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STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS

INVOLVING BREGMAN FUNCTIONS IN BANACH SPACES

ESKANDAR NARAGHIRAD AND SARA TIMNAK

Abstract. In this paper, using Bregman functions, we introduce new Halpern-type iter-

ative algorithms for finding a solution of an equilibrium problem in Banach spaces. We

prove the strong convergence of a modified Halpern-type scheme to an element of the

set of solution of an equilibrium problem in a reflexive Banach space. This scheme has

an advantage that we do not use any Bregman projection of a point on the intersection of

closed and convex sets in a practical calculation of the iterative sequence. Finally, some

application of our results to the problem of finding a minimizer of a continuously Fréchet

differentiable and convex function in a Banach space is presented. Our results improve

and generalize many known results in the current literature.

1. Introduction

The equilibrium problem, introduced by Blum and Oettli [1] in 1994, has been attracting

a growing attention of researchers; see, e.g., [2, 3, 4, 5] and the references therein. Numerous

problems in physics, optimization, and economics reduce to find a solution of the equilib-

rium problem. There have appeared many papers in this subject with different approach

[6, 7]. Throughout this paper, we denote the set of real numbers and the set of positive inte-

gers by R and N, respectively. Let E be a Banach space with the norm ‖.‖ and the dual space

E∗. For any x ∈ E , we denote the value of x∗ ∈ E∗ at x by 〈x, x∗〉. Let {xn}n∈N be a sequence

in E , we denote the strong convergence of {xn}n∈N to x ∈ E as n →∞ by xn → x and the weak

convergence by xn * x. The modulus δ of convexity of E is denoted by

δ(ǫ) = inf

{

1−
‖x + y‖

2
: ‖x‖≤ 1,‖y‖≤ 1,‖x − y‖≥ ǫ

}

for every ǫ with 0 ≤ ǫ≤ 2. A Banach space E is said to be uniformly convex if δ(ǫ) > 0 for every

ǫ> 0. Let SE = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux differentiable if for each

x, y ∈ SE , the limit

lim
t→0

‖x + t y‖−‖x‖

t
(1.1)
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exists. In this case, E is called smooth. If the limit (1.1) is attained uniformly for all x, y ∈ SE ,

then E is called uniformly smooth. The Banach space E is said to be strictly convex if ‖
x+y

2 ‖< 1

whenever x, y ∈ SE and x 6= y . It is well known that E is uniformly convex if and only if E∗ is

uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and only if

E∗ is smooth; for more details, see [8, 9].

Let C be a nonempty subset of E . Let T : C → E be a mapping. We denote the set of fixed

points of T by F (T ), i.e., F (T ) = {x ∈ C : T x = x}. Recall that the Halpern iteration is given by

the following formula














u ∈C , x1 ∈C chosen arbitrarily,

yn = (1−βn )xn +βnT xn ,

xn+1 =αnu + (1−αn )yn ,

(1.2)

where the sequences {βn}n∈N and {αn}n∈N satisfy some appropriate conditions. The construc-

tion of fixed points of nonexpansive mappings via Halpern’s algorithm [10] has been exten-

sively investigated recently in the current literature (see, for example, [11] and the references

therein).

Let E be a smooth, strictly convex and reflexive Banach space and let J be the normalized

duality mapping of E . Let C be a nonempty, closed and convex subset of E . The generalized

projection ΠC from E onto C is defined and denoted by

ΠC (x) = argminy∈Cφ(y, x)

where φ(x, y) = ‖x‖2 − 2〈x, J y〉 + ‖y‖2. Let C be a nonempty, closed and convex subset of a

smooth Banach space E , let T be a mapping from C into itself. A point p ∈ C is said to be

an asymptotic fixed point [7, 13] of T if there exists a sequence {xn}n∈N in C which converges

weakly to p and limn→∞ ‖xn −T xn‖ = 0. We denote the set of all asymptotic fixed points of T

by F̂ (T ).

Let C be a nonempty, closed and convex subset of a Banach space E . Let f : C ×C →R be

a bifunction. Consider the following equilibrium problem: Find p ∈C such that

f (p, y) ≥ 0, ∀y ∈C . (1.3)

For solving the equilibrium problem, let us assume that f : C ×C → R satisfies the following

conditions:

(A1) f (x, x) = 0 for all x ∈C ;

(A2) f is monotone, i.e., f (x, y)+ f (y, x) ≤ 0 for all x, y ∈C ;

(A3) for each y ∈C , the function x 7−→ f (x, y) is upper semicontinuous;

(A4) for each x ∈C , the function y 7−→ f (x, y) is convex and lower semicontinuous.
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The set of solutions of problem (1.3) is denoted by EP( f ).

Following Matsushita and Takahashi [7], a mapping T : C → C is said to be relatively

nonexpansive if the following conditions are satisfied:

(1) F (T ) is nonempty;

(2) φ(u,T x)≤φ(u, x), ∀u ∈ F (T ), x ∈C ;

(3) F̂ (T ) = F (T ).

Recently, Takahashi and Zembayashi [4] proved the following strong convergence theo-

rem for relatively nonexpansive mappings in a Banach space.

Theorem 1.1. Let E be a uniformly smooth and strictly convex Banach space. Let f be a bifunc-

tion from C ×C to R satisfying (A1)−(A4) and T be a relatively nonexpansive mapping from C

into itself such that F (T )∩EP( f ) 6= Ø. Let {xn}n∈N be a sequence generated by















































x0 = x ∈C chosen arbitrarily,

yn = J−1(αn J xn + (1−αn )JT xn),

un ∈C such that f (un , y)+ 1
rn
〈y −un , Jun − J yn〉 ≥ 0, ∀y ∈C ,

Cn = {z ∈Cn : φ(z,un) ≤φ(z, xn)},

Qn = {z ∈C : 〈xn − z, J x − J xn 〉 ≥ 0},

xn+1 =ΠCn∩Qn
x

(1.4)

for every n ∈N∪ {0}, where J is the normalized duality mapping on E, {αn }n∈N ⊂ [0,1] satisfies

liminfn→∞αn(1−αn) > 0 and {rn}n∈N ⊂ [a,∞) for some a > 0. Then, {xn}n∈N converges strongly

to ΠF (T )∩EP ( f )x as n →∞.

In 2010, Plubtieng and Ungchiterakool [3] proved the following strong convergence the-

orem for relatively nonexpansive mappings in a Banach space.

Theorem 1.2. Let E be a uniformly smooth and uniformly convex Banach space and let Ĉ and

C be a nonempty, closed and convex subset of E. Let f be a bifunction from C ×C →R satisfying

(A1)−(A4) and EP( f ) 6= Ø. Let {xn}n∈N and {un}n∈N be sequences generated by



































x0 ∈ E ,

un ∈C =C1 such t hat f (un , y)+ 1
rn
〈y −un , Jun − J xn〉 ≥ 0, ∀y ∈C ,

yn = J−1(αn J xn + (1−αn )Jun),

Cn+1 = {z ∈Cn : φ(z, yn) ≤φ(z, xn)},

xn+1 =ΠCn+1
x0, n ∈N∪ {0},

(1.5)

where {αn }n∈N ⊂ [0,1] satisfies either
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(a) 0 ≤αn < 1 for all n ∈N and limsupn→∞αn < 1 or,

(b) liminfn→∞αn(1−αn )> 0.

Let {rn}n∈N be a sequence in (0,∞) such that liminfn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn | <∞. Then

{xn}n∈N, {un}n∈N, and {yn}n∈N converge strongly to ΠEP ( f )x0 as n →∞.

