This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

ON GLOBAL DOMINATING- χ -COLORING OF GRAPHS

MALAIRAJ RAJESWARI AND ISMAIL SAHUL HAMID

Abstract. Let *G* be a graph. Among all χ -colorings of *G*, a coloring with the maximum number of color classes that are global dominating sets in *G* is called a global dominating- χ -coloring of *G*. The number of color classes that are global dominating sets in a global dominating- χ -coloring of *G* is defined to be the global dominating - χ - color number of *G*, denoted by $gd_{\chi}(G)$. This concept was introduced in [5]. This paper extends the study of this notion.

1. Introduction

By a graph G = (V, E), we mean a connected, finite, non-trivial, undirected graph with neither loops nor multiple edges. The order and size of *G* are denoted by *n* and *m* respectively. For graph theoretic terminology we refer to Chartand and Lesniak [3].

A subset *D* of vertices is said to be a *dominating set* of *G* if every vertex in *V* either belongs to *D* or is adjacent to a vertex in *D*. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set of *G*. A subset *D* of vertices is said to be a *global dominating set* of *G* if *D* is a dominating set of both *G* and \overline{G} ; that is, every vertex outside *D* has a neighbour as well as a non-neighbour in *D*. The *global domination number* $\gamma_g(G)$ is the minimum cardinality of a global dominating set of *G*.

A proper coloring of a graph *G* is an assignment of colors to the vertices of *G* in such a way that no two adjacent vertices receive the same color. Since all colorings in this paper are proper colorings, we simply call a proper coloring a coloring. A coloring in which *k* colors are used is a *k*-coloring. The chromatic number of *G*, denoted by $\chi(G)$, is the minimum integer *k* for which *G* admits a *k*-coloring. In a given coloring of the vertices of a graph *G*, a set consisting of all those vertices assigned the same color is called a *color class*. If \mathscr{C} is a coloring of *G* with the color classes U_1, U_2, \ldots, U_t , then we write $\mathscr{C} = \{U_1, U_2, \ldots, U_t\}$. Among all χ -colorings of *G*, let \mathscr{C} be chosen to have a color class *U* that dominates as many vertices of *G* as possible. If there is a vertex in *G* not dominated by *U*, then deleting such a vertex from

Received September 4, 2016, accepted February 24, 2017.

2010 Mathematics Subject Classification. 05C15, 05C69.

Key words and phrases. Dominating- χ -coloring, global dominating- χ -coloring. Corresponding author: M. Rajeswari.

its color class and adding it to the color class U produces a new minimum vertex-coloring that contains a color class which dominates more vertices than U, a contradiction. Hence the color class U dominates G. Thus we have the following observation first observed in [1].

Observation 1.1. Every graph G contains a χ -coloring with the property that at least one color class is a dominating set in G.

Motivated by Observation 1.1, Arumugam et al. [1] defined the dominating $-\chi$ - color number, which they called dom-color number, as follows. Among all χ -colorings of *G*, a coloring with the maximum number of color classes that are dominating sets in *G* is called a *dominating*- χ -*coloring* of *G*. The number of color classes that are dominating sets in a dominating- χ -coloring of *G* is defined to be the *dominating*- χ - *color number* of *G*, denoted by $d_{\chi}(G)$. This parameter has been further studied in [2] and [4].

In [5], the notion of dominating- χ -coloring was extended to the notion of global dominating sets in the name of global dominating- χ -coloring. Among all χ -colorings of *G*, a coloring with the maximum number of color classes that are global dominating sets in *G* is called a *global dominating*- χ -*coloring* of *G*. The number of color classes that are global dominating sets in a global dominating- χ -coloring of *G* is defined to be the *global dominating* - χ - *color number* of *G* and is denoted by $gd_{\chi}(G)$. Certainly, for any graph *G*, we have $d_{\chi}(G) \ge gd_{\chi}(G)$. In this paper, we discuss the parameter gd_{χ} for unicyclic graph and also prove some realization theorems associated with some relations among gd_{χ} , d_{χ} and χ .

