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HIGHER ORDER OPTIMALITY AND DUALITY IN FRACTIONAL

VECTOR OPTIMIZATION OVER CONES

SURJEET KAUR SUNEJA, MEETU BHATIA GROVER AND MUSKAN KAPOOR

Abstract. In this paper we give higher order sufficient optimality conditions for a frac-

tional vector optimization problem over cones, using higher order cone-convex func-

tions. A higher order Schaible type dual program is formulated over cones. Weak, strong

and converse duality results are established by using the higher order cone convex and

other related functions.

1. Introduction

In the past few years, the field of fractional optimization problems has been of great in-

terest because many optimization problems which arise from practical needs turn out to be

of fractional form. These problems have been studied by various researchers. Charnes and

Cooper [1] in their classical paper in 1962 introduced the fractional programming problems

where the functions concerned are linear in nature. Then Dinkelbach [2] solved nonlinear

fractional programming problems using the parametric approach. For linear and concave-

convex fractional programs, a duality theory was developed by Schaible [3]. He proposed a re-

vised version of Dinkelbach’s algorithm in [4] using duality theory introduced in [3]. Schaible

and Ibaraki [5] gave many economic, noneconomic and indirect applications of fractional

programming problems.

Liang et al. [6] presented optimality and duality results for a class of nonlinear fractional

programming problems. Later in [7], for the class of multiobjective fractional programming

problems, he gave efficiency conditions and duality results using the concept of (F,α,ρ,d )-

convexity introduced in [6]. Antczak [8] gave a modified objective function method for solving

nonlinear multiobjective fractional programming programs and Jayswal et al. [9] established

sufficient optimality conditions and duality results.
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The study of second and higher order duality is significant due to the computational ad-

vantage over the first order duality as it provides tighter bounds for the value of objective func-

tion when approximations are used because there are more parameters involved. Mangasar-

ian [10] formulated a class of second and higher order duals for non-linear programs. Higher

order duality has been studied by many other researchers like Chen [11], Yang et al. [12],

Mishra and Rueda [13], Zhang [14] etc. Higher order cone convex, pseudoconvex, strongly

pseudoconvex and quasiconvex functions were introduced by Bhatia [15] and sufficiency and

higher order duality results were studied for a vector optimization problem over cones us-

ing higher order convex functions. The notions of higher order naturally cone pseudocon-

vex, strictly cone pseudoconvex and weakly cone quasiconvex functions were introduced by

Suneja et al. [16] and the results of Bhatia [15] were extended. Generalized Mond-Weir type

higher order dual was formulated and various duality results were established using higher

order strongly cone pseudoconvex and higher order cone quasiconvex functions. Higher or-

der (F,ρ,σ)-type I functions were introduced by Suneja et al. [17]. Higher order Mond-Weir

and Schaible type duals were formulated for a nondifferentiable multiobjective fractional

program and various duality results were established using these functions.

A multiobjective fractional programming problem in which all the concerned functions

were taken to be continuously differentiable and the denominator of each objective function

consisted of the same scalar function was considered in 2005 by Kim [18] and he gave the

necessary and sufficient optimality conditions and saddle point theorems under the gener-

alized invexity assumptions. Then in 2006 he [19] again considered the same problem where

the concerned functions were taken to be locally lipschitz. He also introduced the property of

generalized invexity for fractional functions and presented necessary and sufficient optimal-

ity conditions and duality relations under suitable generalized invexity assumptions.

In this paper a fractional vector optimization problem over arbitrary cones has been con-

sidered in which the denominator of each component of the objective function contains the

same scalar function and sufficient optimality conditions have been established for a feasible

point to be weak minimum, minimum or strong minimum. A higher order Schaible type dual

has been formulated and weak, strong and converse duality results have been proved.

2. Notations and definitions

Let K ⊆ Rm be a closed convex pointed cone with vertex at origin and intK 6= ; where

intK denotes the interior of K . The positive polar cone K + and strict positive polar cone K s+

of K are defined as follows:

K +
= {y ∈ Rm : xT y ≥ 0, ∀ x ∈ K } and K s+

= {y ∈ Rm : xT y > 0, ∀ x ∈ K \ {0}}
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Let g : Rn → R , f : Rn → Rm and H : Rn ×Rn → Rm be differentiable functions, where f =

( f1, f2, . . . , fm)T and H = (H1, H2, . . . , Hm)T . Let p : Rn ×Rn → Rn be a vector valued function

where p = (p1, p2, . . . , pn)T .

In this section, we recall some of the basic definitions, which are to be used throughout

the paper.

