
TAMKANG JOURNAL OF MATHEMATICS
Volume 48, Number 2, 149-157, June 2017
doi:10.5556/j.tkjm.48.2017.2295

-
+

+

-

-
-

-
-

This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

ON GLOBAL DOMINATING-χ-COLORING OF GRAPHS

MALAIRAJ RAJESWARI AND ISMAIL SAHUL HAMID

Abstract. Let G be a graph. Among all χ-colorings of G, a coloring with the maximum

number of color classes that are global dominating sets in G is called a global dominating-

χ-coloring of G. The number of color classes that are global dominating sets in a global

dominating-χ-coloring of G is defined to be the global dominating -χ- color number of

G, denoted by g dχ(G). This concept was introduced in [5]. This paper extends the study

of this notion.

1. Introduction

By a graph G = (V ,E ), we mean a connected, finite, non-trivial, undirected graph with

neither loops nor multiple edges. The order and size of G are denoted by n and m respectively.

For graph theoretic terminology we refer to Chartand and Lesniak [3].

A subset D of vertices is said to be a domi nat i ng set of G if every vertex in V either

belongs to D or is adjacent to a vertex in D. The domi nat i on number γ(G) is the minimum

cardinality of a dominating set of G . A subset D of vertices is said to be a global dominating

set of G if D is a dominating set of both G and G ; that is, every vertex outside D has a neigh-

bour as well as a non-neighbour in D. The global domination number γg (G) is the minimum

cardinality of a global dominating set of G .

A proper coloring of a graph G is an assignment of colors to the vertices of G in such a

way that no two adjacent vertices receive the same color. Since all colorings in this paper are

proper colorings, we simply call a proper coloring a coloring. A coloring in which k colors

are used is a k-col or i ng . The chr omat i c number of G , denoted by χ(G), is the minimum

integer k for which G admits a k-col or i ng . In a given coloring of the vertices of a graph G ,

a set consisting of all those vertices assigned the same color is called a col or cl ass. If C is a

coloring of G with the color classes U1,U2, . . . ,Ut , then we write C = {U1,U2, . . . ,Ut }. Among

all χ-col or i ng s of G , let C be chosen to have a color class U that dominates as many vertices

of G as possible. If there is a vertex in G not dominated by U , then deleting such a vertex from
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its color class and adding it to the color class U produces a new minimum vertex-coloring

that contains a color class which dominates more vertices than U , a contradiction. Hence the

color class U dominates G . Thus we have the following observation first observed in [1].

Observation 1.1. Every graph G contains a χ-col or i ng with the property that at least one

color class is a dominating set in G.

Motivated by Observation 1.1, Arumugam et al. [1] defined the dominating -χ- color

number, which they called dom-color number, as follows. Among all χ-colorings of G , a

coloring with the maximum number of color classes that are dominating sets in G is called

a dominating-χ-coloring of G . The number of color classes that are dominating sets in a

dominating-χ-coloring of G is defined to be the dominating -χ- color number of G , denoted

by dχ(G). This parameter has been further studied in [2] and [4].

In [5], the notion of dominating-χ-coloring was extended to the notion of global domi-

nating sets in the name of global dominating-χ-coloring. Among all χ-colorings of G , a color-

ing with the maximum number of color classes that are global dominating sets in G is called

a global dominating-χ-coloring of G . The number of color classes that are global dominating

sets in a global dominating-χ-coloring of G is defined to be the global dominating -χ- color

number of G and is denoted by g dχ(G). Certainly, for any graph G , we have dχ(G) ≥ g dχ(G). In

this paper, we discuss the parameter g dχ for unicyclic graph and also prove some realization

theorems associated with some relations among g dχ, dχ and χ.

We need the following theorems.

Theorem 1.2 ([2]). For any graph G, we have dχ(G) ≤ δ(G)+1.

Theorem 1.3 ([5]). For any graph G, we have g dχ(G) ≤ δ(G)+1.

