ON GLOBAL DOMINATING-χ-COLORING OF GRAPHS

MALAIRAJ RAJESWARI AND ISMAIL SAHUL HAMID

Abstract. Let G be a graph. Among all χ-colorings of G, a coloring with the maximum number of color classes that are global dominating sets in G is called a global dominating-χ-coloring of G. The number of color classes that are global dominating sets in a global dominating-χ-coloring of G is defined to be the global dominating-χ-color number of G, denoted by $gd_{\chi}(G)$. This concept was introduced in [5]. This paper extends the study of this notion.

1. Introduction

By a graph $G = (V, E)$, we mean a connected, finite, non-trivial, undirected graph with neither loops nor multiple edges. The order and size of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartand and Lesniak [3].

A subset D of vertices is said to be a dominating set of G if every vertex in V either belongs to D or is adjacent to a vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A subset D of vertices is said to be a global dominating set of G if D is a dominating set of both G and \overline{G}; that is, every vertex outside D has a neighbour as well as a non-neighbour in D. The global domination number $\gamma_g(G)$ is the minimum cardinality of a global dominating set of G.

A proper coloring of a graph G is an assignment of colors to the vertices of G in such a way that no two adjacent vertices receive the same color. Since all colorings in this paper are proper colorings, we simply call a proper coloring a coloring. A coloring in which k colors are used is a k-coloring. The chromatic number of G, denoted by $\chi(G)$, is the minimum integer k for which G admits a k-coloring. In a given coloring of the vertices of a graph G, a set consisting of all those vertices assigned the same color is called a color class. If \mathcal{C} is a coloring of G with the color classes U_1, U_2, \ldots, U_t, then we write $\mathcal{C} = \{U_1, U_2, \ldots, U_t\}$. Among all χ-colorings of G, let \mathcal{C} be chosen to have a color class U that dominates as many vertices of G as possible. If there is a vertex in G not dominated by U, then deleting such a vertex from...
its color class and adding it to the color class U produces a new minimum vertex-coloring that contains a color class which dominates more vertices than U, a contradiction. Hence the color class U dominates G. Thus we have the following observation first observed in [1].

Observation 1.1. Every graph G contains a χ-coloring with the property that at least one color class is a dominating set in G.

Motivated by Observation 1.1, Arumugam et al. [1] defined the dominating-χ-color number, which they called dom-color number, as follows. Among all χ-colorings of G, a coloring with the maximum number of color classes that are dominating sets in G is called a dominating-χ-coloring of G. The number of color classes that are dominating sets in a dominating-χ-coloring of G is defined to be the dominating-χ-color number of G, denoted by $d_{\chi}(G)$. This parameter has been further studied in [2] and [4].

In [5], the notion of dominating-χ-coloring was extended to the notion of global dominating sets in the name of global dominating-χ-coloring. Among all χ-colorings of G, a coloring with the maximum number of color classes that are global dominating sets in G is called a global dominating-χ-coloring of G. The number of color classes that are global dominating sets in a global dominating-χ-coloring of G is defined to be the global dominating-χ-color number of G and is denoted by $gd_{\chi}(G)$. Certainly, for any graph G, we have $d_{\chi}(G) \geq gd_{\chi}(G)$. In this paper, we discuss the parameter gd_{χ} for unicyclic graph and also prove some realization theorems associated with some relations among gd_{χ}, d_{χ} and χ.

We need the following theorems.

Theorem 1.2 ([2]). For any graph G, we have $d_{\chi}(G) \leq \delta(G) + 1$.

Theorem 1.3 ([5]). For any graph G, we have $gd_{\chi}(G) \leq \delta(G) + 1$.

Theorem 1.4 ([5]). If G is a graph of order $n \geq 2$, then $gd_{\chi}(G) \leq \frac{n-\chi(G)\times s(G)}{\gamma(G)-s(G)}$, where $s(G)$ denotes the minimum cardinality of any color class in any χ-coloring of G.

Theorem 1.5 ([5]). If G is a graph with $\Delta(G) = n - 1$, then $gd_{\chi}(G) = 0$.