Let S ⊆Rn be an open set, g : Rn → R , f : Rn → Rm, where f = ( f1, f2, . . . , fm)T .

Here, ∇ f (x̄) = [∇ f1(x̄),∇ f2(x̄), . . . ,∇ fm(x̄)]T is m×n Jacobian matrix of f at x̄ and for each

i = 1,2, . . . ,m, ∇ fi (x̄) =
(∂ fi (x̄)

∂x1
,
∂ fi (x̄)

∂x2
, . . . ,

∂ fi (x̄)

∂xn

)T

is the n ×1 Gradient vector of fi at x̄.

Definition 2.1. The function g is said to be convex at x̄ ∈ S on S, if for all x ∈ S,

g (x)− g (x̄)− (x − x̄)T (∇g (x̄)) ≥ 0

Definition 2.2 ([15]). The function f is said to be higher order K -convex at x̄ ∈ S on S, with

respect to H , if for all x ∈ S,

f (x)− f (x̄)− (∇ f (x̄))(x − x̄)− (∇p H (x̄, p))(x − x̄)−H (x̄, p)+ (∇p H (x̄, p))p ∈ K

Definition 2.3 ([15]). The function f is said to be higher order strongly K -pseudoconvex at

x̄ ∈ S on S, with respect to H , if for all x ∈ S,

− (∇ f (x̄)+∇p H (x̄, p))(x − x̄) ∉ intK

⇒ f (x)− f (x̄)−H (x̄, p)+ (∇p H (x̄, p))p ∈ K

Definition 2.4 ([15]). The function f is said to be higher order K -quasiconvex at x̄ ∈ S on S,

with respect to H , if for all x ∈ S,

f (x)− f (x̄)−H (x̄, p)+ (∇p H (x̄, p))p ∉ intK

⇒ − (∇ f (x̄)+∇p H (x̄, p))(x − x̄) ∈ K

3. Optimality conditions

Consider the following fractional vector optimization problem

(FP) K -Minimize
f (x)

g (x)
=

[ f1(x)

g (x)
,

f2(x)

g (x)
, . . . ,

fm(x)

g (x)

]T

subject to −h(x) =−[h1(x),h2(x), . . . ,hp (x)]T
∈Q

where f : Rn → Rm , g : Rn → R and h : Rn → R p are differentiable functions. K and Q are

closed convex pointed cones in Rm and R p respectively with non-empty interiors. The feasi-

ble set of (FP) is given by X0 = {x ∈ Rn : −h(x)∈Q}. We assume that g (x) > 0 for every x ∈ X0.
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Remark 3.1.

(i) If we replace m by k , p by m and we take K = Rk
+ and Q = Rm

+ , then our problem (FP)

reduces to the problem (MFP) considered by Kim [18] where X = Rn .

(ii) If we interchange m and p and we take K = R
p
+ and Q = Rm

+ , then our problem (FP)

reduces to the problem (NMFP) considered by Kim [19] where X0 = Rn .

(iii) If we replace m by k , p by m, the function g by q : Rn → R and if we take K = Rk
+ and

Q = S, then our problem (FP) reduces to the problem (MFP) considered by Chen et al.

[20].

(iv) If we replace m by k , p by m and we take K = Rk
+ and Q = Rm

+ , then our problem (FP)

reduces to the problem (FP) given by Antczak [8] where X =Rn .

(v) If we replace m by k , p by m and we take K = Rk
+ and Q = Rm

+ , then our problem (FP)

reduces to the problem (FP) given by Jayswal et al. [9] where X =Rn .

Definition 3.1. A point x̄ ∈ X0 is called

(i) a weak minimum of (FP), if for every x ∈ X0,

f (x̄)

g (x̄)
−

f (x)

g (x)
∉ intK

(ii) a minimum of (FP), if for every x ∈ X0,

f (x̄)

g (x̄)
−

f (x)

g (x)
∉ K \ {0}

(iii) a strong minimum of (FP), if for every x ∈ X0,

f (x)

g (x)
−

f (x̄)

g (x̄)
∈ K

(iv) a Benson proper minimumof (FP), if

(−K )
⋂

cone

(

f (X0)

g (X0)
+K −

f (x̄)

g (x̄)

)

= {0}

where for any subset D of Rm , cone(D) denotes the closure of cone generated by D.

Consider the following vector optimization problem for v = (v1, v2, . . . , vm)T ∈ Rm.