We need the following theorems.

Theorem 1.2 ([2]). For any graph *G*, we have $d_{\gamma}(G) \leq \delta(G) + 1$.

Theorem 1.3 ([5]). For any graph G, we have $gd_{\chi}(G) \leq \delta(G) + 1$.

Theorem 1.4 ([5]). If G is a graph of order $n \ge 2$, then $gd_{\chi}(G) \le \frac{n-\chi(G)s(G)}{\gamma_g(G)-s(G)}$, where s(G) denotes the minimum cardinality of any color class in any χ -coloring of G.

Theorem 1.5 ([5]). *If G is a graph with* $\Delta(G) = n - 1$ *, then* $gd_{\chi}(G) = 0$.

2. gd_{χ} for unicyclic graphs

Throughout the paper, by a unicyclic graph, we mean a connected unicyclic graph that is not a cycle. Now, in view of Theorem 1.3, for a graph with minimum degree 1, the value of global dominating χ - color number is at most 2. In particular, for a unicyclic graph *G*, $gd_{\chi}(G) \leq 2$. So, the family of unicyclic graphs can be classified into three classes namely graphs with $gd_{\chi} = 0$; graphs with $gd_{\chi} = 1$ and graphs with $gd_{\chi} = 2$. This section determines these classes of graphs. For this purpose, we describe the following families.

- (i) Let \mathscr{G}_1 be the class of all connected unicyclic graphs obtained from a cycle of length 4 by attaching at least one pendant edge at exactly two adjacent vertices of the cycle. A graph in this family is given in Figure 1(a).
- (ii) Let \mathscr{G}_2 be the collection of all connected unicyclic graphs obtained from a cycle of length 4 by attaching at least one pendant edge at each of two non adjacent vertices of the cycle. A graph lying in this family is given in Figure 1(b).
- (iii) Let \mathscr{G}_3 be the collection of all connected unicyclic graphs obtained from a cycle of length 4 by attaching at least one pendant edge at each of any three vertices of the cycle. A graph lying in this family is given in Figure 1(c).
- (iv) Let \mathscr{G}_4 be the collection of all connected unicyclic graphs with the cycle $C = (v_1, v_2, v_3, v_4, v_1)$ that are constructed as follows. Attach $r \ge 0$ pendant edges at v_1 , $s \ge 0$ pendant edges at v_3 . Also, attach $t \ge 1$ pendant edges at v_2 , say x_1, x_2, \ldots, x_t are the corresponding pendant vertices adjacent to v_2 . Finally, for each $i \in \{1, 2, \ldots, t\}$, attach t_i pendant vertex at the vertex x_i with the condition that $t_1 \ge 1$ and $t_j \ge 0$ for all $j \ne 1$. A graph lying in this family is given in Figure 1(d).
- (v) Let \mathscr{G}_5 be the family of connected unicyclic graphs obtained from a triangle by attaching at least one pendant edge at exactly one vertex of the triangle.

Figure 1: (a) A graph in \mathcal{G}_1 , (b) A graph in \mathcal{G}_2 , (c) A graph in \mathcal{G}_3 , (d) A graph in \mathcal{G}_4 .

Theorem 2.1. Let G be a unicyclic graph with even cycle C. If C is of length at least 6, then $gd_{\chi}(G) = 2$.

Proof. Certainly $\chi(G) = 2$. Let $\{V_1, V_2\}$ be the χ -coloring of G. Obviously, both V_1 and V_2 are dominating sets of G. It is enough to verify that V_1 and V_2 are global dominating sets of G. Since the length of the cycle C is at least 6, it follows that each of V_1 and V_2 contains at least three vertices of G lying on C. However, every vertex of G has at most two neighbours on C; this means that every vertex of V_1 has a non-neighbour in V_2 and every vertex of V_2 has a non-neighbour in V_1 . Thus V_1 and V_2 are global dominating sets of G.