2. gd_{χ} for unicyclic graphs

Throughout the paper, by a unicyclic graph, we mean a connected unicyclic graph that is not a cycle. Now, in view of Theorem 1.3, for a graph with minimum degree 1, the value of global dominating χ - color number is at most 2. In particular, for a unicyclic graph G, $gd_{\chi}(G) \leq 2$. So, the family of unicyclic graphs can be classified into three classes namely graphs with $gd_{\chi} = 0$; graphs with $gd_{\chi} = 1$ and graphs with $gd_{\chi} = 2$. This section determines these classes of graphs. For this purpose, we describe the following families.
(i) Let G_1 be the class of all connected unicyclic graphs obtained from a cycle of length 4 by attaching at least one pendant edge at exactly two adjacent vertices of the cycle. A graph in this family is given in Figure 1(a).

(ii) Let G_2 be the collection of all connected unicyclic graphs obtained from a cycle of length 4 by attaching at least one pendant edge at each of two non adjacent vertices of the cycle. A graph lying in this family is given in Figure 1(b).

(iii) Let G_3 be the collection of all connected unicyclic graphs obtained from a cycle of length 4 by attaching at least one pendant edge at each of any three vertices of the cycle. A graph lying in this family is given in Figure 1(c).

(iv) Let G_4 be the collection of all connected unicyclic graphs with the cycle $C = (v_1, v_2, v_3, v_4, v_1)$ that are constructed as follows. Attach $r \geq 0$ pendant edges at v_1, $s \geq 0$ pendant edges at v_3. Also, attach $t \geq 1$ pendant edges at v_2, say x_1, x_2, \ldots, x_t are the corresponding pendant vertices adjacent to v_2. Finally, for each $i \in \{1, 2, \ldots, t\}$, attach t_i pendant vertex at the vertex x_i with the condition that $t_1 \geq 1$ and $t_j \geq 0$ for all $j \neq 1$. A graph lying in this family is given in Figure 1(d).

(v) Let G_5 be the family of connected unicyclic graphs obtained from a triangle by attaching at least one pendant edge at exactly one vertex of the triangle.

![Figure 1: (a) A graph in G_1, (b) A graph in G_2, (c) A graph in G_3, (d) A graph in G_4.](image)

Theorem 2.1. Let G be a unicyclic graph with even cycle C. If C is of length at least 6, then $gd_{\chi}(G) = 2$.

Proof. Certainly $\chi(G) = 2$. Let $\{V_1, V_2\}$ be the χ-coloring of G. Obviously, both V_1 and V_2 are dominating sets of G. It is enough to verify that V_1 and V_2 are global dominating sets of G. Since the length of the cycle C is at least 6, it follows that each of V_1 and V_2 contains at least three vertices of G lying on C. However, every vertex of G has at most two neighbours on C; this means that every vertex of V_1 has a non-neighbour in V_2 and every vertex of V_2 has a non-neighbour in V_1. Thus V_1 and V_2 are global dominating sets of G. \qed
Theorem 2.2. Let G be a unicyclic graph whose cycle is of length 4. Then $\text{gd}_\chi(G) = 0$ if and only if $G \in \mathcal{G}_1$.

Proof. Let $C = (v_1, v_2, v_3, v_4, v_1)$ and let (X, Y) be the χ-coloring of G. Assume that $v_1, v_3 \notin X$ and $v_2, v_4 \notin Y$. Obviously, both X and Y are dominating sets of G. Now, suppose $\text{gd}_\chi(G) = 0$. Then both X and Y can not be global dominating sets. Therefore there exist vertices $x \in X$ and $y \in Y$ such that x is adjacent to all the vertices of Y and y is adjacent to all the vertices of X. Since G is unicyclic, each of x and y must lie on C, say $x = v_1$ and $y = v_2$. Again, as G is unicyclic, the vertex v_4 is not adjacent to any vertex of X other than v_1 and v_3. Similarly, the vertex v_3 is not adjacent to any vertex of Y other than v_2 and v_4. Further, a vertex of $X - \{v_1, v_3\}$ can not be adjacent with any vertex of $Y - \{v_2, v_4\}$ and similarly a vertex of $Y - \{v_2, v_4\}$ can not be adjacent with any vertex of $X - \{v_1, v_3\}$; for otherwise a cycle distinct from C will get formed. That is, v_2 is the only neighbour in Y for each vertex of $X - \{v_1, v_3\}$ and v_1 is the only neighbour in X for each vertex of $Y - \{v_2, v_4\}$. Thus the vertices of G outside C are pendant and therefore $G \in \mathcal{G}_1$. The converse is an easy verification.

Theorem 2.3. Let G be a unicyclic graph whose cycle is of length 4. Then $\text{gd}_\chi(G) = 1$ if and only if $G \in \bigcup_{i=2}^4 \mathcal{G}_i$.