(FP)v K -Minimize f (x)− g (x)v = ( f1(x)− g (x)v1, f2(x)− g (x)v2 . . . , fm(x)− g (x)vm)T

subject to −h(x) ∈Q

Since the constraint in both the problems (FP) and (FP)v is same therefore their feasible sets

are also same. Now below we give a lemma which relates the above two problems.



HIGHER ORDER OPTIMALITY AND DUALITY IN FRACTIONAL VECTOR OPTIMIZATION. . . 277

Lemma 3.1. x̄ ∈ X0 is a weak minimum of (FP) if and only if x̄ is also a weak minimum of

(FP)v̄ , where v̄ =
f (x̄)

g (x̄)
.

Proof. Suppose x̄ is a weak minimum of (FP) and if possible not a weak minimum of (FP)v̄ ,

then there exists x ∈ X0 such that [ f (x̄)− g (x̄)v̄ ]− [ f (x)− g (x)v̄ ] ∈ intK which implies that

[

f (x̄)− g (x̄)
f (x̄)

g (x̄)

]

−

[

f (x)− g (x)
f (x̄)

g (x̄)

]

∈ intK

Since g (x) > 0, therefore multiplying the above relation by
1

g (x)
, we get

f (x̄)

g (x̄)
−

f (x)

g (x)
∈ intK

which is a contradiction to the fact that x̄ is a weak minimum of (FP). Therefore, x̄ is also a

weak minimum of (F P)v̄ .

Conversely, suppose x̄ is a weak minimum of (FP)v̄ and not a weak minimum of (FP),

then there exists x ∈ X0 such that

f (x̄)

g (x̄)
−

f (x)

g (x)
∈ intK

Since g (x) > 0 for every x ∈ X0 therefore multiplying the above relation by g (x) and using the

fact that v̄ =
f (x̄)

g (x̄)
, we get [ f (x̄)− g (x̄)v̄]− [ f (x)− g (x)v̄ ] ∈ intK

which is a contradiction to the fact that x̄ is a weak minimum of (FP)v̄ . ���

Necessary and sufficient optimality conditions

Based on the above lemma, we have the following necessary optimality conditions for

the problem (FP).

Proceeding on the lines of Lemma 1 given by Suneja et al. [21] we have the following

Fritz-John type necessary optimality conditions for a point to be a weak minimum of (FP).

Theorem 3.1. Let x̄ ∈ X0 be a weak minimum of (FP). Then there exist λ̄ ∈ K +, µ̄ ∈ Q+ with

(λ̄, µ̄) 6= (0,0) such that

(x − x̄)T [∇(λ̄T f )(x̄)− (λ̄T v̄)∇g (x̄)+∇(µ̄T h)(x̄)] ≥ 0 ∀ x ∈ Rn (1)

and

(µ̄T h)(x̄) = 0 (2)
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We now establish Kuhn-Tucker type necessary optimality conditions for the problem (FP)

by using the slater type cone constraint qualification which is defined as follows.

Definition 3.2. The function h is said to satisfy Slater type cone constraint qualification at

x̄ ∈ Rn , if there exists x̂ ∈ Rn such that −h(x̂) ∈ intQ .

Theorem 3.2. Let x̄ ∈ X0 be a weak minimum of (FP). Suppose h satisfies the Slater type cone

constraint qualification at x̄ and h is Q-convex at x̄. Then there exist 0 6= λ̄ ∈ K +, µ̄ ∈ Q+ such

that (1) and (2) hold.

Proof. Let x̄ be a weak minimum of (FP), then we invoke Theorem 3.1 to deduce that there

exist λ̄ ∈ K +, µ̄ ∈Q+ with (λ̄, µ̄) 6= (0,0) such that Eq. (1) and Eq. (2) hold.

Since µ̄ ∈Q+ and h satisfies Slater type cone constraint qualification, therefore there ex-

ists x̂ ∈ Rn such that

(µ̄T h)(x̂) < 0 (3)

We have to prove that λ̄ 6= 0.

Let if possible, λ̄= 0, then µ̄ 6= 0 and for x = x̂, (1) reduces to

(x̂ − x̄)T [∇(µ̄T h)(x̄)] ≥ 0 (4)

Now as h is Q-convex at x̄, hence

h(x̂)−h(x̄)− [∇h(x̄)](x̂ − x̄) ∈Q

Using the fact that µ̄ ∈Q+, we get,

(µ̄T h)(x̂)− (µ̄T h)(x̄)− (x̂ − x̄)T [∇(µ̄T h)(x̄)] ≥ 0 (5)

Adding Eq. (4) and Eq. (5) and using Eq. (2), we get (µ̄T h)(x̂) ≥ 0 which is a contradiction

to Eq. (3).