Theorem 2.2. Let G be a unicyclic graph whose cycle is of length 4. Then $gd_{\chi}(G) = 0$ if and only if $G \in \mathcal{G}_1$.

Proof. Let $C = (v_1, v_2, v_3, v_4, v_1)$ and let $\{X, Y\}$ be the χ -coloring of G. Assume that $v_1, v_3 \in X$ and $v_2, v_4 \in Y$. Obviously, both X and Y are dominating sets of G. Now, suppose $gd_{\chi}(G) = 0$. Then both X and Y can not be global dominating sets. Therefore there exist vertices $x \in X$ and $y \in Y$ such that x is adjacent to all the vertices of Y and y is adjacent to all the vertices of X. Since G is unicyclic, each of x and y must lie on C, say $x = v_1$ and $y = v_2$. Again, as G is unicyclic, the vertex v_4 is not adjacent to any vertex of X other than v_1 and v_3 . Similarly, the vertex v_3 is not adjacent to any vertex of Y other than v_2 and v_4 . Further, a vertex of $X - \{v_1, v_3\}$ can not be adjacent with any vertex of $Y - \{v_2, v_4\}$ and similarly a vertex of $Y - \{v_2, v_4\}$ can not be adjacent with any vertex of $X - \{v_1, v_3\}$; for otherwise a cycle distinct from C will get formed. That is, v_2 is the only neighbour in Y for each vertex of $X - \{v_1, v_3\}$ and v_1 is the only neighbour in X for each vertex of $Y - \{v_2, v_4\}$. Thus the vertices of G outside C are pendant and therefore $G \in \mathcal{G}_1$. The converse is an easy verification.

Theorem 2.3. Let G be a unicyclic graph whose cycle is of length 4. Then $gd_{\chi}(G) = 1$ if and only if $G \in \bigcup_{i=2}^{4} \mathcal{G}_{i}$.

Proof. Let $\{V_1, V_2\}$ be the χ -coloring of G. Assume that V_2 is a global dominating set of G and V_1 is not. Also, assume that $v_1, v_3 \in V_1$ and $v_2, v_4 \in V_2$. As V_1 is not a global dominating set, there is a vertex $x \in V_2$ that is adjacent to all the vertices of V_1 . As discussed in the proof of Theorem 2.2, x must lie on C. But V_2 is a global dominating set. Therefore, every vertex of V_1 has a non-neighbour in V_2 and so the set $B = V_2 - \{v_2, v_4\} \neq \phi$. Since v_2 is adjacent to every vertex of V_1 , every vertex in B is a pendant vertex of G. Now, let A be the set of neighbours of v_2 in V_1 other than v_1 and v_3 . If $A = \phi$, then $N(v_1) \cap B \neq \phi$ and $N(v_3) \cap B \neq \phi$ and $[N(v_1) \cup N(v_3)] \cap B = B$. Thus $G \in \mathcal{G}_1$.

Suppose $A \neq \phi$. Now, if the vertices in A are pendant, then $N(v_1) \cap B \neq \phi$, $N(v_3) \cap B \neq \phi$ and $[N(v_1) \cup N(v_3)] \cap B = B$ so that $G \in \mathcal{G}_2$. So, the remaining case is that $A \neq \phi$ and A has a vertex u with $deg \ u \ge 2$. That is, u has a neighbour in B, say w. Note that the vertex w is a non-neighbour of both v_1 and v_3 as w is pendant. But however the vertices v_1 and v_3 may have neighbours in B and thus $G \in \mathcal{G}_3$. Now, it is not difficult to see that if $G \in \bigcup_{i=2}^4 \mathcal{G}_i$, then $gd_{\chi}(G) = 1$.

Lemma 2.4. *If* $gd_{\chi}(G) = 0$, *then* $d_{\chi}(G) \ge 2$.