Theorem 1.4 ([5]). If G is a graph of order n ≥ 2, then g dχ(G) ≤
n−χ(G)s(G)

γg (G)−s(G) , where s(G) denotes

the minimum cardinality of any color class in any χ-coloring of G.

Theorem 1.5 ([5]). If G is a graph with∆(G) = n −1, then g dχ(G) = 0.

2. g dχ for unicyclic graphs

Throughout the paper, by a unicyclic graph, we mean a connected unicyclic graph that

is not a cycle. Now, in view of Theorem 1.3, for a graph with minimum degree 1, the value

of global dominating χ - color number is at most 2. In particular, for a unicyclic graph G ,

g dχ(G) ≤ 2. So, the family of unicyclic graphs can be classified into three classes namely

graphs with g dχ = 0 ; graphs with g dχ = 1 and graphs with g dχ = 2. This section determines

these classes of graphs. For this purpose, we describe the following families.
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(i) Let G1 be the class of all connected unicyclic graphs obtained from a cycle of length 4 by

attaching at least one pendant edge at exactly two adjacent vertices of the cycle. A graph

in this family is given in Figure 1(a).

(ii) Let G2 be the collection of all connected unicyclic graphs obtained from a cycle of length

4 by attaching at least one pendant edge at each of two non adjacent vertices of the cycle.

A graph lying in this family is given in Figure 1(b).

(iii) Let G3 be the collection of all connected unicyclic graphs obtained from a cycle of length

4 by attaching at least one pendant edge at each of any three vertices of the cycle. A graph

lying in this family is given in Figure 1(c).

(iv) Let G4 be the collection of all connected unicyclic graphs with the cycle C = (v1, v2, v3, v4, v1)

that are constructed as follows. Attach r ≥ 0 pendant edges at v1, s ≥ 0 pendant edges

at v3. Also, attach t ≥ 1 pendant edges at v2, say x1, x2, . . . , xt are the corresponding pen-

dant vertices adjacent to v2. Finally, for each i ∈ {1,2, . . . , t }, attach ti pendant vertex at

the vertex xi with the condition that t1 ≥ 1 and t j ≥ 0 for all j 6= 1. A graph lying in this

family is given in Figure 1(d).

(v) Let G5 be the family of connected unicyclic graphs obtained from a triangle by attaching

at least one pendant edge at exactly one vertex of the triangle.
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Figure 1: (a) A graph in G1, (b) A graph in G2, (c) A graph in G3, (d) A graph in G4.

Theorem 2.1. Let G be a unicyclic graph with even cycle C . If C is of length at least 6, then

g dχ(G) = 2.

Proof. Certainly χ(G) = 2. Let {V1,V2} be the χ-coloring of G . Obviously, both V1 and V2 are

dominating sets of G . It is enough to verify that V1 and V2 are global dominating sets of G .

Since the length of the cycle C is at least 6, it follows that each of V1 and V2 contains at least

three vertices of G lying on C . However, every vertex of G has at most two neighbours on C

; this means that every vertex of V1 has a non-neighbour in V2 and every vertex of V2 has a

non-neighbour in V1. Thus V1 and V2 are global dominating sets of G . ���
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Theorem 2.2. Let G be a unicyclic graph whose cycle is of length 4. Then g dχ(G) = 0 if and only

if G ∈G1.

Proof. Let C = (v1, v2, v3, v4, v1) and let {X ,Y } be the χ-coloring of G . Assume that v1, v3 ∈ X

and v2, v4 ∈ Y . Obviously, both X and Y are dominating sets of G . Now, suppose g dχ(G) = 0.