Hence λ̄ 6= 0. ���

We now obtain higher order sufficient optimality conditions for (FP) by using higher or-

der cone-convexity and convexity assumptions.

Theorem 3.3. Let f be higher order K -convex with respect to H : Rn ×Rn → Rm, −g be convex,

h be higher order Q-convex with respect to G : Rn ×Rn → R p at x̄ ∈ X0 on X0, where G and H

are differentiable vector valued functions and f (x̄) ∈ K . Suppose that there exist 0 6= λ̄∈ K + and

µ̄ ∈Q+, such that

(x − x̄)T [∇(λ̄T f )(x̄)− (λ̄T v̄)∇g (x̄)+∇p (λ̄T H )(x̄, p)+∇(µ̄T h)(x̄)+∇p (µ̄T G)(x̄, p)] ≥ 0 (6)
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(µ̄T h)(x̄)+ (µ̄T G)(x̄ , p)−pT
∇p (µ̄T G)(x̄, p) = 0 (7)

(λ̄T H )(x̄, p)−pT
∇p (λ̄T H )(x̄, p)= 0 (8)

Then x̄ is a weak minimum of (FP).

Proof. If x̄ is not a weak minimum of (FP) then by Lemma 3.1, x̄ is not a weak minimum of

(FP)v̄ and there exists x ∈ X0 such that [ f (x̄)− g (x̄)v̄ ]− [ f (x)− g (x)v̄ ] ∈ intK .

Since 0 6= λ̄∈ K +, we have

(λ̄T f )(x̄)− (λ̄T v̄)g (x̄)− (λ̄T f )(x)+ (λ̄T v̄)g (x) > 0 (9)

As f is higher order K -convex at x̄ ∈ X0 on X0, with respect to H , we have

f (x)− f (x̄)−∇ f (x̄)(x − x̄)−∇p H (x̄, p)(x − x̄)−H (x̄, p)+∇p H (x̄, p)p ∈ K

Since λ̄∈ K +, we get

(λ̄T f )(x)− (λ̄T f )(x̄)− (x − x̄)T
∇(λ̄T f )(x̄)− (x − x̄)T

∇p (λ̄T H )(x̄, p)

− (λ̄T H )(x̄, p)+pT
∇p (λ̄T H )(x̄, p)≥ 0

Using Eq. (8) in the above inequality we have,

(λ̄T f )(x)− (λ̄T f )(x̄)− (x − x̄)T [∇(λ̄T f )(x̄)+∇p (λ̄T H )(x̄, p)] ≥ 0 (10)

Since h is higher order Q-convex at x̄ ∈ X0 on X0, with respect to G , we have

h(x)−h(x̄)−∇h(x̄)(x − x̄)−∇pG(x̄, p)(x − x̄)−G(x̄ , p)+∇pG(x̄ , p)p ∈Q

Using µ̄ ∈Q+ in above relation and adding Eq. (7), we get

(µ̄T h)(x)− (x − x̄)T [∇(µ̄T h)(x̄)+∇p (µ̄T G)(x̄ , p)] ≥ 0 (11)

Adding Eq. (10) and Eq. (11) and using Eq. (6), we have

(λ̄T f )(x)− (λ̄T f )(x̄)− (x − x̄)T (λ̄T v̄)∇g (x̄)+ (µ̄T h)(x) ≥ 0 (12)

Since xis feasible for (FP), −h(x)∈Q , which implies −(µ̄T h)(x)≥ 0.

Therefore Eq. (12) gives

(λ̄T f )(x)− (λ̄T f )(x̄)− (x − x̄)T (λ̄T v̄)∇g (x̄) ≥ 0 (13)

Also since −g is convex at x̄ ∈ X0 on X0, therefore

−g (x)+ g (x̄)+ (x − x̄)T
∇g (x̄) ≥ 0
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Now, since f (x̄) ∈ K and g (x̄) > 0 we get

f (x̄)

g (x̄)
[−g (x)+ g (x̄)+ (x − x̄)T

∇g (x̄)] ∈ K .

Using λ̄ ∈ K +, we get

−(λ̄T v̄)g (x)+ (λ̄T v̄)g (x̄)+ (x − x̄)T (λ̄T v̄)∇g (x̄)≥ 0 (14)

Adding Eq. (13) and Eq. (14), we get

(λ̄T f )(x)− (λ̄T f )(x̄)− (λ̄T v̄)g (x)+ (λ̄T v̄)g (x̄) ≥ 0

which is a contradiction to Eq. (9).