1.1. Some facts about gradients

Let E be a real Banach space and g : E → (−∞,+∞] be a convex function. The domain

of g is denoted by dom g = {x ∈ E : g (x) <∞}. Let x ∈ int dom g and y ∈ E . The right-hand

derivative of g at x in the direction y is defined and denoted by

g o(x, y)= lim
t↓0

g (x + t y)− g (x)

t
. (1.6)

The function g is called Gâteaux differentiable at x if limt→0
g (x+t y)−g (x)

t
exists for any y . In

this case g o(x, y) coincides with ∇g (x), the value of the gradient ∇g of g at x. The function g

is said to be Gâteaux differentiable if it is Gâteaux differentiable everywhere. The function g is

said to be Fréchet differentiable at x if this limit is attained uniformly in ‖y‖= 1. The function

g is said to be Fréchet differentiable if it is Fréchet differentiable everywhere. It is well known

that if a continuous convex function g : E → R is Gâteaux differentiable, then ∇g is norm-

to-weak∗ continuous (see, for example, [14](Proposition 1.1.10)). Also, it is known that if g is

Fréchet differentiable, then ∇g is norm-to-norm continuous (see, [15]). The function g is said

to be strongly coercive if

lim
‖xn‖→∞

g (xn)

‖xn‖
=∞.

It is also said to be bounded on bounded subsets of E if g (U ) is bounded for each bounded

subset U of E . Finally, g is said to be uniformly Fréchet differentiable on a subset X of E if the

limit (1.6) is attained uniformly for all x ∈ X and ‖y‖= 1.

Let A : E → 2E∗

be a set-valued mapping. We define the domain and range of A by

dom A = {x ∈ E : Ax 6= Ø} and ran A = ∪x∈E Ax, respectively. The graph of A is denoted by

G(A) = {(x, x∗) ∈ E ×E∗ : x∗ ∈ Ax}. The mapping A ⊂ E ×E∗ is said to be monotone [16] if

〈x − y, x∗− y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ A. It is also said to be maximal monotone [17] if

its graph is not contained in the graph of any other monotone operator on E . If A ⊂ E ×E∗

is maximal monotone, then we can show that the set A−10 = {z ∈ E : 0 ∈ Az} is closed and

convex. A mapping A : dom A ⊂E → E∗ is called γ-inverse strongly monotone if there exists a

positive real number γ such that for all x, y ∈ dom A, 〈x − y, Ax − Ay〉 ≥γ‖Ax − Ay‖2.
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1.2. Some facts about conjugate functions

Let E be a reflexive Banach space and g : E → (−∞,+∞] be a proper, lower semicontinu-

ous and convex function. The conjugate function g∗ of g is defined by

g∗(x∗) = sup
x∈E

{〈x, x∗〉− g (x)}

for all x∗ ∈ E∗. It is well known that g (x)+ g∗(x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ E ×E∗. It is also

known that (x, x∗) ∈ ∂g is equivalent to

g (x)+ g∗(x∗) = 〈x, x∗
〉. (1.7)

Here, ∂g is the subdifferential of g [18, 19]. We also know that if g : E → (−∞,+∞] is a proper,

lower semicontinuous and convex function, then g∗ : E∗ → (−∞,+∞] is a proper, weak∗

lower semicontinuous and convex function; see [9] for more details on convex analysis.

1.3. Some facts about Bregman distances

Let E be a Banach space and let E∗ be the dual space of E . Let g : E →R be a convex and

Gâteaux differentiable function. Then the Bregman distance [22, 23] corresponding to g is the

function Dg : E ×E →R defined by

Dg (x, y) = g (x)− g (y)−〈x − y,∇g (y)〉, ∀x, y ∈ E . (1.8)

It is clear that Dg (x, y) ≥ 0 for all x, y ∈ E . In that case when E is a smooth Banach space,

setting g (x) = ‖x‖2 for all x ∈ E , we obtain that ∇g (x) = 2J x for all x ∈ E and hence Dg (x, y) =

φ(x, y) for all x, y ∈ E .

Let E be a Banach space and let C be a nonempty and convex subset of E . Let g : E → R

be a convex and Gâteaux differentiable function. Then, we know from [24] that for x ∈ E and

x0 ∈C , Dg (x0, x)= miny∈C Dg (y, x) if and only if

〈y −x0,∇g (x)−∇g (x0)〉 ≤ 0, ∀y ∈C . (1.9)

Furthermore, if C is a nonempty, closed and convex subset of a reflexive Banach space E and

g : E → R is a strongly coercive Bregman function, then for each x ∈ E , there exists a unique

x0 ∈C such that

Dg (x0, x) =min
y∈C

Dg (y, x).

The Bregman projection proj
g

C
from E onto C is defined by proj

g

C
(x) = x0 for all x ∈ E . It is also

well known that proj
g

C
has the following property:

Dg

(

y,proj
g

C x
)

+Dg

(

proj
g

C x, x
)

≤Dg (y, x) (1.10)
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for all y ∈C and x ∈ E (see [14] for more details).

1.4. Some facts about uniformly convex functions

Let E be a Banach space and let Bs := {z ∈ E : ‖z‖ ≤ s} for all s > 0. Then a function

g : E →R is said to be uniformly convex on bounded subsets of E ([25] (pp. 203, 221)) if ρs (t )> 0

for all s, t > 0, where ρs : [0,+∞) → [0,∞] is defined by

ρs(t )= inf
x,y∈Bs ,‖x−y‖=t ,α∈(0,1)

αg (x)+ (1−α)g (y)− g (αx + (1−α)y)

α(1−α)
(1.11)

for all t ≥ 0. The function ρs is called the gauge of uniform convexity of g . The function g is

also said to be uniformly smooth on bounded subsets of E ([25](pp. 207, 221)) if limt↓0
σs (t )

t = 0

for all s > 0, where σs : [0,+∞) → [0,∞] is defined by

σs (t ) = sup
x∈Bs ,y∈SE ,α∈(0,1)

αg (x + (1−α)t y)+ (1−α)g (x −αt y)− g (x)

α(1−α)

for all t ≥ 0.

1.5. Some facts about Bregman quasi-nonexpansive mappings

Let C be a nonempty, closed and convex subset of a reflexive Banach space E . Let g : E →

(−∞,+∞] be a proper, lower semicontinuous and convex function. Recall that a mapping

T : C →C is said to be Bregman quasi-nonexpansive [28], if F (T ) 6= Ø and

Dg (p,T x) ≤ Dg (p, x), ∀x ∈C , p ∈ F (T ).

A mapping T : C → C is said to be Bregman relatively nonexpansive [28] if the following con-

ditions are satisfied:

(1) F (T ) is nonempty;

(2) Dg (p,T v) ≤Dg (p, v), ∀p ∈ F (T ), v ∈C ;

(3) F̂ (T )= F (T ).

The theory of fixed points with respect to Bregman distances has been well developed in

the last 15 years and much intensively in the last ten years. For some recent articles on the

existence of and the construction of fixed points for Bregman nonexpansive type mappings,

we refer the readers to [27, 28, 30].

Remark 1.1. Though the iteration processes (1.4)−(1.5) and the algorithms in [27], as intro-

duced by the authors mentioned above worked, it is easy to see that these processes seem

cumbersome and complicated in the sense that at each stage of iteration, two different sets

Cn and Qn are computed and the next iterate taken as the Bregman projection of x0 on the

intersection of Cn and Qn . This seems difficult to do in application.
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But it is worth mentioning that, in all the above results for Bregman nonexpansive type

mappings, the computation of closed and convex sets Cn and Qn for each n ∈N are required.

So, the following question arises naturally in a Banach space setting.

Question 1.1. Is it possible to obtain strong convergence of modified Halpern-type schemes to

a solution of equilibrium problem (1.3) without using the Bregman projection of a point on the

intersection of closed and convex sets Cn and Qn in a Banach space E?