Then both X and Y can not be global dominating sets. Therefore there exist vertices x ∈ X

and y ∈ Y such that x is adjacent to all the vertices of Y and y is adjacent to all the vertices of

X . Since G is unicyclic, each of x and y must lie on C , say x = v1 and y = v2. Again, as G is

unicyclic, the vertex v4 is not adjacent to any vertex of X other than v1 and v3. Similarly, the

vertex v3 is not adjacent to any vertex of Y other than v2 and v4. Further, a vertex of X−{v1, v3}

can not be adjacent with any vertex of Y − {v2, v4} and similarly a vertex of Y − {v2, v4} can

not be adjacent with any vertex of X − {v1, v3} ; for otherwise a cycle distinct from C will get

formed. That is, v2 is the only neighbour in Y for each vertex of X − {v1, v3} and v1 is the only

neighbour in X for each vertex of Y − {v2, v4}. Thus the vertices of G outside C are pendant

and therefore G ∈G1. The converse is an easy verification. ���

Theorem 2.3. Let G be a unicyclic graph whose cycle is of length 4. Then g dχ(G) = 1 if and only

if G ∈∪4
i=2

Gi .

Proof. Let {V1,V2} be the χ-coloring of G . Assume that V2 is a global dominating set of G

and V1 is not. Also, assume that v1, v3 ∈ V1 and v2, v4 ∈ V2. As V1 is not a global dominating

set, there is a vertex x ∈ V2 that is adjacent to all the vertices of V1. As discussed in the proof

of Theorem 2.2, x must lie on C . But V2 is a global dominating set. Therefore, every vertex

of V1 has a non-neighbour in V2 and so the set B = V2 − {v2, v4} 6= φ. Since v2 is adjacent

to every vertex of V1, every vertex in B is a pendant vertex of G . Now, let A be the set of

neighbours of v2 in V1 other than v1 and v3. If A = φ, then N (v1)∩B 6= φ and N (v3)∩B 6= φ

and [N (v1)∪N (v3)]∩B =B . Thus G ∈G1.

Suppose A 6= φ. Now, if the vertices in A are pendant, then N (v1)∩B 6= φ, N (v3)∩B 6= φ

and [N (v1)∪N (v3)]∩B = B so that G ∈ G2. So, the remaining case is that A 6= φ and A has a

vertex u with deg u ≥ 2. That is, u has a neighbour in B , say w . Note that the vertex w is a

non-neighbour of both v1 and v3 as w is pendant. But however the vertices v1 and v3 may

have neighbours in B and thus G ∈ G3. Now, it is not difficult to see that if G ∈ ∪4
i=2

Gi , then

g dχ(G) = 1. ���

Lemma 2.4. If g dχ(G) = 0, then dχ(G) ≥ 2.

Proof. Suppose g dχ(G) = 0 and dχ(G) = 1. Consider a χ-coloring {V1,V2, . . . ,Vχ} of G such

that V1 is a dominating set of G . As g dχ(G) = 0, V1 can not be a global dominating set of

G . Therefore, there exists a vertex v such that v is adjacent to every vertex of V1. Assume
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without loss of generality that v ∈ V2. Certainly, no Vi (2 ≤ i ≤ χ), is a dominating set and in

particular V2 is not a dominating set. So, there are vertices in V −V2 that are not dominated

by any vertex of V2 ; let S be the set of those vertices. Clearly S ⊆V −V2. Also, as v is adjacent

to each vertex of V1, it follows that S ⊆ V −V1 and thus S ⊆ V − (V1 ∪V2). Now, if D is an

independent dominating set of the subgraph 〈S〉 induced by S, then V2∪D is an independent

dominating set of G . Therefore {V1,V2 ∪D,V3 −V
′

3 ,V4 −V
′

4 , . . . ,Vχ−V
′

χ}, where V
′

i
=Vi ∩D for

all i ∈ {3,4, . . . ,χ} is a χ-coloring of G in which both V1 and V2 ∪D are dominating sets of G , a

contradiction to the assumption that dχ(G) = 1. ���

Corollary 2.5. If dχ(G) = 1, then g dχ(G) = 1.

