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FACTORIZED ENHANCEMENT OF COPSON’S INEQUALITY

ATANU MANNA

Abstract. This paper dealt with the factorized enhancement of Copson’s inequality and

improves one of the results given by Leindler.

1. Introduction

Let x = {xn} be a sequence of real numbers and p > 1. Then the following well-known

Hardy’s inequality

∞
∑

n=0

( 1

n +1

n
∑

k=0

|xk |

)p
≤

( p

p −1

)p ∞
∑

n=0

|xn |
p (1)

has several generalizations and extensions (see e.g. [1], [4]). Bennett (see [1]) in his notable

monograph has given a systematic approach to obtain factorization of several inequalities,

which include the Hardy’s inequality. The classical Hardy’s inequality simply asserts that

lp ⊆ ces(p), p > 1, (2)

where the sequence spaces lp and ces(p), which was studied initially by Shiue (see [13]) and

are defined as follows:

lp =

{

x :
∞
∑

n=1

|xn |
p
<∞

}

,

ces(p) =
{

x :
∞
∑

n=1

( 1

n

n
∑

k=1

|xk |

)p
<∞

}

.

G. Bennett raised a question that how much room is there between lp and ces(p). To an-

swer this question, naturally he consider the multipliers from lp into ces(p), that is, those

sequences z, with the property that y.z ∈ ces(p) whenever y ∈ lp . The set Z consisting of all

multipliers must satisfy the following inclusion:

lp .Z ⊆ ces(p).
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The surprising thing is that the above inclusion becomes an identity if Z is described in a very

simple terms and this investigation has been carried out by Bennett [1] himself and obtained

the result stated in the following Theorem 1.

Theorem 1. Let p > 1. A sequence x belongs to ces(p) if and only if it admits a factorization

x = y.z (xn = yn .zn), (3)

with

y ∈ lp and
n
∑

k=1

|zk |
p∗

= O(n), p∗
=

p

p −1
. (4)

The theorem may be stated as ces(p) = lp .g (p∗) (p > 1), where

g (p) =
{

z :
n
∑

k=1

|zk |
p
= O(n)

}

.

From then ‘factorization of inequalities’ is a new area of research. Leindler (see [8], [9], [10],

[11] and references cited therein) studied and obtained results on the factorization of gener-

alized Hardy’s inequality.

The inequality (1) is generalized by Copson (see [2], Theorem 1.1; [3], Theorem A) and

established the following inequality, known as Copson’s inequality:

Theorem 2. Let 1 < p <∞, q = {qn} be a positive sequence of real numbers and Qn = q0 +q1 +

·· ·+qn . Then

∞
∑

n=0

qn

( 1

Qn

n
∑

k=0

qk |xk |

)p
≤

( p

p −1

)p ∞
∑

n=0

qn|xn |
p holds. (5)

The following sequence spaces are introduced and studied by Johnson and Mohapatra

(see [5]):

q−1lp =

{

x :
∞
∑

n=0

(qn|xn |)
p
<∞

}

,

q
−

1
p lp =

{

x :
∞
∑

n=0

qn|xn |
p
<∞

}

,

nor-C−1
q (q

−
1
p lp ) =

{

x :
∞
∑

n=0

qn

( 1

Qn

n
∑

k=0

qk |xk |

)p
<∞

}

,

and

ces[p,q] =
{

x :
∞
∑

n=0

( 1

Qn

n
∑

k=0

qk |xk |

)p
<∞

}

.

Corollary 1. With these notations, inequality (5) immediately gives q
−

1
p lp ⊆ nor−C−1

q (q
−

1
p lp ).
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Additional assumption on the positive sequence q, Theorem 2 gives the following result

(see [5], Theorem 1, p. 196):

Theorem 3. If q = {qn} is bounded away from zero and 1 < p <∞, then

q−1lp ⊂ q
−

1
p lp ⊂ nor -C−1

q (q
−

1
p lp ) ⊂ ces[p,q].