Proof. Let $\{V_1, V_2\}$ be the χ-coloring of G. Assume that V_2 is a global dominating set of G and V_1 is not. Also, assume that $v_1, v_3 \in V_1$ and $v_2, v_4 \in V_2$. As V_1 is not a global dominating set, there is a vertex $x \in V_2$ that is adjacent to all the vertices of V_1. As discussed in the proof of Theorem 2.2, x must lie on C. But V_2 is a global dominating set. Therefore, every vertex of V_1 has a non-neighbour in V_2 and so the set $B = V_2 - \{v_2, v_4\} \neq \phi$. Since v_2 is adjacent to every vertex of V_1, every vertex in B is a pendant vertex of G. Now, let A be the set of neighbours of v_2 in V_1 other than v_1 and v_3. If $A = \phi$, then $N(v_1) \cap B \neq \phi$ and $N(v_3) \cap B \neq \phi$ and $[N(v_1) \cup N(v_3)] \cap B = B$. Thus $G \in \mathcal{G}_1$.

Suppose $A \neq \phi$. Now, if the vertices in A are pendant, then $N(v_1) \cap B \neq \phi$, $N(v_3) \cap B \neq \phi$ and $[N(v_1) \cup N(v_3)] \cap B = B$ so that $G \in \mathcal{G}_2$. So, the remaining case is that $A \neq \phi$ and A has a vertex u with $\text{deg} \ u \geq 2$. That is, u has a neighbour in B, say w. Note that the vertex w is a non-neighbour of both v_1 and v_3 as u is pendant. But however the vertices v_1 and v_3 may have neighbours in B and thus $G \in \mathcal{G}_3$. Now, it is not difficult to see that if $G \in \bigcup_{i=2}^3 \mathcal{G}_i$, then $\text{gd}_\chi(G) = 1$.

Lemma 2.4. If $\text{gd}_\chi(G) = 0$, then $d_\chi(G) \geq 2$.

Proof. Suppose $\text{gd}_\chi(G) = 0$ and $d_\chi(G) = 1$. Consider a χ-coloring $\{V_1, V_2, \ldots, V_\chi\}$ of G such that V_1 is a dominating set of G. As $\text{gd}_\chi(G) = 0$, V_1 can not be a global dominating set of G. Therefore, there exists a vertex v such that v is adjacent to every vertex of V_1. Assume
without loss of generality that \(v \in V_2 \). Certainly, no \(V_i (2 \leq i \leq \chi) \), is a dominating set and in particular \(V_2 \) is not a dominating set. So, there are vertices in \(V - V_2 \) that are not dominated by any vertex of \(V_2 \); let \(S \) be the set of those vertices. Clearly \(S \subseteq V - V_2 \). Also, as \(v \) is adjacent to each vertex of \(V_1 \), it follows that \(S \subseteq V - V_1 \) and thus \(S \subseteq V - (V_1 \cup V_2) \). Now, if \(D \) is an independent dominating set of the subgraph \(\langle S \rangle \) induced by \(S \), then \(V_2 \cup D \) is an independent dominating set of \(G \). Therefore \(\{V_1, V_2 \cup D, V_3 - V_3, V_4 - V_4, \ldots, V_\chi - V_\chi \} \), where \(V_i = V_i \cap D \) for all \(i \in \{3, 4, \ldots, \chi \} \) is a \(\chi \)-coloring of \(G \) in which both \(V_1 \) and \(V_2 \cup D \) are dominating sets of \(G \), a contradiction to the assumption that \(d_\chi (G) = 1 \).

Corollary 2.5. If \(d_\chi (G) = 1 \), then \(gd_\chi (G) = 1 \).

Let us now concentrate on the unicyclic graphs with odd cycle.

Theorem 2.6. Let \(G \) be a unicyclic graph with odd cycle \(C \). If all the vertices on \(C \) are support vertices, then \(gd_\chi (G) = 1 \).