Let us now concentrate on the unicyclic graphs with odd cycle.

Theorem 2.6. Let G be a unicyclic graph with odd cycle C . If all the vertices on C are support

vertices, then g dχ(G) = 1.

Proof. Let C = (v1, v2, . . . , vn , v1), where each vi is support. In view of Corollary 2.5, it is enough

to prove that dχ(G) = 1. As in Observation 1.1, dχ(G) ≥ 1. For the other inequality, we need to

prove that every χ-coloring of G has exactly one color class that is a dominating set of G . On

the contrary, assume that G has a χ-coloring {V1,V2,V3} of G with V1 and V2 are dominating

sets of G . It is clear that if x is a support vertex of G , then a dominating set of G must contain

either x or all its pendant neighbours. Here V1 and V2 are assumed to be dominating sets and

therefore all the support vertices and the pendant vertices of G must be contained in V1 ∪V2.

In particular, {v1, v2, . . . , vn} is a subset of V1 ∪V2; this is possible only when n is even. But n is

odd and thus exactly one color class of any χ-coloring of G can be a dominating set of G . This

completes the proof. ���

Theorem 2.7. Let G be a unicyclic graph with odd cycle C . If the length of C is at least 7 with

the property that not all the vertices on C are supports, then g dχ(G) = 2.

Proof. As we know g dχ(G) ≤ 2 and so in order to prove the theorem it is enough if we are

able to come up with a χ-coloring of G where two color classes are global dominating sets.

Here we provide such a coloring as follows. Let C = (v1, v2, . . . , vn , v1). Assume that v1 is not a

support vertex of G . Consider the χ-coloring {V1,V2} of the tree G−v1vn . Assume that v1 ∈V1.

Then vn ∈ V1. Now, take C = {V1 − {v1},V2, {v1}}. Then C is a χ-coloring of G . We prove that

V1−{v1} and V2 are global dominating sets of G . Note that both V1 and V2 are dominating sets

of G −v1vn . Therefore, obviously V2 is a dominating set of G as well. Further, the set V2 − {v1}

also serves as a dominating set of G as v1 is not a support. So, V1− {v1} and V2 are dominating

sets of G . Also, as the length of C is at least 7, it follows that each of V1 − {v1} and V2 contains

at least three vertices of G lying on C . But every vertex of G can have at most two neighbours
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on C . So, every vertex of G will have a non-neighbour in each of V1−{v1} and V2 and therefore

these two sets are global dominating sets of G . Thus C is a χ-coloring of G where V1−{v1} and

V2 are global dominating sets of G as desired. ���

Theorem 2.8. Let G be a unicyclic graph whose cycle is of length 5. Then g dχ(G) is either 1 or

2.

Proof. Let C = (v1, v2, v3, v4, v5, v1). Since G is a unicyclic graph, at least one of v1, v2, v3, v4

and v5 has degree at least 3. Let it be v1. Consider a neighbour u of v1 outside C . Let T =

G − v1v5. Then {V1,V2} be a χ-coloring of G . Note that the vertices u, v2 and v4 belong to the

same color class, say V1. Then v1, v3 and v5 belong to V2. Certainly, {V1,V2 − {v5}, {v5}} is a χ-

coloring of G . We now claim that V1 is a global dominating set of G . Clearly V1 is a dominating

set of G . Consider an arbitrary vertex x of G . If x ∈ N [u], then v4 is a non-neighbour of x. If

x ∉ N [u], then u is a non-neighbour of x and so V1 is a global dominating set of G . Hence

g dχ(G) ≥ 1. ���

By an extreme vertex in a unicyclic graph G ; we mean a vertex v on the cycle C of G with

the property that v is adjacent to a vertex outside C where degree is at least two. Let w be a

vertex of G with deg w ≥ 3. A branch of G at w is a maximal subtree T of G containing an edge

outside C that is incident at w such that w is a pendant vertex in T .