Several mathematicians such as Maddox (see [12]), Johnson and Mohapatra (see [5], [6]

and [7]) studied the following generalizations of the sequence spaces lp and ces(p), for exam-

ple

l (pn) =
{

x :
∞
∑

n=0

|xn |
pn <∞

}

,

ces(pn) =
{

x :
∞
∑

n=0

( 1

n +1

n
∑

k=0

|xk |

)pn

<∞

}

,

and

ces[{pn}, {qn}] =
{

x :
∞
∑

n=0

( 1

Qn

n
∑

k=0

qk |xk |

)pn

<∞

}

.

Bennett (see [1], Theorem 6.9) obtained the factorization of the spaces cop(p), 0 < p < 1 but

it is observed that no factorization was derived for the Copson’s inequality (5). This paper is

aimed to fulfill this gap in the literature. Indeed, we shall factorized the inclusion q−1l (pn) ⊂

ces[p,q], which in particular case, that is, when pn = p for all n gives q−1lp ⊂ ces[p,q].

To obtain our result, we consider the sequence space ces[p,q] is non-trivial. Johnson and

Mohapatra (see [7]) obtained equivalent condition for sequence space ces[p,q] to be non-

trivial as stated below:

Theorem 4. The following are equivalent:

(i) ces[{pn}, {qn}] 6= 0.

(ii) 1
Q
∈ l (pn).

We need one more definition to establish our result:

g (pn) =
{

z :
n
∑

k=0

|zk |
pk ≤ K (p)pn−1Qn

}

,

where K (p) ≥ 1 is a constant depending only on the sequence p. The constant K (p) will vary

in different occurrences. We denote p∗ = {p∗
n} as conjugate of p, that is 1/p+1/p∗ = 1 must

holds. We shall use the idea given by Bennett (see [1]) to establish our generalized result but

it needs deeper investigation and sincere calculation to reach.

The following lemma is well-known and will be required to prove our result:
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Lemma 1.1 ([1], Lemma 3.6). Let u, v, w be sequences with non-negative terms and suppose

that wk decreases with k. If

n
∑

k=0

uk ≤

n
∑

k=0

vk (n = 0,1,2, . . .),

then
n
∑

k=0

uk wk ≤

n
∑

k=0

vk wk (n = 0,1,2, . . .).

2. Main results

Now, we state our result:

Theorem 5. Let q = {qn} be a positive sequence of real numbers is bounded away from zero and

sequence Q = {Qn }, where Qn =

n
∑

k=0

qk diverges to ∞.

(i) If p = {pn} is a non-increasing sequence of positive numbers,all pn > 1; and x∈ ces[{pn}, {qn}],

then x admits a factorization (3) with

y ∈ q−1
n l (pn) and z ∈ g (p∗

n ). (6)

(ii) Conversely, if p is a non-decreasing and bounded sequence of numbers such that p0 > 1,

furthermore (6) holds, then the product sequence x = y.z ∈ ces[{pn}, {qn}].

Proof.

(i) Let it be assumed that x 6= 0 = {0,0, . . .}. For x = 0, the statement is trivial.

For x ∈ ces[{pn}, {qn}], put

bn =

∞
∑

k=n

1

Q
pk

k

( k
∑

i=0

qi |xi |

)pk−1
. (7)

We assert that the sequence b = {bn} is monotonically tends to zero. In fact, by the following

well-known inequality:

ab ≤
ap

p
+

bp∗

p∗
, p > 1,

one obtains

bn =

∞
∑

k=n

1

Qk

( 1

Qk

k
∑

i=0

qi |xi |

)pk−1

≤

∞
∑

k=n

1

pk

1

Q
pk

k

+

∞
∑

k=n

1

p∗
k

( 1

Qk

k
∑

i=0

qi |xi |

)pk

= S1 +S2. (8)
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Since pk > 1 and sequence space ces[{pn}, {qn}] is non-trivial, so

S1 <

∞
∑

k=n

1

Q
pk

k

→ 0 as n →∞.

Again, since pk > 1 and x ∈ ces[{pn}, {qn}], one gets

S2 <

∞
∑

k=n

( 1

Qk

k
∑

i=0

qi |xi |

)pk

→ 0 as n →∞.

Combining these two, one can easily proved the assertion.