In this paper, we deal with an equilibrium problem in a reflexive Banach space. First,

we consider disadvantages of the iterative sequences in known results. Namely, Bregman

projections are not always available in a practical calculation. We attempt to improve these

schemes and, by combining them with iterative method of the Halpern type, we obtain a

new type of strong convergence theorem, which overcomes the drawbacks of the previous

results. Next, we study Halpern type iterative schemes for finding a solution of an equilibrium

problem in a reflexive Banach space. Then, we apply our results to the problem of finding a

minimizer of a continuously Fréchet differentiable and convex function in a Banach space

under suitable assumptions. The computation of closed and convex sets Cn and Qn for each

n ∈ N are not required. Consequently, the above Question 1.1 is answered in the affirmative

in a reflexive Banach space setting. Our results improve and generalize many known results

in the current literature; see, for example, [3, 7, 20, 27].

2. Preliminaries

In this section, we begin by recalling some preliminaries and lemmas which will be used

in the sequel.

The following definition is slightly different from that in Butnariu and Iusem [14].

Definition 2.1 ([15]). Let E be a Banach space. The function g : E →R is said to be a Bregman

function if the following conditions are satisfied:

(1) g is continuous, strictly convex and Gâteaux differentiable;

(2) the set {y ∈ E : Dg (x, y) ≤ r } is bounded for all x ∈ E and r > 0.

The following lemma follows from Butnariu and Iusem [14] and Zălinscu [25].

Lemma 2.1. Let E be a reflexive Banach space and g : E →R a strongly coercive Bregman func-

tion. Then

(1) ∇g : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;

(2) 〈x − y,∇g (x)−∇g (y)〉 = 0 if and only if x = y;

(3) {x ∈ E : Dg (x, y)≤ r } is bounded for all y ∈ E and r > 0;
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(4) dom g∗ = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g )−1.

We know the following two results; see [25](Proposition 3.6.4).

Theorem 2.1. Let E be a reflexive Banach space and g : E → R a convex function which is

bounded on bounded subsets of E. Then the following assertions are equivalent:

(1) g is strongly coercive and uniformly convex on bounded subsets of E;

(2) dom g∗ = E∗, g∗ is bounded on bounded subsets and uniformly smooth on bounded sub-

sets of E∗;

(3) dom g∗ =E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous

on bounded subsets of E∗.

Theorem 2.2. Let E be a reflexive Banach space and g : E → R a continuous convex function

which is strongly coercive. Then the following assertions are equivalent:

(1) g is bounded on bounded subsets and uniformly smooth on bounded subsets of E;

(2) g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous on bounded

subsets of E∗;

(3) dom g∗ = E∗, g∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Let E be a Banach space and let g : E → R be a convex and Gâteaux differentiable func-

tion. Then the Bregman distance [21] (see also [22, 23]) satisfies the three point identity that is

Dg (x, z) = Dg (x, y)+Dg (y, z)+〈x − y,∇g (y)−∇g (z)〉, ∀x, y, z ∈ E . (2.1)

In particular, it can be easily seen that

Dg (x, y) =−Dg (y, x)+〈y −x,∇g (y)−∇g (x)〉, ∀x, y ∈ E . (2.2)

Indeed, by letting z = x in (2.1) and taking into account that Dg (x, x) = 0, we get the desired

result.

The following lemma has been proved in [14] (see also [15, 29, 30]).

Lemma 2.2. Let E be a Banach space and g : E →R a Gâteaux differentiable function which is

uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded sequences in

E. Then the following assertions are equivalent:

(1) limn→∞ Dg (xn , yn) = 0.

(2) limn→∞ ‖xn − yn‖ = 0.

The following result was first proved in [26] (see also [15]).
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Lemma 2.3. Let E be a reflexive Banach space, g : E →R a strongly coercive Bregman function

and Vg the function defined by

Vg (x, x∗) = g (x)−〈x, x∗
〉+ g∗(x∗), x ∈ E , x∗

∈ E∗.

Then the following assertions hold:

(1) Dg (x,∇g∗(x∗)) =Vg (x, x∗) for all x ∈ E and x∗ ∈ E∗.

(2) Vg (x, x∗)+〈∇g∗(x∗)−x, y∗〉 ≤Vg (x, x∗+ y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

The following lemma has been proved in [34].

Lemma 2.4. Let E be a Banach space, s > 0 be a constant, ρs be the gauge of uniform convexity

of g and g : E → R be a convex function which is uniformly convex on bounded subsets of E.

Then

(i) For any x, y ∈ Bs and α ∈ (0,1)

g (αx + (1−α)y) ≤αg (x)+ (1−α)g (y)−α(1−α)ρs (‖x − y‖).

(ii) For any x, y ∈ Bs

ρs(‖x − y‖) ≤Dg (x, y).

(iii) If, in addition, g is bounded on bounded subsets and uniformly convex on bounded sub-

sets of E then, for any x ∈ E, y∗, z∗ ∈ Bs and α ∈ (0,1)

Vg (x,αy∗+ (1−α)z∗) ≤αVg (x, y∗)+ (1−α)Vg (x, z∗)−α(1−α)ρ∗
s (‖y∗− z∗‖).

Lemma 2.5 ([3]). Let C be a subset of a real Banach space E and {Tn}n∈N be a family of map-

pings from C into E. Suppose that for any bounded subset B of C there exists a continuous

increasing function hB : [0,∞) → [0,∞) such that hB (0) = 0 and

lim
k ,l→∞

σk
l = 0,

where σk
l

:= sup{hB (‖Tk z −Tl z‖) : z ∈ B } <∞, for all k , l ∈ N. Then, for each x ∈ C , {Tn x}n∈N

converges strongly to some point of E. Moreover, let the mapping T be defined by

T x = lim
n→∞

Tn x, ∀x ∈C .

Then, limsupn→∞{hB (‖Tn z −Tz‖) : z ∈ B }= 0.
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Lemma 2.6 ([31]). Let {an}n∈N be a sequence of real numbers such that there exists a subse-

quence {ni }i∈N of {n}n∈N such that ani
< ani+1 for all i ∈ N. Then there exists a subsequence

{mk }k∈N ⊂ N such that mk → ∞ and the following properties are satisfied by all (sufficiently

large) numbers k ∈N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{ j ≤ k : a j < a j+1}.

Lemma 2.7 ([32]). Let {sn}n∈N be a sequence of nonnegative real numbers satisfying the in-

equality:

sn+1 ≤ (1−γn)sn +γnδn , ∀n ≥ 1,

where {γn}n∈N and {δn }n∈N satisfy the conditions:

(i) {γn}n∈N ⊂ [0,1] and
∑∞

n=1γn =∞, or equivalently, Π∞
n=1(1−γn ) = 0;

(ii) limsupn→∞δn ≤ 1, or

(ii)′
∑∞

n=1γnδn <∞.

Then, limn→∞ sn = 0.

Lemma 2.8 ([27]). Let E be a reflexive Banach space and g : E → R a convex, continuous,

strongly coercive and Gâteaux differentiable function which is bounded on bounded subsets

and uniformly convex on bounded subsets of E. Let C be a nonempty, closed and convex sub-

set of E. Let T : C → C be a Bregman quasi-nonexpansive mapping. Then F (T ) is closed and

convex.

Lemma 2.9. Let E be a reflexive Banach space and g : E → R a convex, continuous, strongly

coercive and Gâteaux differentiable function which is bounded on bounded subsets and uni-

formly convex on bounded subsets of E. Let C be a nonempty, closed and convex subset of E

and {Tn}n∈N an infinite family of Bregman quasi-nonexpansive mappings from C into itself

such that F :=
⋂∞

n=1 F (Tn) 6= Ø. Let the mapping T : C →C be defined by

T x = lim
n→∞

Tn x,

Then, T is a Bregman quasi-nonexpansive mapping.