Hence x̄ is a weak minimum of (FP). ���

Now we give an example to illustrate the above theorem.

Example 3.1. Consider the problem

(FP) K -Minimize
f (x)

g (x)
=

[ f1(x)

g (x)
,

f2(x)

g (x)

]T

subject to −h(x) =−[h1(x),h2(x)]T
∈Q .

where f : R → R2, g : R → R and h : R → R2 are defined as follows:

f (x) = ( f1, f2)T = (2x −e−2x ,e−2x +e−x +2x)T , K = {(x, y) ∈ R2 : x ≤ y and x ≤ 0},

g (x) =−(x −1)4 +6, h(x) = (h1,h2) = (2−7x4, x4 +x +2)T ,

Q = {(x, y)∈ R2 : x ≤ y ≤−x}.

The feasible set of the problem (FP) is X0 =
[

−
1
2 ,0

]

.

Let x̄ = 0, p = x̄ + 1, H1(x̄, p) = p(x̄ − 2), H2(x̄, p) = p(x̄ + 3), G1(x̄, p) = x̄ − p , G2(x̄ , p) =

x̄2 +p .

Then f is higher order K -convex at x̄ ∈ X0 on X0 with respect to H , because for every

x ∈ X0, we have

f (x)− f (x̄)−∇ f (x̄)(x − x̄)−∇p H (x̄, p)(x − x̄)−H (x̄, p)+∇p H (x̄, p)p

= (1−e−2x ,e−2x
+e−x

−2)T
∈ K .

Also, −g is convex at x̄ ∈ X0 on X0 because for every x ∈ X0, we have

−g (x)+ g (x̄)+ (x − x̄)T
∇g (x̄) = x4

−4x3
+6x2

≥ 0

and g (x) > 0.
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Here, K + = {(x, y) ∈ R2 : 0 ≤ y ≤−x}, Q+ =Q and h is higher order Q-convex at x̄ ∈ X0 on

X0 with respect to G , because for every x ∈ X0, we have

h(x)−h(x̄)−∇h(x̄)(x − x̄)−∇pG(x̄, p)(x − x̄)−G(x̄ , p)+∇pG(x̄, p)p

= (−7x4
+x, x4

−x)T
∈Q .

Also there exist 0 6= λ̄ = (−10,10)T ∈ K + and µ̄ = (−4,4)T ∈ Q+ such that for every x ∈ X0, we

have

(x − x̄)T
[ 2
∑

i=1

λ̄i∇ fi (x̄)−
( 2
∑

i=1

λ̄i v̄i

)

∇g (x̄)+
2

∑

i=1

λ̄i∇p Hi (x̄, p)+
2

∑

j=1

µ̄ j∇h j (x̄)+
2

∑

j=1

µ̄ j∇pG j (x̄ , p)
]

=−12x ≥ 0,

2
∑

j=1

µ̄ j h j (x̄)+
2

∑

j=1

µ̄ j G j (x̄, p)−pT
( 2
∑

j=1

µ̄ j∇pG j (x̄, p)
)

= 0,

2
∑

i=1

λ̄i Hi (x̄, p)−pT
( 2
∑

i=1

λ̄i∇p Hi (x̄, p)
)

= 0

and f (x̄) = (−1,2) ∈ K .

Therefore, x̄ is a weak minimum of problem (FP).

Theorem 3.4. Let f be higher order K -convex with respect to H : Rn ×Rn → Rm , −g be convex,

h be higher order Q-convex with respect to G : Rn ×Rn → R p at x̄ ∈ X0 on X0, where G and H

are differentiable vector valued functions and f (x̄) ∈ K . Suppose that there exist 0 6= λ̄ ∈ K s+

and µ̄ ∈Q+, such that Eq. (6), Eq. (7) and Eq. (8) hold. Then x̄ is a minimum of (FP).

Proof. If x̄ is not a minimum of (FP) then x̄ is not a minimum of (FP)v̄ , then there exists x ∈ X0

such that

[ f (x̄)− g (x̄)v̄]− [ f (x)− g (x)v̄ ] ∈ K \ {0}.

Since λ̄∈ K s+ we have,

(λ̄T f )(x̄)− (λ̄T v̄)g (x̄)− (λ̄T f )(x)+ (λ̄T v̄)g (x) > 0 (15)

Since f is higher order K -convex with respect to H , −g is convex, h is higher order Q-convex

with respect to G at x̄ ∈ X0 on X0 and f (x̄) ∈ K , therefore proceeding on the lines of Theo-

rem 3.3 and using λ̄ ∈ K s+ and µ̄ ∈Q+, we get

(λ̄T f )(x)− (λ̄T f )(x̄)− (λ̄T v̄)g (x)+ (λ̄T v̄)g (x̄) ≥ 0

which contradicts Eq. (15).