Proof. Let \(C = (v_1, v_2, \ldots, v_n, v_1) \), where each \(v_i \) is support. In view of Corollary 2.5, it is enough to prove that \(d_\chi (G) = 1 \). As in Observation 1.1, \(d_\chi (G) \geq 1 \). For the other inequality, we need to prove that every \(\chi \)-coloring of \(G \) has exactly one color class that is a dominating set of \(G \). On the contrary, assume that \(G \) has a \(\chi \)-coloring \(\{V_1, V_2, V_3 \} \) of \(G \) with \(V_1 \) and \(V_2 \) are dominating sets of \(G \). It is clear that if \(x \) is a support vertex of \(G \), then a dominating set of \(G \) must contain either \(x \) or all its pendant neighbours. Here \(V_1 \) and \(V_2 \) are assumed to be dominating sets and therefore all the support vertices and the pendant vertices of \(G \) must be contained in \(V_1 \cup V_2 \). In particular, \(\{v_1, v_2, \ldots, v_n\} \) is a subset of \(V_1 \cup V_2 \); this is possible only when \(n \) is even. But \(n \) is odd and thus exactly one color class of any \(\chi \)-coloring of \(G \) can be a dominating set of \(G \). This completes the proof.

Theorem 2.7. Let \(G \) be a unicyclic graph with odd cycle \(C \). If the length of \(C \) is at least 7 with the property that not all the vertices on \(C \) are supports, then \(gd_\chi (G) = 2 \).

Proof. As we know \(gd_\chi (G) \leq 2 \) and so in order to prove the theorem it is enough if we are able to come up with a \(\chi \)-coloring of \(G \) where two color classes are global dominating sets. Here we provide such a coloring as follows. Let \(C = (v_1, v_2, \ldots, v_n, v_1) \). Assume that \(v_1 \) is not a support vertex of \(G \). Consider the \(\chi \)-coloring \(\{V_1, V_2\} \) of the tree \(G - v_1 v_n \). Assume that \(v_1 \in V_1 \). Then \(v_n \in V_1 \). Now, take \(\mathcal{C} = \{V_1 - \{v_1\}, V_2, \{v_1\}\} \). Then \(\mathcal{C} \) is a \(\chi \)-coloring of \(G \). We prove that \(V_1 - \{v_1\} \) and \(V_2 \) are global dominating sets of \(G \). Note that both \(V_1 \) and \(V_2 \) are dominating sets of \(G - v_1 v_n \). Therefore, obviously \(V_2 \) is a dominating set of \(G \) as well. Further, the set \(V_2 - \{v_1\} \) also serves as a dominating set of \(G \) as \(v_1 \) is not a support. So, \(V_1 - \{v_1\} \) and \(V_2 \) are dominating sets of \(G \). Also, as the length of \(C \) is at least 7, it follows that each of \(V_1 - \{v_1\} \) and \(V_2 \) contains at least three vertices of \(G \) lying on \(C \). But every vertex of \(G \) can have at most two neighbours
on C. So, every vertex of G will have a non-neighbour in each of $V_1 - \{v_1\}$ and V_2 and therefore these two sets are global dominating sets of G. Thus \mathcal{C} is a χ-coloring of G where $V_1 - \{v_1\}$ and V_2 are global dominating sets of G as desired. \hfill \Box

Theorem 2.8. Let G be a unicyclic graph whose cycle is of length 5. Then $gd_{\chi}(G)$ is either 1 or 2.

Proof. Let $C = (v_1, v_2, v_3, v_4, v_5, v_1)$. Since G is a unicyclic graph, at least one of v_1, v_2, v_3, v_4 and v_5 has degree at least 3. Let it be v_1. Consider a neighbour u of v_1 outside C. Let $T = G - v_1 v_5$. Then $\{V_1, V_2\}$ be a χ-coloring of G. Note that the vertices u, v_2 and v_4 belong to the same color class, say V_1. Then v_1, v_3 and v_5 belong to V_2. Certainly, $\{V_1, V_2 - \{v_5\}, \{v_5\}\}$ is a χ-coloring of G. We now claim that V_1 is a global dominating set of G. Clearly V_1 is a dominating set of G. Consider an arbitrary vertex x of G. If $x \in N[u]$, then v_4 is a non-neighbour of x. If $x \notin N[u]$, then u is a non-neighbour of x and so V_1 is a global dominating set of G. Hence $gd_{\chi}(G) \geq 1$.

By an extreme vertex in a unicyclic graph G; we mean a vertex v on the cycle C of G with the property that v is adjacent to a vertex outside C where degree is at least two. Let w be a vertex of G with $\text{deg}\ w \geq 3$. A branch of G at w is a maximal subtree T of G containing an edge outside C that is incident at w such that w is a pendant vertex in T.