Proof. Let x ∈ C and p ∈ F (T ) be fixed. Then we have {Tn x}n∈N is a bounded sequence in

E . The function g is bounded on bounded subsets of E and, thus, ∇g is also bounded on

bounded subsets of E∗ (see, for example, [14] for more details). This implies that the sequence

{∇g (Tn x)}n∈N is bounded in E∗. Since ∇g is uniformly norm-to-norm continuous on any

bounded subset of E , we obtain

Dg (p,T x) = g (p)− g (T x)−〈x −T x,∇g (T x)〉
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= g (p)− g ( lim
n→∞

Tn x)−〈x − lim
n→∞

Tn x,∇g ( lim
n→∞

Tn x)〉

= lim
n→∞

[g (p)− g (Tn x)−〈x −Tn x,∇g (Tn x)〉]

= lim
n→∞

Dg (p,Tn x)

≤ Dg (p, x).

Thus, T is a Bregman Quasi-nonexpansive mapping, which completes the proof. ���

Corollary 2.1 ([25]). Let E be a Banach space, g : E → (−∞,∞] be a proper, lower semicontinu-

ous and convex function and p, q ∈R, with 1≤ p ≤ 2 ≤ q and p−1+q−1 = 1. Then the following

statements are equivalent:

(1) There exists c1 > 0 such that g is ρ-convex with ρ(t ) :=
c1

q t q for all t ≥ 0.

(2) There exists c2 > 0 such that for all (x, x∗), (y, y∗) ∈G(∂g ); ‖x∗− y∗‖ ≥
2c2

q
‖x − y‖q−1.

3. Equilibrium problem

In this section, we prove strong convergence theorems in a reflexive Banach space. Let

E be a Banach space and C be a nonempty, closed and convex subset of a reflexive Banach

space E . Let f : C ×C → R be a bifunction satisfying (A1)−(A4) and EP( f ) 6= Ø. Let g : E → R

be a Legendre function. For r > 0, we define a mapping Tr : E →C as follows:

Tr (x) =

{

z ∈C : f (z, y)+
1

r
〈y − z,∇g (z)−∇g (x)〉 ≥ 0 for all y ∈C

}

(3.1)

for all x ∈ E .

Lemma 3.1 ([28]). Let E be a reflexive Banach space and g : E →R a Legendre function. Let C be

a nonempty, closed and convex subset of E and f : C ×C →R a bifunction satisfying (A1)−(A4).

For r > 0, let Tr : E →C be the mapping defined by (3.1). Then, dom (Tr ) =E.

Lemma 3.2 ([28]). Let E be a reflexive Banach space and g : E → R a convex, continuous

and strongly coercive function which is bounded on bounded subsets and uniformly convex

on bounded subsets of E. Let C be a nonempty, closed and convex subset of E and f : C ×C →R

a bifunction satisfying (A1)−(A4) and EP( f ) 6= Ø. For r > 0, let Tr : E → C be the mapping

defined by (3.1). Then, the following statements hold:

(1) Tr is single-valued;

(2) Tr is a Bregman firmly nonexpansive mapping [28], i.e., for all x, y ∈ E,

〈Tr x −Tr y,∇g (Tr x)−∇g (Tr y)〉 ≤ 〈Tr x −Tr y,∇g (x)−∇g (y)〉;
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(3) F (Tr ) = EP( f );

(4) EP( f ) is closed and convex;

(5) Tr is a Bregman quasi-nonexpansive mapping;

(6) Dg (q,Tr x)+Dg (Tr x, x) ≤ Dg (q, x), ∀q ∈ F (Tr ).

The following theorem establishes the strong convergence of the Halpern algorithm.

Theorem 3.1. Let E be a reflexive Banach space and g : E → R a strongly coercive Bregman

function which is bounded on bounded subsets, and uniformly convex and uniformly smooth

on bounded subsets of E. Let C be a nonempty, closed and convex subset of E and f : C ×

C → R a bifunction satisfying (A1)−(A4). For r > 0, let Tr : E → C be the mapping defined by

(3.1). Suppose that EP( f ) is a nonempty subset of C , where EP( f ) is the set of solutions to the

equilibrium problem (1.3). Let {αn }n∈N and {βn}n∈N be two sequences in [0,1] satisfying the

following control conditions:

(a) limn→∞αn = 0;

(b)
∑∞

n=1αn =∞;

(c) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1.

Let {rn}n∈N be a sequence in (0,∞) such that liminfn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn | < ∞.

Let {xn}n∈N be a sequence generated by























u ∈C , x1 ∈C chosen arbitrarily,

un ∈C such that f (un , y)+ 1
rn
〈y −un,∇g (un)−∇g (xn )〉 ≥ 0, ∀y ∈C ,

yn =∇g∗[βn∇g (xn)+ (1−βn )∇g (un],

xn+1 = proj
g

C
(∇g∗[αn∇g (u)+ (1−αn )∇g (yn)]) and n ∈N,

(3.2)

where∇g is the gradient of g . Then the sequence {xn}n∈N defined in (3.2) converges strongly

to proj
g

EP ( f )
u as n →∞.

Proof. We divide the proof into several steps. In view of Lemma 3.2, we conclude that EP( f )

is closed and convex. Set

z = proj
g

EP ( f )
u.

Step 1. We show that there exists a mapping T : C →C such that

T x = lim
n→∞

Trn
x, (x ∈C ) and F (T )=

∞
⋂

n=1

F (Trn
)=

∞
⋂

n=1

F̂ (Trn
)= F̂ (T ).

Since Trn
is a Bregman quasi-nonexpansive mapping, so we have

Dg (z,Trn
v)≤ Dg (z, v), ∀v ∈ E , n ∈N.
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This, together with Definition 2.1, implies that, for any bounded subset B of E , {Trn
v : v ∈ B }

is bounded. Taking any v ∈ E and setting vn = Trn
v , we get

f (vl , y)+
1

rl

〈y −vl ,∇g (vl )−∇g (v)〉 ≥ 0 ∀y ∈C (3.3)

and

f (vk , y)+
1

rk

〈y −vk,∇g (vk )−∇g (v)〉 ≥ 0 ∀y ∈C . (3.4)

Letting y = vk in (3.3) and y = vl in (3.4), we arrive at

f (vl , vk )+
1

rl
〈vk −vl ,∇g (vl )−∇g (v)〉 ≥ 0 and f (vk , vl )+

1

rk
〈vl −vk ,∇g (vk )−∇g (v)〉 ≥ 0.

Now, adding up the previous inequalities and taking into account (A2) we get

〈

vk −vl ,
∇g (vl )−∇g (v)

rl

−
∇g (vk )−∇g (v)

rk

〉

≥ 0

and hence
〈

vk −vl ,∇g (vl )−∇g (v)−
rl

rk
(∇g (vk )−∇g (v))

〉

≥ 0.

Therefore,

〈vk −vl ,∇g (vk )−∇g (vl )〉+
〈

vk −vl ,
(

1−
rl

rk

)

(∇g (vk )−∇g (v))
〉

≥ 0.

Without loss of generality, we may assume that there exists a real number a such that rn > a

for all n ∈N∪ {0}. So we obtain

〈vk −vl ,∇g (vk )−∇g (vl )〉 ≤
〈

vk −vl ,
(

1−
rl

rk

)

(∇g (vl )−∇g (v))
〉

≤
1

a
‖vk −vl‖|rk − rl |‖∇g (vk )−∇g (v)‖

=
1

a
‖Trk

v −Trl
v‖‖∇g (Trk

v)−∇g (Trl
v)‖|rk − rl |.

By Lemma 3.2, we receive EP( f )=
⋂∞

n=1 F (Trn
). Let

M0 = sup
{ 1

a
‖Trk

v −Trl
v‖‖∇g (Trk

v)−∇g (Trl
v)‖ : v ∈ B , k , l ∈N∪ {0}

}

.