Hence x̄ is a minimum of (FP). ���

Now we give another example to illustrate the above theorem.
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Example 3.2. Consider the problem

(FP) K -Minimize
f (x)

g (x)
=

[ f1(x)

g (x)
,

f2(x)

g (x)

]T

subject to −h(x) =−[h1(x),h2(x)]T
∈Q .

where f : R → R2, g : R → R , h : R → R2, K , Q , x̄, p , G and H are defined the same as in

Example 3.1.

Then f is higher order K -convex with respect to H , −g is convex, h is higher order Q-convex

with respect to G at x̄ ∈ X0 on X0.

Also there exist 0 6= λ̄ = (−10,9)T ∈ K s+ and µ̄ = (−1,1)T ∈ Q+ such that for every x ∈ X0,

we have

(x − x̄)T
[ 2
∑

i=1

λ̄i∇ fi (x̄)−∇g (x̄)
2

∑

i=1

λ̄i v̄i +

2
∑

i=1

λ̄i∇p Hi (x̄, p)+
2

∑

j=1

µ̄ j∇h j (x̄)+
2

∑

j=1

µ̄ j∇pG j (x̄, p)
]

=
−107

5
x ≥ 0,

2
∑

j=1

µ̄ j h j (x̄)+
2

∑

j=1

µ̄ j G j (x̄, p)−p
( 2
∑

j=1

µ̄ j∇pG j (x̄, p)
)

= 0,

2
∑

i=1

λ̄i Hi (x̄, p)−p
( 2
∑

i=1

λ̄i∇p Hi (x̄, p)
)

= 0

and f (x̄) = (−1,2)T ∈ K

Therefore, x̄ is a minimum of problem (FP).

Theorem 3.5. Let f be higher order K -convex with respect to H : Rn ×Rn → Rm, −g be convex,

h be higher order Q-convex with respect to G : Rn ×Rn → R p at x̄ ∈ X0 on X0, where G and

H differentiable vector valued functions and f (x̄) ∈ K . Suppose that there exist µ̄ ∈ Q+ such

that Eq. (6), Eq. (7) and Eq. (8) hold with λ̄ replaced by λ for every λ ∈ K s+. Then x̄ is a strong

minimum of (FP).

Proof. Since f is higher order K -convex with respect to H , −g is convex, h is higher order

Q-convex with respect to G at x̄ ∈ X0 on X0 and f (x̄) ∈ K , there exist µ̄ ∈Q+ such that Eq. (6),

Eq. (7) and Eq. (8) hold with λ̄ replaced by λ for every λ ∈ K s+, therefore proceeding on the

lines of Theorem 3.3, we get

(λT f )(x)− (λT f )(x̄)− (λT v̄)g (x)+ (λT v̄)g (x̄) > 0 for every λ ∈ K s+, x ∈ X0

λT [ f (x)− f (x̄)− g (x)v̄ + g (x̄)v̄ ] ≥ 0 for every λ ∈ K +, x ∈ X0

This gives

[ f (x)− g (x)v̄ ]− [ f (x̄)− g (x̄)v̄] ∈ (K +)+ =C l K = K , for every x ∈ X0.
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Hence x̄is a strong minimum of (FP). ���

We note that every strong minimum of vector optimization problem is a Benson proper

minimum of the problem but the converse is not true. Thus, in view of Theorem 3.5, x̄ is also

a Benson proper minimum of (FP).

4. Higher order Schaible type dual over cones

We formulate higher order Schaible type dual over cones for our problem (FP) and prove

weak, strong and converse duality results for the pair.

(SFD) K -Maximize v = (v1, v2, . . . , vm)T

subject to

∇(λT f )(u)− (λT v)∇g (u)+∇(µT h)(u)+∇p (λT H )(u, p)+∇p (µT G)(u, p) = 0 (16)

(λT f )(u)− (λT v)g (u)+ (λT H )(u, p)−pT
∇p (λT H )(u, p)≥ 0 (17)

(µT h)(u)+ (µT G)(u, p)−pT
∇p (µT G)(u, p) ≥ 0 (18)

where v ∈ K , u ∈ Rn , λ ∈ K + \ {0}, µ ∈Q+.

We will give two weak duality results for the dual problem (SFD). In the first one we

assume the involved functions to be higher order cone-convex, where as in the other we

will use the concepts of higher order strongly cone-pseudoconvexity and higher order cone-

quasiconvexity.