Proof. Suppose $gd_{\chi}(G) = 0$ and $d_{\chi}(G) = 1$. Consider a χ -coloring $\{V_1, V_2, \dots, V_{\chi}\}$ of G such that V_1 is a dominating set of G. As $gd_{\chi}(G) = 0$, V_1 can not be a global dominating set of G. Therefore, there exists a vertex v such that v is adjacent to every vertex of V_1 . Assume

without loss of generality that $v \in V_2$. Certainly, no $V_i(2 \le i \le \chi)$, is a dominating set and in particular V_2 is not a dominating set. So, there are vertices in $V - V_2$ that are not dominated by any vertex of V_2 ; let *S* be the set of those vertices. Clearly $S \subseteq V - V_2$. Also, as *v* is adjacent to each vertex of V_1 , it follows that $S \subseteq V - V_1$ and thus $S \subseteq V - (V_1 \cup V_2)$. Now, if *D* is an independent dominating set of the subgraph $\langle S \rangle$ induced by *S*, then $V_2 \cup D$ is an independent dominating set of *G*. Therefore $\{V_1, V_2 \cup D, V_3 - V'_3, V_4 - V'_4, \dots, V_{\chi} - V'_{\chi}\}$, where $V'_i = V_i \cap D$ for all $i \in \{3, 4, \dots, \chi\}$ is a χ -coloring of *G* in which both V_1 and $V_2 \cup D$ are dominating sets of *G*, a contradiction to the assumption that $d_{\chi}(G) = 1$.

Corollary 2.5. *If* $d_{\chi}(G) = 1$ *, then* $gd_{\chi}(G) = 1$ *.*

Let us now concentrate on the unicyclic graphs with odd cycle.

Theorem 2.6. Let *G* be a unicyclic graph with odd cycle *C*. If all the vertices on *C* are support vertices, then $gd_{\chi}(G) = 1$.

Proof. Let $C = (v_1, v_2, ..., v_n, v_1)$, where each v_i is support. In view of Corollary 2.5, it is enough to prove that $d_{\chi}(G) = 1$. As in Observation 1.1, $d_{\chi}(G) \ge 1$. For the other inequality, we need to prove that every χ -coloring of G has exactly one color class that is a dominating set of G. On the contrary, assume that G has a χ -coloring $\{V_1, V_2, V_3\}$ of G with V_1 and V_2 are dominating sets of G. It is clear that if x is a support vertex of G, then a dominating set of G must contain either x or all its pendant neighbours. Here V_1 and V_2 are assumed to be dominating sets and therefore all the support vertices and the pendant vertices of G must be contained in $V_1 \cup V_2$. In particular, $\{v_1, v_2, ..., v_n\}$ is a subset of $V_1 \cup V_2$; this is possible only when n is even. But n is odd and thus exactly one color class of any χ -coloring of G can be a dominating set of G. This completes the proof.

Theorem 2.7. Let *G* be a unicyclic graph with odd cycle *C*. If the length of *C* is at least 7 with the property that not all the vertices on *C* are supports, then $gd_{\chi}(G) = 2$.

Proof. As we know $gd_{\chi}(G) \leq 2$ and so in order to prove the theorem it is enough if we are able to come up with a χ -coloring of G where two color classes are global dominating sets. Here we provide such a coloring as follows. Let $C = (v_1, v_2, ..., v_n, v_1)$. Assume that v_1 is not a support vertex of G. Consider the χ -coloring $\{V_1, V_2\}$ of the tree $G - v_1v_n$. Assume that $v_1 \in V_1$. Then $v_n \in V_1$. Now, take $\mathscr{C} = \{V_1 - \{v_1\}, V_2, \{v_1\}\}$. Then \mathscr{C} is a χ -coloring of G. We prove that $V_1 - \{v_1\}$ and V_2 are global dominating sets of G. Note that both V_1 and V_2 are dominating sets of $G - v_1v_n$. Therefore, obviously V_2 is a dominating set of G as well. Further, the set $V_2 - \{v_1\}$ also serves as a dominating set of G as v_1 is not a support. So, $V_1 - \{v_1\}$ and V_2 are dominating sets of G. Also, as the length of C is at least 7, it follows that each of $V_1 - \{v_1\}$ and V_2 contains at least three vertices of G lying on C. But every vertex of G can have at most two neighbours

on *C*. So, every vertex of *G* will have a non-neighbour in each of $V_1 - \{v_1\}$ and V_2 and therefore these two sets are global dominating sets of *G*. Thus \mathscr{C} is a χ -coloring of *G* where $V_1 - \{v_1\}$ and V_2 are global dominating sets of *G* as desired.