Theorem 2.9. Let G be a unicyclic graph whose cycle C is of length exactly 3. Then g dχ(G) = 0

if and only if G ∈G5.

Proof. Let C = (v1, v2, v3, v1). Assume g dχ(G) = 0. We first prove that G has no extreme vertex.

On the contrary, assume that G has an extreme vertex ; let it be v1. Choose a vertex x in

a branch of G at v1 such that d (v2, x) = 3. Consider the χ-coloring C = {V1,V2} of the tree

G − v1v2. As the distance between v2 and x in G is 3, the distance between them in G − v1v2

is 4 and therefore they both belong to the same color class in C , say V1. Therefore v3 ∈ V2

and v1 ∈ V1. We now prove that there is a χ-coloring of G in which at least one color class

is a global dominating set of G . If v1 is not a support vertex, then consider the χ-coloring

{V1−{v1},V2, {v1}} of G . On the other hand, if v1 is a support vertex, the consider theχ-coloring

{(V1 − {v1})∪U ,V2 −U , {v1}} of G , where U is the set of all pendant neighbours of v1 (Note that

U is a subset of V2 in C ). Also remain that both x and v2 belong to V1. We now prove that

V1 − {v1} and (V1 − {v1})∪U are global dominating sets of G . Clearly both are dominating sets

of G . Now, choose an arbitrary vertex y in G . If y ∈ N [v2], then x is a non-neighbour of y in V1.

If y ∉ N [v2], then v2 is a non-neighbour of y in V1. This proves the result and so g dχ(G) ≥ 1, a

contradiction. Therefore G has no extreme vertex. That is, every vertex outside C is a pendant

vertex and every vertex on C is either a support vertex or it is of degree exactly two.
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Now, suppose exactly two vertices on C are support vertices, say v2 and v3. Then {S ∪

{v1}, {v2}, {v3}}, where S is the set of all pendant vertices of G , is a χ-coloring of G in which S ∪

{v1} is a global dominating set of G and so g dχ(G) ≥ 1, a contradiction. Suppose all the three

vertices on C are support vertices. Then by Theorem 2.6, g dχ(G) = 1, again a contradiction.

Hence the result. The converse follows from Theorem 1.5. ���

3. Realization Theorems

Theorem 3.1. For given integers k and l with 0 ≤ l ≤ k, there exists a uniquely - k - colorable

graph G with g dχ(G) = l .

✉
u1

✉
v1

✉

u2

✉

v2✉

u3

✉

v3
✉

u4

✉

v4

✉y1

✉y2

✉x1

✉x2 ❨

✐

✶

✶

Figure 2 : A uniquely colorable graph with g dχ = 2 and χ= 4.

Proof. For l = 0, take G = Kk . Assume l ≥ 1. Then the required graph G is obtained from the

complete k - partite graph with parts V1,V2, . . . ,Vk where Vi = {ui , vi }, for all i ∈ {1,2, . . . ,k}.

Introducing 2l new vertices x1, x2, . . . , xl , y1, y2, . . . , yl . For each i ∈ {1,2, . . . , l }, join the vertex

xi to each vertex of u j , where j 6= i and 1 ≤ j ≤ k ; and join the vertex yi to each vertex of

v j , where j 6= i and 1 ≤ j ≤ k . Let G be the resultant graph. For l = 2 and k = 4, the graph

G is given in Figure 2. From the construction of G , it is clear that G is a uniquely - k - col-

orable graph and δ(G) = l −1. One can easily verify that C = {V1∪
{

x1, y1

}

,V2∪
{

x2, y2

}

, . . . ,Vl ∪
{

xl , yl

}

,Vl+1, . . . ,Vk } is a χ-coloring of G in which V1∪
{

x1, y1

}

,V2∪
{

x2, y2

}

, . . . ,Vl ∪
{

xl , yl

}

are

global dominating sets of G . Therefore g dχ(G) ≥ l . Since δ(G) = l −1 and by Theorem 1.3, we

have g dχ(G) ≤ l . Thus g dχ(G) = l . ���

Theorem 3.2. For given integers a,b and c with 0 ≤ a ≤ b ≤ c, there exists a graph G for which

g dχ(G) = a, dχ(G) = b and χ(G) = c except when a = 0 and b = 1.