Putting s1 = sup{‖vk‖,‖vl‖,‖∇g (vk )‖,‖∇g (vl )‖ : k , l ∈ N∪ {0}}, in view of Lemma 2.4(i), there

exists a strictly increasing, continuous and convex function ρs1
: [0,∞) → [0,∞) such that for

all v ∈ B ,

ρs1
(‖Trk

v −Trl
v‖) = ρs1

(‖vk −vl‖)≤ Dg (vk , vl )

= −Dg (vl , vk)+〈vk −vl ,∇g (vk )−∇g (vl )〉
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≤
1

a
‖Trk

v −Trl
v‖‖∇g (Trk

v)−∇g (Trl
v)‖|rk − rl |

≤ M0|rk − rl | ≤ M0

k−1
∑

n=l

|rn+1 − rn| ≤ M0

∞
∑

n=l

|rn+1 − rn| <∞.

Let

σk
l := sup{ρs1

(‖Trk
v −Trl

v‖) : v ∈ B }≤ M0

∞
∑

n=l

|rn+1 − rn | <∞.

Letting l → ∞ in the above inequality, we get limk ,l→∞σk
l
= 0. Let us define the function

T : C →C by

T x = lim
n→∞

Trn
x, (x ∈C ).

We prove that

F (T )=
∞
⋂

n=1

F (Trn
) =

∞
⋂

n=1

F̂ (Trn
) = F̂ (T ). (3.5)

Let us mention first the following observations are obvious:

(1)
⋂∞

n=1 F (Trn
)=

⋂∞
n=0 F̂ (Trn

) =EP( f ).

(2)
⋂∞

n=1 F (Trn
)⊂ F (T ) and

⋂∞
n=1 F̂ (Trn

) ⊂ F̂ (T ).

It remains to prove that (3) F (T ) ⊂
⋂∞

n=1 F (Trn
) and (4) F̂ (T ) ⊂

⋂∞
n=1 F̂ (Trn

).

(3) Let p ∈ F (T ) be fixed. By the definition of Tr (see (3.1)), we see that

f (Trn
p, y)+

1

rn
〈y −Trn

p,∇g (Trn
p)−∇g (p)〉 ≥ 0 ∀y ∈C .

In view of (A2), we obtain

1

rn
〈y −Trn

p,∇g (Trn
p)−∇g (p)〉 ≥ f (y,Trn

p) ∀y ∈C .

Since Trn
p → T p as n → ∞, ∇g is uniformly continuous on bounded subsets of E and

f (y, ·) is lower semicontinuous, we conclude that f (y, p) ≤ 0 for all y ∈C . Takin any y ∈C

and setting xt = t y + (1− t )p , for t ∈ (0,1] we see that

0 ≤ f (xt , xt ) ≤ t f (xt , y)+ (1− t ) f (xt , p) ≤ t f (xt , y).

This amounts to f (xt , y) ≥ 0. Letting t ↓ 0 and taking into account (A3), we get f (p, y) ≥ 0

for all y ∈C and hence p ∈ EP( f ) =
⋂∞

n=1 F (Trn
).

(4) Let q ∈ F̂ (T ). Then, there exists a sequence {vn}n∈N ⊂ E such that vn * q as n →∞ and

limn→∞ ‖vn −T vn‖ = 0. Observe now that T vn * q as n →∞ and hence q ∈C . Since ∇g

is uniformly continuous on bounded subsets of E , we conclude that limn→∞ ‖∇g (vn)−

∇g (T vn)‖ = 0. For any m ∈N, it follows from the definition of Trm
that

f (Trm
vn , y)+

1

rm
〈y −Trm

vn ,∇g (Trm
vn)−∇g (vn)〉 ≥ 0 ∀y ∈C .
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Applying again (A2) and taking into account 1
rm

≤ 1
a , we obtain

f (y,Trm
vn) ≤ 1

rm
〈y −Trm

vn ,∇g (Trm
vn)−∇g (vn )〉

≤ 1
a ‖y −Trm

vn‖‖∇g (Trm
vn)−∇g (vn )‖ ∀y ∈C .

Since limm→∞ Trm
vn = T vn and f (y, ·) is lower semicontinuous, we arrive at

f (y,T vn) ≤
1

a
‖y −T vn‖‖∇g (T vn)−∇g (vn )‖ ∀y ∈C .

Since T vn * q as n → ∞, limn→∞ ‖vn −T vn‖ = 0 and f (y, ·) is lower semicontinuous,

we deduce that f (y, q) ≤ 0 for all y ∈ C . Proceeding with the same process as above we

conclude that f (q, y)≥ 0 for all y ∈C . Therefore, q ∈ EP( f ) =
⋂∞

n=1 F̂ (Trn
).

Step 2. We prove that {xn}n∈N, {yn}n∈N and {un}n∈N are bounded sequences in E .

We first show that {xn}n∈N is bounded. Let p ∈ EP( f ) be fixed. In view of Lemmas 2.4, 3.2

and (3.2), we have

Dg (p, yn) = Dg (p,∇g∗[(1−βn)∇g (xn )+βn∇g (Trn
xn))

= Vg (p, (1−βn )∇g (xn )+βn∇g (Trn
xn)])

≤ (1−βn )Vg (p,∇g (xn ))+βnVg (p,∇g (Trn
xn))

= (1−βn )Dg (p, xn)+βnDg (p,Trn
xn)

≤ (1−βn )Dg (p, xn)+βnDg (p, xn)

= Dg (p, xn). (3.6)

This implies that

Dg (p, xn+1) = Dg (p,proj
g

C
(∇g∗[αn∇g (u)+ (1−αn )∇g (yn)]))

≤ Dg (p,∇g∗[αn∇g (u)+ (1−αn )∇g (yn)])

= Vg (p,αn∇g (u)+ (1−αn )∇g (yn))

≤ αnVg (p,∇g (u))+ (1−αn )Vg (p,∇g (yn))

= αnDg (p,u)+ (1−αn )Dg (p, yn)

≤ αnDg (p,u)+ (1−αn )Dg (p, yn)

≤ αnDg (p,u)+ (1−αn )Dg (p, xn)

≤ max{Dg (p,u),Dg (p, xn)}. (3.7)

By induction, we obtain

Dg (p, xn+1) ≤ max{Dg (p,u),Dg (p, x1)} (3.8)
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for all n ∈N. It follows from (3.8) that the sequence {Dg (p, xn)}n∈N is bounded and hence there

exists M0 > 0 such that

Dg (p, xn) ≤ M1, ∀n ∈N. (3.9)

In view of Lemma 2.2 (3), we deduce that the sequence {xn}n∈N is bounded. Since {Trn
}n∈N

is an infinite family of Bregman relatively nonexpansive mappings from C into itself, we con-

clude that

Dg (p,um) = Dg (p,Trn
xm)≤ Dg (p, xm), ∀n,m ∈N. (3.10)

This, together with Definition 2.1 and the boundedness of {xn}n∈N, implies that {Trn
xn}n∈N

is bounded. The function g is bounded on bounded subsets of E and therefore ∇g is also

bounded on bounded subsets of E∗ (see, for example, [14] for more details). This, together

with Step 1, implies that the sequences {∇g (xn )}n∈N, {∇g (yn)}n∈N and {∇g (Trn
xn)}n∈N are

bounded in E∗. In view of Theorem 2.2 (3), we obtain that dom g∗ = E∗ and g∗ is strongly co-

ercive and uniformly convex on bounded subsets of E . Let s2 = sup{‖∇g (xn )‖,‖∇g (Trn
xn)‖ :

n ∈N} and let ρ∗
s2

: E∗ →R be the gauge of uniform convexity of the conjugate function g∗.