Theorem 2.8. Let G be a unicyclic graph whose cycle is of length 5. Then $gd_{\chi}(G)$ is either 1 or 2.

Proof. Let $C = (v_1, v_2, v_3, v_4, v_5, v_1)$. Since *G* is a unicyclic graph, at least one of v_1, v_2, v_3, v_4 and v_5 has degree at least 3. Let it be v_1 . Consider a neighbour *u* of v_1 outside *C*. Let $T = G - v_1v_5$. Then $\{V_1, V_2\}$ be a χ -coloring of *G*. Note that the vertices u, v_2 and v_4 belong to the same color class, say V_1 . Then v_1, v_3 and v_5 belong to V_2 . Certainly, $\{V_1, V_2 - \{v_5\}, \{v_5\}\}$ is a χ -coloring of *G*. We now claim that V_1 is a global dominating set of *G*. Clearly V_1 is a dominating set of *G*. Consider an arbitrary vertex *x* of *G*. If $x \in N[u]$, then v_4 is a non-neighbour of *x*. If $x \notin N[u]$, then *u* is a non-neighbour of *x* and so V_1 is a global dominating set of *G*. Hence $gd_{\chi}(G) \ge 1$.

By an *extreme vertex* in a unicyclic graph G; we mean a vertex v on the cycle C of G with the property that v is adjacent to a vertex outside C where degree is at least two. Let w be a vertex of G with $deg \ w \ge 3$. A *branch* of G at w is a maximal subtree T of G containing an edge outside C that is incident at w such that w is a pendant vertex in T.

Theorem 2.9. Let G be a unicyclic graph whose cycle C is of length exactly 3. Then $gd_{\chi}(G) = 0$ if and only if $G \in \mathcal{G}_5$.

Proof. Let $C = (v_1, v_2, v_3, v_1)$. Assume $gd_{\chi}(G) = 0$. We first prove that *G* has no extreme vertex. On the contrary, assume that *G* has an extreme vertex ; let it be v_1 . Choose a vertex *x* in a branch of *G* at v_1 such that $d(v_2, x) = 3$. Consider the χ -coloring $\mathscr{C} = \{V_1, V_2\}$ of the tree $G - v_1v_2$. As the distance between v_2 and *x* in *G* is 3, the distance between them in $G - v_1v_2$ is 4 and therefore they both belong to the same color class in \mathscr{C} , say V_1 . Therefore $v_3 \in V_2$ and $v_1 \in V_1$. We now prove that there is a χ -coloring of *G* in which at least one color class is a global dominating set of *G*. If v_1 is not a support vertex, then consider the χ -coloring $\{V_1 - \{v_1\}, V_2, \{v_1\}\}$ of *G*. On the other hand, if v_1 is a support vertex, the consider the χ -coloring $\{(V_1 - \{v_1\}) \cup U, V_2 - U, \{v_1\}\}$ of *G*, where *U* is the set of all pendant neighbours of v_1 (Note that *U* is a subset of V_2 in \mathscr{C}). Also remain that both *x* and v_2 belong to V_1 . We now prove that $V_1 - \{v_1\}$ and $(V_1 - \{v_1\}) \cup U$ are global dominating sets of *G*. Clearly both are dominating sets of *G*. Now, choose an arbitrary vertex *y* in *G*. If $y \in N[v_2]$, then *x* is a non-neighbour of *y* in V_1 . If $y \notin N[v_2]$, then v_2 is a non-neighbour of *y* in V_1 . This proves the result and so $gd_{\chi}(G) \ge 1$, a contradiction. Therefore *G* has no extreme vertex. That is, every vertex outside *C* is a pendant vertex and every vertex on *C* is either a support vertex or it is of degree exactly two. Now, suppose exactly two vertices on *C* are support vertices, say v_2 and v_3 . Then $\{S \cup \{v_1\}, \{v_2\}, \{v_3\}\}$, where *S* is the set of all pendant vertices of *G*, is a χ -coloring of *G* in which $S \cup \{v_1\}$ is a global dominating set of *G* and so $gd_{\chi}(G) \ge 1$, a contradiction. Suppose all the three vertices on *C* are support vertices. Then by Theorem 2.6, $gd_{\chi}(G) = 1$, again a contradiction. Hence the result. The converse follows from Theorem 1.5.