Theorem 4.1 (Weak Duality Theorem). Let x be feasible for (FP) and (u, v,λ,µ, p) be feasible

for (SFD). Suppose that f is higher order K -convex with respect to H, −g is convex and h is

higher order Q-convex with respect to G at u, where H and G are differentiable vector valued

functions, then v −
f (x)

g (x)
∉ intK .

Proof. Let, if possible, v −
f (x)

g (x)
∈ intK .

Then using λ∈ K + \ {0} and g (x) > 0, we have

m
∑

i=1

λi

{

vi g (x)− fi (x)
}

> 0 (19)

Since f is higher order K -convex at u, with respect to H and λ ∈ K + \ {0}, we have

m
∑

i=1

λi { fi (x)− fi (u)}− (x −u)T
{ m

∑

i=1

λi (∇ fi (u)+∇p Hi (u, p))
}

+pT
m
∑

i=1

λi∇p Hi (u, p)−
m
∑

i=1

λi Hi (u, p)≥ 0 (20)
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Since h is higher order Q-convex at u, with respect to G and µ ∈Q+, we have

p
∑

j=1

µ j {h j (x)−h j (u)}− (x −u)T
{

p
∑

j=1

µ j (∇h j (u)+∇pG j (u, p))
}

+pT
p
∑

j=1

µ j∇pG j (u, p)−
p
∑

j=1

µ j G j (u, p)≥ 0 (21)

Also since −g is convex at u,λ∈ K + \ {0} and v ∈ K , therefore

−

m
∑

i=1

λi vi g (x)+
m
∑

i=1

λi vi g (u)+
( m
∑

i=1

λi vi

)

(x −u)T
∇g (u) ≥ 0 (22)

Adding Eq. (16)-Eq. (22), we have
p
∑

j=1
µ j h j (x) > 0 which is a contradiction to the feasibility of

x for (FP).

Hence, v −
f (x)

g (x)
∉ intK . ���

Theorem 4.2 (Weak Duality Theorem). Let x be feasible for (FP) and (u, v,λ,µ, p) be feasible

for (SFD). Suppose that f − v g is higher order strongly K -pseudoconvex with respect to H and

h is higher order Q-quasiconvex with respect to G at u, where H and G are differentiable vector

valued functions, then

v −
f (x)

g (x)
∉ intK .

Proof. Let, if possible, v −
f (x)

g (x)
∈ intK .

Proceeding on the lines of Theorem 4.1, we get

(λT v)g (x)− (λT f )(x) > 0 (23)

Since x is feasible for (FP) and (u, v,λ,µ, p) is feasible for (SFD), therefore

(µT h)(x)− (µT h)(u)− (µT G)(u, p)+pT
∇p (µT G)(u, p) ≤ 0.

If µ 6= 0, then we have h(x)−h(u)−G(u, p)+pT∇pG(u, p) ∉ intQ .

Since h is higher order Q-quasiconvex at u with respect to G , therefore

−(x −u)T [∇h(u)+∇pG(u, p)] ∈Q

which implies that −(x −u)T [∇(µT h)(u)+∇p (µT G)(u, p)] ≥ 0.

If µ= 0, then also the above inequality holds.
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Since (u, v,λ,µ, p) is feasible for (SFD), so from the above inequality we get

−(x −u)T [∇(λT f )(u)− (λT v)∇g (u)+∇p (λT H )(u, p)]≤ 0.

which implies that −(x −u)T [∇ f (u)−v∇g (u)+∇p H (u, p)]∉ intK .

Further, f is higher order strongly K -pseudoconvex at u with respect to H , therefore

f (x)−v g (x)− ( f (u)−v g (u))−H (u, p)+pT
∇p H (u, p)∈ K

and hence

(λT f )(x)− (λT v)g (x)− (λT f )(u)+ (λT v)g (u)− (λT H )(u, p)+pT
∇p (λT H )(u, p)≥ 0

Again using the fact that (u, v,λ,µ, p) is feasible for (SFD), we get (λT f )(x)− (λT v)g (x) ≥ 0

which is a contradiction to the Eq. (23).

Hence, v −
f (x)

g (x)
∉ intK . ���

Below we prove the strong duality result.