Step 3. We prove that for any n ∈N

Dg (z, yn) ≤Dg (z, xn)−βn(1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖). (3.11)

Let us show (3.11). For each n ∈ N, in view of the definition of Bregman distance (see (1.8)),

Lemma (2.4) and (3.6), we obtain

Dg (z, yn) = g (z)− g (yn )−〈z − yn ,∇g (yn)〉

= g (z)+ g∗(∇g (yn))−〈yn ,∇g (yn)〉−〈z,∇g (yn)〉+〈yn ,∇g (yn)〉

= g (z)+ g∗((1−βn )∇g (xn)+βn∇g (Trn
xn))

−〈z, (1−βn)∇g (xn )+βn∇g (Trn
xn))〉

≤ (1−βn )g (z)+βn g (z)+ (1−βn )g∗(∇g (xn ))+βn g∗(∇g (Trn
xn))

−βn(1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖)

−(1−βn )〈z,∇g (xn)〉−βn〈z,∇g (Trn
xn)〉

= (1−βn )[g (z)+ g∗(∇g (xn ))−〈z,∇g (xn)〉]

+βn[g (z)+ g∗(∇g (Trn
xn))−〈z,∇g (Trn

xn)〉]

−βn(1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖)

= (1−βn )[g (z)− g (xn )+〈xn ,∇g (xn )〉−〈z,∇g (xn)〉]

+βn[g (z)− g (Trn
xn)+〈Trn

xn ,∇g (Trn
xn)〉−〈z,∇g (Trn

xn)〉]

−βn(1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖)

= (1−βn )D(z, xn)+βn D(z,Trn
xn)
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−βn(1−βn )ρ∗
s2

(‖∇g (xn )−∇g (Trn
xn)‖)

≤ (1−βn )Dg (z, xn)+βnDg (z, xn)

−βn(1−βn )ρ∗
s2

(‖∇g (xn )−∇g (Trn
xn)‖)

= D(z, xn )−βn(1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖).

In view of Lemma 2.5 and (3.11), we obtain

Dg (z, xn+1) = Dg (p,proj
g

C
(∇g∗[αn∇g (u)+ (1−αn )∇g (yn)]))

≤ Dg (z,∇g∗[αn∇g (z)+ (1−αn )∇g (yn)])

= Vg (z,αn∇g (u)+ (1−αn )∇g (yn))

≤ αnV (z,∇g (u))+ (1−αn )Vg (z,∇g (yn))

= αnDg (z,u)+ (1−αn )Dg (z, yn)

≤ αnDg (z,u)+ (1−αn )Dg (z, yn)

≤ αnDg (z,u)+ (1−αn )[Dg (z, xn)−βn (1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖)]. (3.12)

Let M2 := sup{|Dg (z,u)−Dg (z, xn)|+βn(1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖) : n ∈N}. It follows

from (3.12) that

βn(1−βn )ρ∗
s2

(‖∇g (xn)−∇g (Trn
xn)‖) ≤ Dg (z, xn)−Dg (z, xn+1)+αn M2. (3.13)

Let zn =∇g∗[αn∇g (u)+(1−αn )∇g (yn)]. Then xn+1 = proj
g

C
(zn) for all n ∈N. In view of Lemma

2.3 and (3.11) we obtain

Dg (z, xn+1) = Dg (p,proj
g

C
(∇g∗[αn∇g (u)+ (1−αn )∇g (yn)]))

≤ Dg (z,∇g∗[αn∇g (u)+ (1−αn )∇g (yn)])

= Vg (z,αn∇g (u)+ (1−αn )∇g (yn))

≤ Vg (z,αn∇g (u)+ (1−αn )∇g (yn)−αn (∇g (u)−∇g (z)))

−〈∇g∗[αn∇g (u)+ (1−αn )∇g (yn)]− z,−αn (∇g (u)−∇g (z))〉

= Vg (z,αn∇g (z)+ (1−αn )∇g (yn))+αn 〈zn − z,∇g (u)−∇g (z)〉

= Dg (z,∇g∗[αn∇g (z)+ (1−αn )∇g (yn)])+αn〈zn − z,∇g (u)−∇g (z)〉

≤ αnDg (z, z)+ (1−αn )Dg (z, yn)+αn〈zn − z,∇g (u)−∇g (z)〉

= (1−αn )Dg (z, xn)+αn〈zn − z,∇g (u)−∇g (z)〉. (3.14)

Step 4. We show that xn → z as n →∞.

The rest of the proof will be divided into two parts:

Case 1. If there exists n0 ∈N such that {Dg (z, xn)}∞n=n0
is nonincreasing, then {Dg (z, xn)}n∈N is
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convergent. Thus, we have Dg (z, xn)−Dg (z, xn+1) → 0 as n →∞. This, together with condi-

tion (c), implies that

lim
n→∞

ρ∗
s2

(‖∇g (xn )−∇g (Trn
xn)‖) = 0.

Therefore, from the property of ρ∗
s2

we deduce that

lim
n→∞

‖∇g (xn)−∇g (Trn
xn)‖ = 0.

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞

‖xn −Trn
xn‖= 0.

Let s3 := sup{‖xn‖,‖Trn
xn‖} <∞ and let B1 be a bounded subset of E such that {xn ,Trn

xn}n∈N

⊂ B1. By the same argument as in Step 1 we conclude that limk ,l→∞σk
l
= 0,

where σk
l

:= sup{ρs1
(‖Trk

v −Trl
v‖) : v ∈ B1}. On the other hand, we have

1

2
‖xn −T xn‖≤

1

2
‖xn −Trn

xn‖+
1

2
‖Trn

xn −T xn‖.

Since ρs3
: [0,+∞) → [0,+∞) is an increasing, continuous and convex function, so we have

ρs3
( 1

2
‖xn −T xn‖) ≤ ρs3

( 1
2
‖xn −Trn

xn‖)+ρs3
( 1

2
‖Trn

xn −T xn‖)

≤ 1
2
ρs3

(‖xn −Trn
xn‖)+ 1

2
sup{ρs3

(‖Trn
v −T v‖) : v ∈ B1}.

Exploiting Lemma 2.4, we obtain

lim
n→∞

ρs3
(‖xn −T xn‖) = 0.

By the properties of ρs3
, we conclude that

lim
n→∞

‖xn −T xn‖ = 0. (3.15)

This, together with Lemma 3.2 and (3.12), implies that z ∈ F (T ) =
⋂∞

n=1 F (Trn
) = EP( f ). Since

{xn}n∈N is bounded, there exists a subsequence {xni
}i∈N of {xn}n∈N such that xni

* y ∈C and

limsup
n→∞

〈xn − z,∇g (x)−∇g (z)〉 = lim
i→∞

〈xni
− z,∇g (x)−∇g (z)〉.

This, together with (1.9), implies that

limsup
n→∞

〈xn − z,∇g (x)−∇g (z)〉 = 〈y − z,∇g (x)−∇g (z)〉 ≤ 0.

From Lemma 3.2, we have that

limsup
n→∞

〈zn − z,∇g (u)−∇g (z)〉 = limsup
n→∞

〈xn − z,∇g (u)−∇g (z)〉 ≤ 0.
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Thus we have the desired result by Lemma 2.7.

Case 2. If there exists a subsequence {ni }i∈N of {n}n∈N such that

Dg (z, xni
) <Dg (z, xni+1)

for all i ∈N, then by Lemma 2.6, there exists a nondecreasing sequence {mk }k∈N ⊂N such that

mk →∞,

Dg (z, xmk
) <Dg (z, xmk+1) and Dg (z, xk )≤ Dg (z, xmk+1)

for all k ∈N. This, together with (3.13), implies that

βmk
(1−βmk

)ρ∗
s2

(‖∇g (xmk
)−∇g (Trmk

xmk
)‖)≤ Dg (z, xmk

)−Dg (z, xmk+1)+αmk
M2 ≤αmk

M2

for all k ∈N. Then, by conditions (a) and (c), we get

lim
k→∞

ρ∗
s2

(‖∇g (xmk
)−∇g (Tmk

xmk
)‖) = 0.

