 is a con-

stant.

Proof. The conclusion follows from the similar arguments to those in the proof of Theorem

5.2. ���

Remark 5.2. Our Theorems 5.1−5.4 improve, extend and develop Theorems 5.1−5.4 in [19] to

a great extent because our CGMVI(N (F,E ), g ,φ,K ) and FP(I − g +Π
φ+δk

λ
(Jq ◦ g −λN (F,E )),K )

are more general than the GMVI(F,φ,K ) and FP(Π
φ+δk

λ
(Jq −λF,K ) in [19], respectively.

6. Conditions for Levitin-Polyak Well-Posedness

In this section, we shall derive some conditions under which a completely generalized

mixed variational inequality in Banach spaces is Levitin-Polyak well-posed.

Theorem 6.1. Let K be a nonempty, compact and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings which both are H -continuous. Let g : X → X be a con-

tinuous mapping and N : X ∗×X ∗ → X ∗ be mixed Lipschitz continuous with respect to the first

and second arguments. Assume that φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) φ is proper, convex and lower semicontinuous in the first argument;

(C2) φ is upper semicontinuous in the second argument;
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(C3) liminfn→∞ infy∈domφ(·,xn)(φ(y, xn)−φ(y, x̄)) ≥ 0, ∀{xn } ⊂ K : xn → x̄ (n →∞).

Then CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed if and only if it has a unique solution.

Proof. The necessity is obvious. For the sufficiency, suppose that CGMVI(N (F,E ), g ,φ,K )

has a unique solution x∗. If CGMVI(N (F,E ), g ,φ,K ) is not strongly LP well-posed, then there

exists a LP approximating sequence {xn} ⊂ K for CGMVI(N (F,E ), g ,φ,K ) such that {xn} is not

strongly convergent to x∗. Thus, there exist wn ∈ X with wn → 0 and 0 < ǫn → 0 such that

g (xn)+wn ∈ K , and there exist un ∈ F (xn) and vn ∈ E (xn) such that

〈N (un, vn), g (xn)− y〉+φ(g (xn ), xn)−φ(y, xn) ≤ ǫn , ∀y ∈ K ,n ≥ 1. (6.1)

Let {xni
} be any subsequence of {xn} such that xni

→ x̄ as i →∞. Clearly x̄ ∈ K . Since {g (xn)+

wn} ⊂ K and g is continuous, we know that g (x̄) ∈ K . So, it follows from (6.1), ǫn → 0 and

conditions (C1)−(C3) that

liminf
i→∞

(φ(g (xni
), xni

)−φ(g (xni
), x̄)) ≥ liminf

i→∞
inf

y∈domφ(·,xni
)
(φ(y, xni

)−φ(y, x̄)) ≥ 0,

and

liminf
i→∞

〈N (uni
, vni

), g (xni
)− y〉+φ(g (x̄), x̄)−φ(y, x̄)

≤ liminf
i→∞

〈N (uni
, vni

), g (xni
)− y〉+ liminf

i→∞
φ(g (xni

), x̄)

+liminf
i→∞

(φ(g (xni
), xni

)−φ(g (xni
), x̄))+ liminf

i→∞
(−φ(y, xni

))

≤ liminf
i→∞

{〈N (uni
, vni

), g (xni
)− y〉+φ(g (xni

), x̄)+φ(g (xni
), xni

)−φ(g (xni
), x̄)−φ(y, xni

)}

= liminf
i→∞

{〈N (uni
, vni

)− yni
, g (xni

)− y〉+φ(g (xni
), xni

)−φ(y, xni
)}

≤ liminf
i→∞

ǫni
= 0. (6.2)

Since F and E are nonempty compact-valued mappings, in terms of Lemma 2.1, for each un ∈

F (xn) and vn ∈ E (xn) there exist ūn ∈ F (x̄) and v̄n ∈ E (x̄) such that ‖un− ūn‖ ≤H (F (xn),F (x̄))

and ‖vn − v̄n‖ ≤ H (E (xn),E (x̄)). Since F and E both are H -continuous, one deduces that

‖uni
− ūni

‖ ≤H (F (xni
),F (x̄)) → 0 and ‖vni

− v̄ni
‖ ≤H (E (xni

),E (x̄)) → 0 as i →∞. Since F (x̄)

and E (x̄) both are compact, without loss of generality we may assume that ūni
→ ū ∈ F (x̄) and

v̄ni
→ v̄ ∈ E (x̄) as i →∞. Thus, we conclude that

‖uni
− ū‖≤ ‖uni

− ūni
‖+‖ūni

− ū‖→ 0 as i →∞,

and

‖vni
− v̄‖ ≤ ‖vni

− v̄ni
‖+‖v̄ni

− v̄‖→ 0 as i →∞.

That is, uni
→ ū and vni

→ v̄ as i →∞. Note that N is mixed Lipschitz continuous with respect

to the first and second arguments. Hence there exists a pair of constants ζ,ξ> 0 such that

‖N (uni
, vni

)−N (ū, v̄)‖ ≤ ζ‖uni
− ū‖+ξ‖vni

− v̄‖→ 0 as i →∞.
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This together with uni
→ ū and vni

→ v̄ , implies that N (uni
, vni

) → N (ū, v̄) as i → ∞. So, it

immediately follows from (6.2) that

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤ 0, ∀y ∈ K .