Theorem 2.9. Let G be a unicyclic graph whose cycle C is of length exactly 3. Then $gd_{\chi}(G) = 0$ if and only if $G \in \mathcal{G}_5$.

Proof. Let $C = (v_1, v_2, v_3, v_1)$. Assume $gd_{\chi}(G) = 0$. We first prove that G has no extreme vertex. On the contrary, assume that G has an extreme vertex; let it be v_1. Choose a vertex x in a branch of G at v_1 such that $d(v_2, x) = 3$. Consider the χ-coloring $\mathcal{C} = \{V_1, V_2\}$ of the tree $G - v_1 v_2$. As the distance between v_2 and x in G is 3, the distance between them in $G - v_1 v_2$ is 4 and therefore they both belong to the same color class in \mathcal{C}, say V_1. Therefore $v_3 \in V_2$ and $v_1 \in V_1$. We now prove that there is a χ-coloring of G in which at least one color class is a global dominating set of G. If v_1 is not a support vertex, then consider the χ-coloring $\{V_1 - \{v_1\}, V_2, \{v_1\}\}$ of G. On the other hand, if v_1 is a support vertex, the consider the χ-coloring $\{(V_1 - \{v_1\}) \cup U, V_2 - U, \{v_1\}\}$ of G, where U is the set of all pendant neighbours of v_1 (Note that U is a subset of V_2 in \mathcal{C}). Also remain that both x and v_2 belong to V_1. We now prove that $V_1 - \{v_1\}$ and $(V_1 - \{v_1\}) \cup U$ are global dominating sets of G. Clearly both are dominating sets of G. Now, choose an arbitrary vertex y in G. If $y \in N[v_2]$, then x is a non-neighbour of y in V_1. If $y \notin N[v_2]$, then v_2 is a non-neighbour of y in V_1. This proves the result and so $gd_{\chi}(G) \geq 1$, a contradiction. Therefore G has no extreme vertex. That is, every vertex outside C is a pendant vertex and every vertex on C is either a support vertex or it is of degree exactly two.
Now, suppose exactly two vertices on C are support vertices, say v_2 and v_3. Then $\{S \cup \{v_1\}, \{v_2\}, \{v_3\}\}$, where S is the set of all pendant vertices of G, is a χ-coloring of G in which $S \cup \{v_1\}$ is a global dominating set of G and so $gd_\chi(G) \geq 1$, a contradiction. Suppose all the three vertices on C are support vertices. Then by Theorem 2.6, $gd_\chi(G) = 1$, again a contradiction. Hence the result. The converse follows from Theorem 1.5.

3. Realization Theorems

Theorem 3.1. For given integers k and l with $0 \leq l \leq k$, there exists a uniquely - k - colorable graph G with $gd_\chi(G) = l$.

![Figure 2: A uniquely colorable graph with $gd_\chi = 2$ and $\chi = 4$.](image)

Proof. For $l = 0$, take $G = K_k$. Assume $l \geq 1$. Then the required graph G is obtained from the complete k - partite graph with parts V_1, V_2, \ldots, V_k where $V_i = \{u_i, v_i\}$, for all $i \in \{1, 2, \ldots, k\}$. Introducing $2l$ new vertices $x_1, x_2, \ldots, x_l, y_1, y_2, \ldots, y_l$. For each $i \in \{1, 2, \ldots, l\}$, join the vertex x_i to each vertex of u_j, where $j \neq i$ and $1 \leq j \leq k$; and join the vertex y_i to each vertex of v_j, where $j \neq i$ and $1 \leq j \leq k$. Let G be the resultant graph. For $l = 2$ and $k = 4$, the graph G is given in Figure 2. From the construction of G, it is clear that G is a uniquely - k - colorable graph and $\delta(G) = l - 1$. One can easily verify that $\mathcal{C} = \{V_1 \cup \{x_1, y_1\}, V_2 \cup \{x_2, y_2\}, \ldots, V_l \cup \{x_l, y_l\}, V_{l+1}, \ldots, V_k\}$ is a χ-coloring of G in which $V_1 \cup \{x_1, y_1\}, V_2 \cup \{x_2, y_2\}, \ldots, V_l \cup \{x_l, y_l\}$ are global dominating sets of G. Therefore $gd_\chi(G) \geq l$. Since $\delta(G) = l - 1$ and by Theorem 1.3, we have $gd_\chi(G) \leq l$. Thus $gd_\chi(G) = l$.