By the same argument as Case 1, we arrive at

limsup
k→∞

〈zmk
− z,∇g (u)−∇g (z)〉 = limsup

k→∞

〈xmk
− z,∇g (u)−∇g (z)〉 ≤ 0.

It follows from (3.14) that

Dg (z, xmk+1) ≤ (1−αmk
)Dg (z, xmk

)+αmk
〈zmk

− z,∇g (u)−∇g (z)〉 (3.16)

Since Dg (z, xmk
) ≤Dg (z, xmk+1), we have that

αmk
Dg (z, xmk

) ≤ Dg (z, xmk
)−Dg (z, xmk+1)+αmk

〈zmk
− z,∇g (u)−∇g (z)〉

≤ αmk
〈zmk

− z,∇g (u)−∇g (z)〉. (3.17)

In particular, since αmk
> 0, we obtain

Dg (z, xmk
) ≤ 〈zmk

− z,∇g (u)−∇g (z)〉.

In view of (3.16), we deduce that

lim
k→∞

Dg (z, xmk
) = 0.

This, together with (3.17), implies that

lim
k→∞

Dg (z, xmk+1) = 0.

On the other hand, we have Dg (z, xk ) ≤ Dg (z, xmk+1) for all k ∈N which implies that xk → z as

k →∞. Thus, we have xn → z as n →∞. ���
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Remark 3.1. We propose a new type of iterative scheme for the solution of an equilibrium

problem in a reflexive Banach space. This scheme has an advantage that we do not use any

projections which creates some difficulties in a practical calculation of the iterative sequence.

A strong convergence theorem by a new Halpern-type method for the approximation of solu-

tion of an equilibrium problem in a reflexive Banach space is also derived.

Remark 3.2. Theorem 3.1 improves Theorems 1.1 and 1.2 in the following aspects.

(1) For the structure of Banach spaces, we extend the duality mapping to more general case,

that is, a convex, continuous and strongly coercive Bregman function which is bounded

on bounded subsets, and uniformly convex and uniformly smooth on bounded subsets.

(2) For the algorithm, we remove the sets Cn and Qn in Theorems 1.1 and 1.2.

4 Applications

In this section, we propose Halpern-type iterative schemes for finding common solutions

of an equilibrium problem and null spaces of a γ-inverse strongly monotone operator in a 2-

uniformly convex Banach space and prove two strong convergence theorems.

Theorem 4.1. Let E be a 2-uniformly convex Banach space and g : E → R a strongly coercive

Bregman function which is bounded on bounded subsets, and uniformly convex and uniformly

smooth on bounded subsets of E. Assume that there exists c1 > 0 such that g is ρ-convex with

ρ(t ) := c1

2
t 2 for all t ≥ 0. Let C be a nonempty, closed and convex subset of E and f be a bi-

function from C ×C to R satisfying (A1)−(A4). Assume that A : C → E∗ is a γ-inverse strongly

monotone for some γ > 0. Suppose that F := A−1(0)∩EP( f ) is a nonempty subset of C , where

EP( f ) is the set of solutions to the equilibrium problem (1.3). Let {αn }n∈N and {βn}n∈N be two

sequences in [0,1] satisfying the following control conditions:

(a) limn→∞αn = 0;

(b)
∑∞

n=1αn =∞;

(c) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1.

Let {rn}n∈N be a sequence in (0,∞) such that liminfn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn | < ∞.

Let {xn}n∈N be a sequence generated by



































u ∈ E , x1 ∈C chosen arbitrarily,

wn = proj
g

C
(∇g∗[∇g (xn)−βAxn ])

un ∈C such that f (un , y)+ 1
rn
〈y −un ,∇g (un)−∇g (wn)〉 ≥ 0, ∀y ∈C ,

yn =∇g∗[βn∇g (wn)+ (1−βn )∇g (un)],

xn+1 =proj
g

C (∇g∗[αn∇g (u)+ (1−αn )∇g (yn )]) and n ∈N,

(4.1)
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where ∇g is the gradient of g . Let λ be a constant such that 0 < λ <
c2

2γ

2
, where c2 is the

2-uniformly convex constant of E satisfying Corollary 2.1 (2). Then the sequence {xn}n∈N

defined in (4.1) converges strongly to proj
g

F u as n →∞.

Proof. We divide the proof into several steps.

Set z = proj
g

F
u.

Step 1. We prove that {xn}n∈N, {yn}n∈N, {wn}n∈N and {un}n∈N are bounded sequences in C . We

first show that {xn}n∈N is bounded. Let p ∈ F be fixed. In view of (1.9), Lemma 2.3 and (4.1),

we obtain

Dg (p, wn) = Dg (p,∇g∗[∇g (xn)−βAxn ])

= Vg (p,∇g (xn)−λAxn)

≤ Vg (p,∇g (xn)−λAxn +λAxn)−〈∇g∗(∇g (xn )−λAxn)−p,λAxn〉

= V (p,∇g (xn ))−λ〈∇g∗(∇g (xn )−λAxn)−p, Axn〉

= Dg (p, xn)−λ〈xn −p, Axn〉−λ〈∇g∗(∇g (xn )−λAxn)−xn , Axn〉

≤ Dg (p, xn)−λγ‖Axn‖
2 +λ‖∇g∗(∇g (xn)−λAxn )−∇g∗∇g (xn )‖‖Axn‖

≤ Dg (p, xn)−λγ‖Axn‖
2
+

4λ2

c2
2

‖Axn‖
2

≤ Dg (p, xn)+λ

(

4λ

c2
2

−γ

)

‖Axn‖
2. (4.2)

This, together with 4λ
c2

2

−γ< 0, implies that

Dg (p, wn) ≤ Dg (p, xn).

By the same argument, as in the proof of Theorem 3.1, for each n ∈N, we obtain

Dg (p, yn) ≤ Dg (p, xn). (4.3)

This implies that

Dg (p, xn+1) ≤ max{Dg (p,u),Dg (p, x1)} (4.4)

for all n ∈N. It follows from (4.4) that the sequence {Dg (xn , x)}n∈N is bounded and hence there

exists M2 > 0 such that

Dg (xn , x) ≤ M2, ∀n ∈N. (4.5)

In view of Lemma 2.2 (3), we have that the sequence {xn}n∈N is bounded. Since {Trn
}n∈N is an

infinite family of Bregman relatively nonexpansive mappings from E into C, we conclude that

Dg (p,Trn
wm) ≤Dg (p, wn) ≤ Dg (p, xn), ∀n ∈N. (4.6)
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This, together with Definition 2.2 and the boundedness of {xn}n∈N, implies that {Trn
wn}n∈N

is bounded for each i = 1,2, . . . , N . The function g is bounded on bounded subsets of E and

therefore ∇g is also bounded on bounded subsets of E∗ (see, for example, [14] for more de-

tails). This, together with Step 1, implies that the sequences {∇g (xn )}n∈N, {∇g (yn)}n∈N and

{∇g (Trn
wn)}n∈N are bounded in E∗. In view of Theorem 2.2 (3), we obtain that dom g∗ =

E∗ and g∗ is strongly coercive and uniformly convex on bounded subsets of E . Let s3 =

sup{‖∇g (wn)‖,‖∇g (Trn
wn)‖ : n ∈ N} and ρ∗

s3
: E∗ → R be the gauge of uniform convexity of

the conjugate function g∗.