Proof. If a,b and c are integers with g dχ(G) = a, dχ(G) = b and χ(G) = c , then by Lemma 2.4,

we have b ≥ 2 when a = 0. Conversely, suppose a,b and c are integers with 0 ≤ a ≤ b ≤ c and

b ≥ 2 when a = 0. We construct the required graph G as follows.

Case 1. a = 0.



156 M. RAJESWARI AND I. SAHUL HAMID
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b bb

b
u

v1

v2v5

v3v4

Figure 3 : A graph with g dχ = 0, dχ = 4 and χ= 5.

Then by assumption b ≥ 2. Consider the complete graph Kc on c vertices with the vertex

set {v1, v2, . . . , vc }. Introduce a vertex u and join it to each of the vertices v2, v3, ..., vb by an

edge. For a = 0, b = 4 and c = 5, the graph G is illustrated in Figure 3. Clearly χ(G) = c . Since

∆(G) = n −1, it follows from Theorem 1.5 that g dχ(G) = 0. Further, {{v1,u}, {v2}, {v3}, . . . , {vc}}

is a χ-coloring of G where {v1,u}, {v2}, {v3}, . . . , {vb} are dominating sets of G so that dχ(G) ≥ b.

The inequality dχ(G) ≤ b follows from Theorem 1.2 as δ(G) = b −1. Thus dχ(G) = b.

Case 2. a ≥ 1.

Here, consider a complete c - partite graph H = K2,2, . . . ,2
︸ ︷︷ ︸

c ti mes

with parts V1,V2, . . . ,Vc where

Vi =
{

xi , yi

}

for all i ∈ {1,2, . . . ,c}. Introduce 2a new vertices ; let them be u1,u2, . . . ,ua , v1, v2, . . .,

va . For each i ∈ {1,2, . . . , a}, join the vertex ui to each vertex of the set {x j : j 6= i and 1 ≤

j ≤ b}. Similarly, for each i ∈ {1,2, . . . , a}, join the vertex vi to each vertex of the set {y j : j 6=

i and 1 ≤ j ≤ b}. Let G be the resultant graph. For a = 2, b = 4 and c = 5, the graph G is il-

lustrated in Figure 4. Clearly, χ(G) = c . Now, consider the χ-coloring C = {V1 ∪ {u1, v1},V2 ∪

{u2, v2}, . . . ,Va ∪ {ua , va},Va+1,Va+2, . . . ,Vc } of G . It is easy to verify that for each i ∈ {1,2, . . . , a},

the set Vi ∪{ui , vi } is a global dominating set of G and for each j ∈ {a+1, a+2, . . . ,b}, the set V j

is a dominating set of G . Hence dχ(G) ≥ b and g dχ(G) ≥ a. By Theorem 1.2, we have dχ(G) ≤ b

as δ(G) = b−1 and thus dχ(G) = b. We now need to verify that g dχ(G) ≤ a. Now, clearly the set

{u1, x1, y1, v1} is a global dominating set of G with minimum cardinality so that γg (G) = 4. Also

s(G) = 2. Therefore by Theorem 1.4, we have g dχ(G) ≤ 2a+2c−2c
2 = a. Hence g dχ(G) = a. ���
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✉
x1

✉
y1

✉

x2

✉

y2✉

x3

✉

y3
✉

x4

✉

y4

✉

x5

✉

y5

✉v1

✉v2

✉u1

✉u2

✑
✑
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✐

②

②

✯

✶

✿

Figure 4 : A graph with g dχ = 2 , dχ = 4 and χ= 5.
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