Theorem 3.2. For given integers a, b and c with $0 \leq a \leq b \leq c$, there exists a graph G for which $gd_\chi(G) = a$, $d_\chi(G) = b$ and $\chi(G) = c$ except when $a = 0$ and $b = 1$.

Proof. If a, b and c are integers with $gd_\chi(G) = a$, $d_\chi(G) = b$ and $\chi(G) = c$, then by Lemma 2.4, we have $b \geq 2$ when $a = 0$. Conversely, suppose a, b and c are integers with $0 \leq a \leq b \leq c$ and $b \geq 2$ when $a = 0$. We construct the required graph G as follows.

Case 1. $a = 0$.

Then by assumption \(b \geq 2 \). Consider the complete graph \(K_c \) on \(c \) vertices with the vertex set \(\{v_1, v_2, \ldots, v_c\} \). Introduce a vertex \(u \) and join it to each of the vertices \(v_2, v_3, \ldots, v_b \) by an edge. For \(a = 0 \), \(b = 4 \) and \(c = 5 \), the graph \(G \) is illustrated in Figure 3. Clearly \(\chi(G) = c \). Since \(\Delta(G) = n - 1 \), it follows from Theorem 1.5 that \(g_d \chi(G) = 0 \). Further, \(\{\{v_1, u\}, \{v_2\}, \{v_3\}, \ldots, \{v_c\}\} \) is a \(\chi \)-coloring of \(G \) where \(\{v_1, u\}, \{v_2\}, \{v_3\}, \ldots, \{v_b\} \) are dominating sets of \(G \) so that \(d_\chi(G) \geq b \).

The inequality \(d_\chi(G) \leq b \) follows from Theorem 1.2 as \(\delta(G) = b - 1 \). Thus \(d_\chi(G) = b \).

Case 2. \(a \geq 1 \).

Here, consider a complete \(c \) - partite graph \(H = K_{2, 2, \ldots, 2} \) with parts \(V_1, V_2, \ldots, V_c \) where \(V_i = \{x_i, y_i\} \) for all \(i \in \{1, 2, \ldots, c\} \). Introduce \(2a \) new vertices; let them be \(u_1, u_2, \ldots, u_a, v_1, v_2, \ldots, v_a \). For each \(i \in \{1, 2, \ldots, a\} \), join the vertex \(u_i \) to each vertex of the set \(\{x_j : j \neq i \text{ and } 1 \leq j \leq b\} \). Similarly, for each \(i \in \{1, 2, \ldots, a\} \), join the vertex \(v_i \) to each vertex of the set \(\{y_j : j \neq i \text{ and } 1 \leq j \leq b\} \). Let \(G \) be the resultant graph. For \(a = 2 \), \(b = 4 \) and \(c = 5 \), the graph \(G \) is illustrated in Figure 4. Clearly, \(\chi(G) = c \). Now, consider the \(\chi \)-coloring \(\mathcal{C} = \{V_1 \cup \{u_1, v_1\}, V_2 \cup \{u_2, v_2\}, \ldots, V_a \cup \{u_a, v_a\}, V_a+1, V_a+2, \ldots, V_c\} \) of \(G \). It is easy to verify that for each \(i \in \{1, 2, \ldots, a\} \), the set \(V_i \cup \{u_i, v_i\} \) is a global dominating set of \(G \) and for each \(j \in \{a+1, a+2, \ldots, b\} \), the set \(V_j \) is a dominating set of \(G \). Hence \(d_\chi(G) \geq b \) and \(g_d \chi(G) \geq a \). By Theorem 1.2, we have \(d_\chi(G) \leq b \) as \(\delta(G) = b - 1 \) and thus \(d_\chi(G) = b \). We now need to verify that \(g_d \chi(G) \leq a \). Now, clearly the set \(\{u_1, x_1, y_1, v_1\} \) is a global dominating set of \(G \) with minimum cardinality so that \(\gamma_g(G) = 4 \). Also \(s(G) = 2 \). Therefore by Theorem 1.4, we have \(g_d \chi(G) \leq \frac{2a+2c-2c}{2} = a \). Hence \(g_d \chi(G) = a \). \(\square \)
Figure 4: A graph with $gd_x = 2$, $d_x = 4$ and $\chi = 5$.

References

Department of Mathematics, Fatima College, Madurai - 18, INDIA.

E-mail: rajimaths11@gmail.com

Department of Mathematics, The Madura College, Madurai - 11, INDIA.

E-mail: sahulmat@yahoo.co.in