3. Realization Theorems

Theorem 3.1. For given integers k and l with $0 \le l \le k$, there exists a uniquely - k - colorable graph G with $gd_{\chi}(G) = l$.

Figure 2 : A uniquely colorable graph with $gd_{\chi} = 2$ and $\chi = 4$.

Proof. For l = 0, take $G = K_k$. Assume $l \ge 1$. Then the required graph *G* is obtained from the complete *k* - partite graph with parts $V_1, V_2, ..., V_k$ where $V_i = \{u_i, v_i\}$, for all $i \in \{1, 2, ..., k\}$. Introducing 2*l* new vertices $x_1, x_2, ..., x_l, y_1, y_2, ..., y_l$. For each $i \in \{1, 2, ..., l\}$, join the vertex x_i to each vertex of u_j , where $j \ne i$ and $1 \le j \le k$; and join the vertex y_i to each vertex of v_j , where $j \ne i$ and $1 \le j \le k$. Let *G* be the resultant graph. For l = 2 and k = 4, the graph *G* is given in Figure 2. From the construction of *G*, it is clear that *G* is a uniquely - k - colorable graph and $\delta(G) = l - 1$. One can easily verify that $\mathscr{C} = \{V_1 \cup \{x_1, y_1\}, V_2 \cup \{x_2, y_2\}, ..., V_l \cup \{x_l, y_l\}, V_{l+1}, ..., V_k\}$ is a χ -coloring of *G* in which $V_1 \cup \{x_1, y_1\}, V_2 \cup \{x_2, y_2\}, ..., V_l \cup \{x_l, y_l\}$ are global dominating sets of *G*. Therefore $gd_{\chi}(G) \ge l$. Since $\delta(G) = l - 1$ and by Theorem 1.3, we have $gd_{\chi}(G) \le l$. Thus $gd_{\chi}(G) = l$.

Theorem 3.2. For given integers a, b and c with $0 \le a \le b \le c$, there exists a graph G for which $gd_{\chi}(G) = a$, $d_{\chi}(G) = b$ and $\chi(G) = c$ except when a = 0 and b = 1.

Proof. If *a*, *b* and *c* are integers with $gd_{\chi}(G) = a$, $d_{\chi}(G) = b$ and $\chi(G) = c$, then by Lemma 2.4, we have $b \ge 2$ when a = 0. Conversely, suppose *a*, *b* and *c* are integers with $0 \le a \le b \le c$ and $b \ge 2$ when a = 0. We construct the required graph *G* as follows.

Case 1. *a* = 0.

Figure 3 : A graph with $gd_{\chi} = 0$, $d_{\chi} = 4$ and $\chi = 5$.