Theorem 4.3 (Strong Duality Theorem). Let x̄ ∈ X0 be a weak minimum of (FP). Suppose h

satisfies Slater type cone constraint qualification at x̄, h is Q-convex at x̄ and H (x̄,0) = 0 =

G(x̄,0), ∇p H (x̄,0) = 0 =∇pG(x̄,0) then there exist 0 6= λ̄∈ K +, µ̄ ∈Q+ such that (x̄, v̄ , λ̄, µ̄, p̄ = 0)

is feasible for (SFD). Suppose the conditions of Weak Duality Theorem 4.1 or 4.2 are satisfied

for each feasible solution x of (FP) and (u, v,λ,µ, p) of (SFD), then (x̄, v̄ , λ̄, µ̄, p̄ = 0) is weak

maximum of (SF D).

Proof. Since x̄ is a weak minimum of (FP), therefore by Lemma 3.1, x̄ is also weak minimum

of (FP)v̄ where v̄ =
f (x̄)

g (x̄)
. Now therefore by Theorem 3.2, we get 0 6= λ̄ ∈ K + and µ̄ ∈ Q+ such

that Eq. (1) and Eq. (2) hold. Choosing x properly, we shall get

∇(λ̄T f )(x̄)− (λ̄T v̄)∇g (x̄)+∇(µ̄T h)(x̄) = 0.

Also, H (x̄,0) = 0 =G(x̄,0), ∇p H (x̄,0) = 0 =∇pG(x̄,0).

Thus, (x̄, v̄ , λ̄, µ̄, p̄ = 0) is feasible for (SFD).

Now suppose the conditions of Weak Duality Theorem 4.1 or 4.2 hold for all feasible

points of (SFD) and let if possible (x̄, v̄ , λ̄, µ̄, p̄ = 0) be not a weak maximum of (SFD) then there

exists a feasible point (u, v,λ,µ, p) of (SFD) such that v − v̄ ∈ intK or v −
f (x̄)

g (x̄)
∈ intK which

is a contradiction to the Weak Duality Results. Hence (x̄, v̄ , λ̄, µ̄, p̄ = 0), is weak maximum of

(SFD). ���

Next we prove converse duality result between vector optimization problems (FP) and

(SFD).
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Theorem 4.4 (Converse Duality Theorem). Let (ū, v̄ , λ̄, µ̄, p̄) be feasible point for (SFD) such

that ū ∈ X0. Suppose that f is higher order K -convex with respect to H, −g is convex and h is

higher order Q-convex with respect to G at ū, where H and G are differentiable vector valued

functions, then ū is a weak minimum for (FP).

Proof. Let ū be not a weak minimum for (FP), then ū is not a weak minimum of (FP)v̄ by

Lemma 3.1, where v̄ =
f (ū)

g (ū)
, then there exists a feasible solution û of (FP)v̄ such that,

( f (ū)− v̄ g (ū))− ( f (û)− v̄ g (û)) ∈ int K

Then using λ̄ ∈ K + \ {0}, we have

m
∑

i=1

λ̄i { fi (ū)− v̄i g (ū)}+
m
∑

i=1

λ̄i {v̄i g (û)− fi (û)} > 0 (24)

Since f is higher order K -convex at ū with respect to H , for x = û and λ̄ ∈ K +, we have

m
∑

i=1

λ̄i { fi (û)− fi (ū)}− (û − ū)T
{ m

∑

i=1

λ̄i (∇ fi (ū)+∇p Hi (ū, p̄))
}

+ p̄T
m
∑

i=1

λ̄i∇p Hi (ū, p̄)−
m
∑

i=1

λ̄i Hi (ū, p̄) ≥ 0 (25)

Since h is higher order Q-convex at ū with respect to G , for x = û and µ̄ ∈Q+, we have

p
∑

j=1

µ̄ j {h j (û)−h j (ū)}− (û − ū)T
{

p
∑

j=1

µ̄ j (∇h j (ū)+∇pG j (ū, p̄))
}

+ p̄T
p
∑

j=1

µ̄ j∇pG j (ū, p̄)−
p
∑

j=1

µ̄ j G j (ū, p̄) ≥ 0 (26)

Also since −g is convex at ū, λ̄ ∈ K + and v̄ ∈ K , therefore

−

m
∑

i=1

λ̄i v̄i g (û)+
m
∑

i=1

λ̄i v̄i g (ū)+
( m
∑

i=1

λ̄i v̄i

)

(û − ū)T
∇g (ū) ≥ 0 (27)

Using feasibility of (ū, v̄ , λ̄, µ̄, p̄) for (SFD) and Eq. (24)-Eq. (27), we have
p
∑

j=1
µ̄ j h j (û) > 0 which

is a contradiction to the feasibility of û for (FP).

Hence, ū is a weak minimum for (FP). ���
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