Step 2. Continuing in the same manner of proof in Theorem 3.1 we can prove that for any

n ∈N

Dg (z, yn)≤ Dg (z, xn)−βn (1−βn )ρ∗
s3

(‖∇g (wn)−∇g (Trn
wn)‖). (4.7)

Let us show (4.7). Also, in view of Lemma 2.4 and (4.7), we obtain

Dg (z, xn+1)≤αnDg (z,u)+ (1−αn )[Dg (z, xn)−βn(1−βn )ρ∗
s3

(‖∇g (xn)−∇g (Trn
xn)‖)]. (4.8)

Let M3 := sup{|Dg (z,u)−Dg (z, xn)|+βn (1−βn )ρ∗
s3

(‖∇g (wn)−∇g (Trn
wn)‖) : n ∈N}. It follows

from (4.8) that

βn(1−βn )ρ∗
s3

(‖∇g (wn)−∇g (Trn
wn)‖)≤ Dg (z, xn)−Dg (z, xn+1)+αn M3. (4.9)

Let zn = ∇g∗[αn∇g (u)+ (1−αn)∇g (Tn yn)]. Then xn+1 = proj
g

C
(zn) for all n ∈ N. In view of

Lemma 2.3 and (4.7) we obtain

Dg (z, xn+1) = Dg (p,proj
g

C
(∇g∗[αn∇g (u)+ (1−αn )∇g (yn)])

Dg (z,∇g∗[αn∇g (u)+ (1−αn )∇g (yn)])

= Vg (z,αn∇g (u)+ (1−αn )∇g (yn ))

≤ Vg (z,αn∇g (u)+ (1−αn )∇g (yn )−αn (∇g (u)−∇g (z)))

−〈g∗[αn∇g (u)+ (1−αn )∇g (yn)]− z,−αn(∇g (u)−∇g (z))〉

= Vg (z,αn∇g (u)+ (1−αn )∇g (yn ))+αn〈zn − z,∇g (u)−∇g (z)〉

= Dg (z,∇g∗[αn∇g (u)+ (1−αn )∇g (yn)])+αn〈zn − z,∇g (u)−∇g (z)〉

≤ αn Dg (z, z)+ (1−αn )Dg (z, yn)+αn〈zn − z,∇g (u)−∇g (z)〉

= (1−αn )Dg (z, xn)+αn〈zn − z,∇g (u)−∇g (z)〉. (4.10)

Step 3. By the same argument as in the proof of Theorem 3.1 and using (4.9)−(4.10), we con-

clude that

lim
n→∞

ρ∗
s3

(‖∇g (wn)−∇g (Trn
wn)‖) = 0.
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From the properties of ρ∗
s3

, we conclude that

lim
n→∞

‖∇g (wn)−∇g (Trn
wn)‖ = 0.

Since ∇g∗ is uniformly norm-to-norm continuous on bounded subsets of E∗, we arrive at

lim
n→∞

‖wn −Trn
wn‖ = 0.

From the boundedness of {wn}n∈N and {Trn
wn}n∈N, it follows that there exists a bounded sub-

set B of C such that {wn ,Trn
wn}n∈N ⊂ B . Let Let s4 = sup{‖wn‖,‖Trn

wn‖ : n ∈ N} and ρ∗
s3

:

E∗ →R be the gauge of uniform convexity of the conjugate function g . Let T x = limn→∞ Trn
x

for all x ∈ C . In view of Lemma 2.9, T is a Bregman quasi-nonexpansive mapping. On the

other hand, we have

1

2
‖wn −T wn‖≤

1

2
‖wn −Trn

wn‖+
1

2
‖Trn

wn −T wn‖.

Since ρ4 : [0,+∞) → [0,+∞) is an increasing, continuous and convex function, so we have

ρs4
(

1

2
‖wn −T wn‖) ≤ ρs4

(
1

2
‖wn −Trn

wn‖)+ρs4
(

1

2
‖Trn

wn −T wn‖)

≤
1

2
ρs4

(‖wn −Trn
wn‖)+

1

2
sup{ρs4

(‖Trn
z −Tz‖) : z ∈ B }.

Exploiting Lemma 2.5 and (4.10), we obtain

lim
n→∞

ρs4
(‖wn −T wn‖) = 0.

By the properties of ρs4
, we conclude that

lim
n→∞

‖wn −T wn‖ = 0. (4.11)

In view of Lemma 2.2 and (4.11) we obtain that

lim
n→∞

Dg (Trn
wn , wn) = 0.

This implies that

Dg (Trn
wn , yn) ≤ (1−βn)Dg (Trn

wn , wn)+βnDg (Trn
wn,Trn

wn) = (1−βn )Dg (Trn
wn , wn)→ 0

(4.12)

as n →∞. Also, we have

Dg (yn , zn) ≤αn Dg (yn ,u)+ (1−αn )Dg (yn , yn)=αnDg (yn ,u) → 0 (4.13)

as n →∞ and hence

Dg (yn , xn+1) ≤ Dg (yn , zn)→ 0 (4.14)
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as n →∞. In view of Lemma 2.2 and (4.12)−(4.14), we conclude that

lim
n→∞

‖yn −wn‖ = lim
n→∞

‖yn −Trn
wn‖= 0 and lim

n→∞
‖xn+1 − yn‖= lim

n→∞
‖yn −xn+1‖= 0. (4.15)

From (4.12)−(4.15), we deduce that

lim
n→∞

‖xn − zn‖= lim
n→∞

‖yn − zn‖ = 0. (4.16)

By a similar argument, as in the proof of Theorem 3.1, we have the desired result which com-

pletes the proof. ���

At the end of the paper, we study the problem of finding a minimizer of a continuously

Fréchet differentiable and convex function in a Banach space. We begin with the following

lemma which has been proved in [33].

Lemma 4.1. Let E be a Banach space. Suppose that h is a continuously Fréchet differentiable

and convex function on E. If the gradient ∇h of g is 1
α

-Lipschitz continuous, then ∇h is α-

inverse strongly monotone.

Theorem 4.2. Let E be a reflexive Banach space and g : E → R a strongly coercive Bregman

function which is bounded on bounded subsets, and uniformly convex and uniformly smooth

on bounded subsets of E. Assume that there exists c1 > 0 such that g is ρ-convex with ρ(t ) :=
c1

2 t 2 for all t ≥ 0. Let C be a nonempty, closed and convex subset of E and f be a bifunction

from C ×C to R satisfying (A1)−(A4). Assume that a function h : E → R satisfies the following

conditions:

(1) h is continuously Fréchet differentiable and convex on E and ∇ f is 1
α-Lipschitz continuous;

(2) Ω := arg miny∈E h(y) = {z ∈ E : h(z) = miny∈C h(y)} 6= Ø. Suppose that F := Ω∩EP( f ) is

a nonempty subset of C , where EP( f ) is the set of solutions to the equilibrium problem

(1.3). Let {αn }n∈N and {βn }n∈N be two sequences in [0,1] satisfying the following control

conditions:

(a) limn→∞αn = 0;

(b)
∑∞

n=1αn =∞;

(c) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1.

Let {rn}n∈N be a sequence in (0,∞) such that liminfn→∞ rn > 0 and
∑∞

n=1 |rn+1 − rn | < ∞.

Let {xn}n∈N be a sequence generated by


































u ∈ E , x1 ∈C chosen arbitrarily,

wn = proj
g

C
(∇g∗[∇g (xn)−β∇h(xn)])

un ∈C such that f (un , y)+ 1
rn
〈y −un,∇g (un)−∇g (wn )〉 ≥ 0, ∀y ∈C ,

yn =∇g∗[βn∇g (wn)+ (1−βn )∇g (un )],

xn+1 = proj
g

C (∇g∗[αn∇g (u)+ (1−αn )∇g (yn)]) and n ∈N,

(4.17)
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where ∇g is the gradient of g . Let λ be a constant such that 0 < λ <
c2

2γ

2
, where c2 is the

2-uniformly convex constant of E satisfying Corollary 2.1 (2). Then the sequence {xn}n∈N

defined in (4.17) converges strongly to proj
g

F
u as n →∞.
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