Then by assumption $b \ge 2$. Consider the complete graph K_c on c vertices with the vertex set $\{v_1, v_2, ..., v_c\}$. Introduce a vertex u and join it to each of the vertices $v_2, v_3, ..., v_b$ by an edge. For a = 0, b = 4 and c = 5, the graph G is illustrated in Figure 3. Clearly $\chi(G) = c$. Since $\Delta(G) = n - 1$, it follows from Theorem 1.5 that $gd_{\chi}(G) = 0$. Further, $\{\{v_1, u\}, \{v_2\}, \{v_3\}, ..., \{v_c\}\}$ is a χ -coloring of G where $\{v_1, u\}, \{v_2\}, \{v_3\}, ..., \{v_b\}$ are dominating sets of G so that $d_{\chi}(G) \ge b$. The inequality $d_{\chi}(G) \le b$ follows from Theorem 1.2 as $\delta(G) = b - 1$. Thus $d_{\chi}(G) = b$.

Case 2. $a \ge 1$.

Here, consider a complete *c* - partite graph $H = K_{2,2,...,2}$ with parts $V_1, V_2, ..., V_c$ where $V_i = \{x_i, y_i\}$ for all $i \in \{1, 2, ..., c\}$. Introduce 2*a* new vertices ; let them be $u_1, u_2, ..., u_a, v_1, v_2, ..., v_a$. For each $i \in \{1, 2, ..., a\}$, join the vertex u_i to each vertex of the set $\{x_j : j \neq i \text{ and } 1 \leq j \leq b\}$. Similarly, for each $i \in \{1, 2, ..., a\}$, join the vertex v_i to each vertex of the set $\{y_j : j \neq i \text{ and } 1 \leq j \leq b\}$. Let *G* be the resultant graph. For a = 2, b = 4 and c = 5, the graph *G* is illustrated in Figure 4. Clearly, $\chi(G) = c$. Now, consider the χ -coloring $\mathscr{C} = \{V_1 \cup \{u_1, v_1\}, V_2 \cup \{u_2, v_2\}, ..., V_a \cup \{u_a, v_a\}, V_{a+1}, V_{a+2}, ..., V_c\}$ of *G*. It is easy to verify that for each $i \in \{1, 2, ..., a\}$, the set $V_i \cup \{u_i, v_i\}$ is a global dominating set of *G* and for each $j \in \{a+1, a+2, ..., b\}$, the set V_j is a dominating set of *G*. Hence $d_{\chi}(G) \geq b$ and $gd_{\chi}(G) \geq a$. By Theorem 1.2, we have $d_{\chi}(G) \leq b$ as $\delta(G) = b - 1$ and thus $d_{\chi}(G) = b$. We now need to verify that $gd_{\chi}(G) \leq a$. Now, clearly the set $\{u_1, x_1, y_1, v_1\}$ is a global dominating set of *G* with minimum cardinality so that $\gamma_g(G) = 4$. Also s(G) = 2. Therefore by Theorem 1.4, we have $gd_{\chi}(G) \leq \frac{2a+2c-2c}{2} = a$. Hence $gd_{\chi}(G) = a$.

Figure 4 : A graph with $g d_{\chi} = 2$, $d_{\chi} = 4$ and $\chi = 5$.

References

- [1] S. Arumugam, I. Sahul Hamid and A. Muthukamatchi, *Independent domination and graph colorings*, Ramanujan Mathematical Society Lecture Notes Series, **7** (2008), 195–203.
- [2] S. Arumugam, Teresa W. Haynesb, Michael A. Henningc and Yared Nigussie, Maximal independent sets in minimum colorings, Discrete Mathematics, **311** (2011), 1158–1163.
- [3] G. Chartrand and Lesniak, Graphs and Digraphs, Fourth edition, CRC press, Boca Raton, 2005.
- [4] J. John Arul Singh and R. Kala, *Min-Dom-Color Number of a Graph*, Int. J. Contemp. Math. Sciences, 5(2010), 2019–2027.
- [5] I. Sahul Hamid and M. Rajeswari, *Global dominating sets in minimum coloring*, Discrete Mathematics Algorithms and Applications, **6** (2014), No.3.

Department of Mathematics, Fatima College, Madurai - 18, INDIA.

E-mail: rajimaths11@gmail.com

Department of Mathematics, The Madura College, Madurai - 11, INDIA.

E-mail: sahulmat@yahoo.co.in