Thus, x̄ solves CGMVI(N (F,E ), g ,φ,K ). Since CGMVI(N (F,E ), g ,φ,K ) has a unique solution

x∗, we get x̄ = x∗. So, xn → x∗ as n →∞. This leads to a contradiction. Therefore,

CGMVI(N (F,E ), g ,φ,K ) is strongly LP well-posed. The proof is complete. ���

Let K ⊂ X and g : X → X be a mapping. Now, for any δ0 ≥ 0, we denote Mg (δ0) = {x ∈ X :

d (g (x),K ) ≤ δ0}. We have the following result.

Theorem 6.2. Let K be a nonempty, closed and convex subset of X . Let F,E : X → 2X ∗

be

nonempty compact-valued mappings which both are upper semicontinuous. Let g : X → X

be a continuous mapping and N : X ∗×X ∗ → X ∗ be mixed Lipschitz continuous with respect to

the first and second arguments. Assume that φ : X ×X → R∪ {+∞} satisfies the conditions:

(C1) φ is proper, convex and lower semicontinuous in the first argument;

(C2) φ is upper semicontinuous in the second argument;

(C3) liminfn→∞ infy∈domφ(·,xn )(φ(y, xn)−φ(y, x̄)) ≥ 0, ∀{xn} ⊂ K : xn → x̄ (n →∞).

If there exists some δ0 > 0 such that M (δ0) is compact, then CGMVI(N (F,E ), g ,φ,K ) is strongly

LP α-well-posed in the generalized sense.

Proof. Let {xn} ⊂K be a LPα-approximating sequence for CGMVI(N (F,E ), g ,φ,K ). Then there

exist 0 < ǫ′n → 0 and wn ∈ X with wn → 0 such that

g (xn)+wn ∈ K ,

and there exist un ∈ F (xn) and vn ∈ E (xn) satisfying

〈N (un, vn), g (xn)− y〉+φ(g (xn ), xn)−φ(y, xn)≤
α

2
‖g (xn)− y‖2

+ǫ′n , ∀y ∈ K ,n ≥ 1. (6.3)

Since g (xn)+wn ∈ K , then there exists kn ∈ K such that g (xn)+wn = kn . Thus,

d (g (xn),K ) ≤ ‖g (xn)−kn‖ = ‖wn‖→ 0.

Setting ǫn = max{ǫ′n ,‖wn‖}, we can get d (g (xn),K ) ≤ ǫn . Without loss of generality, we may

assume that {xn} ⊂ M (δ0) for n sufficiently large. By the compactness of M (δ0), there exists a

subsequence {xni
} of {xn} and x̄ ∈ Mg (δ0) such that xni

→ x̄ as i →∞. It is easy to see x̄ ∈ K .

Furthermore, by the u.s.c. of F and E at x̄ and compactness of F (x̄) and E (x̄), there exist a

subsequence {(uni
, vni

)} of {(un , vn)} some (ū, v̄) ∈ F (x̄)×E (x̄) such that uni
→ ū and vni

→ v̄ .

Since N is mixed Lipschitz continuous with respect to the first and second arguments, there

exists a pair of constants ζ,ξ> 0 such that as i →∞,

‖N (uni
, vni

)−N (ū, v̄)‖ ≤ ζ‖uni
− ū‖+ξ‖vni

− v̄‖→ 0.
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Since φ satisfies conditions (C1)−(C3), from (6.3) we deduce that for all y ∈ K ,

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄)

≤ liminf
i→∞

〈N (uni
, vni

), g (xni
)− y〉+ liminf

i→∞
φ(g (xni

), x̄)

+liminf
i→∞

(φ(g (xni
), xni

)−φ(g (xni
), x̄))+ liminf

i→∞
(−φ(y, xni

))

≤ liminf
i→∞

{〈N (uni
, vni

), g (xni
)− y〉+φ(g (xni

), x̄)+φ(g (xni
), xni

)−φ(g (xni
), x̄)−φ(y, xni

)}

= liminf
i→∞

{〈N (uni
, vni

), g (xni
)− y〉+φ(g (xni

), xni
)−φ(y, xni

)}

≤ liminf
i→∞

{
α

2
‖g (xni

)− y‖2
+ǫ′ni

}

=
α

2
‖g (x̄)− y‖2,

That is,

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤
α

2
‖g (x̄)− y‖2, ∀y ∈ K . (6.4)

For any y ∈ K , put yt = g (x̄)+ t (y − g (x̄)) for all t ∈ (0,1), it is easy to see yt ∈ K . Now, utilizing

(6.4), one has

〈N (ū, v̄), g (x̄)− yt 〉+φ(g (x̄), x̄)−φ(yt , x̄) ≤
α

2
‖g (x̄)− yt‖

2.

By the convexity of φ in the first argument, we conclude that for each t ∈ (0,1), one has

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤
αt

2
‖g (x̄)− y‖2, ∀y ∈ K .

Letting t → 0+ in the last inequality, we have

〈N (ū, v̄), g (x̄)− y〉+φ(g (x̄), x̄)−φ(y, x̄) ≤ 0, ∀y ∈ K .

This shows that x̄ solves CGMVI(N (F,E ), g ,φ,K ). Thus, CGMVI(N (F,E ), g ,φ,K ) is strongly LP

α-well-posed in the generalized sense. The proof is complete. ���

Remark 6.1. Our Theorems 6.1−6.2 improve, extend and develop Theorems 6.1−6.2 in [19]

to a great extent because our CGMVI(N (F,E ), g ,φ,K ) is more general than the GMVI(F,φ,K )

in [19].
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