Now the following factorization of x = {xn} is considered:

x = y.z (xn = yn .zn),

where

yn =

(bn|xn |

q
pn−1
n

)
1

pn si g n(xn). (9)

and

zn = (qn|xn |)
1

p∗n b
−

1
pn

n . (10)

Therefore using equations (9) and (10), one obtains

∞
∑

n=0

(qn |yn|)
pn =

∞
∑

n=0

qn|xn |bn

=

∞
∑

n=0

qn|xn |

∞
∑

k=n

1

Q
pk

k

( k
∑

i=0

qi |xi |

)pk−1

=

∞
∑

k=0

1

Q
pk

k

( k
∑

i=0

qi |xi |

)pk−1( k
∑

n=0

qn|xn|

)

=

∞
∑

k=0

1

Q
pk

k

( k
∑

i=0

qi |xi |

)pk

.

Hence x ∈ ces[{pn}, {qn}] implies that y ∈ q−1
n l (pn).

Now using the Hölder’s inequality, the following is obtained:

( m
∑

k=0

|zk |
p∗

k

)pm

=

( m
∑

k=0

(qk |xk |)
1

pm
+

1
p∗m b

−
p∗

k
pk

k

)pm

≤

( m
∑

k=0

qk |xk |

)

pm
p∗m

( m
∑

k=0

qk |xk |b
−

pm p∗
k

pk

k

)

. (11)

Therefore, for m = 0,1,2, . . ., one gets

∞
∑

n=m

( 1

Qn

m
∑

k=0

|zk |
p∗

k

)pm

≤

∞
∑

n=m

1

Q
pm
n

( m
∑

k=0

qk |xk |

)pm−1( m
∑

k=0

qk |xk |b
−

pm p∗
k

pk

k

)
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=

m
∑

k=0

qk |xk |b
−

pm p∗
k

pk

k

∞
∑

n=m

1

Q
pm
n

( m
∑

k=0

qk |xk |

)pm−1
. (12)

Since x ∈ ces[{pn}, {qn}], so the sequence
{

1
Qn

n
∑

k=0

qk |xk |

}

is bounded, that is there exist con-

stant K1(p) (infact, here and after we shall use Ki (p) instead of Ki (p) depending on the se-

quence p for each i ), we have

1

Qn

n
∑

k=0

qk |xk | ≤ K1(p) for each n = 0,1,2, . . . .

Now, the following is established:

∞
∑

n=m

1

Q
pm

n

( m
∑

k=0

qk |xk |

)pm−1
=

∞
∑

n=m

1

Q
pn

n

( m
∑

k=0

qk |xk |

)pn−1
Q

pn−pm
n

( m
∑

k=0

qk |xk |

)pm−pn

=

∞
∑

n=m

1

Q
pn

n

( m
∑

k=0

qk |xk |

)pn−1( 1

Qn

m
∑

k=0

qk |xk |

)pm−pn

≤K2(p)
∞
∑

n=m

1

Q
pn
n

( m
∑

k=0

qk |xk |

)pn−1
= K2(p)bm . (13)

Since the sequence b is bounded and p is non-increasing, so there exists a constant K3(p) and

for each k = 0,1,2, . . . with k ≤ m, one can assumed that

b

pk−pm

pk−1

k
≤ K3(p).

Therefore, one gets

m
∑

k=0

qk |xk |b
−

pm p∗
k

pk

k
=

m
∑

k=0

qk |xk |b
−

p∗
k

pk

k
b

pk−pm

pk −1
−1

k

≤ K3(p)
m
∑

k=0

qk |xk |b
−

p∗
k

pk

k
b−1

k

≤ K3(p)b−1
m

m
∑

k=0

z
p∗

k

k
. (14)

Therefore, using inequalities (12), (13) and (14), there exists a constant K4(p), we have

∞
∑

n=m

1

Q
pm
n

( m
∑

k=0

|zk |
p∗

k

)pm−1
≤ K4(p),

which implies that 1
Q

pm
m

( m
∑

k=0

|zk |
p∗

k

)pm−1
≤ K4(p). Hence an easy computation gives that

m
∑

k=0

|zk |
p∗

k ≤ K (p)
1

pm−1 Qm = K (p)p∗
m−1Qm .

This completes the part (i) of the theorem.

(ii) Since z∈ g (p∗
n), we have
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n
∑

k=0

|zk |
p∗

k ≤ K (p)
1

pn−1 Qn =K (p)
1

pn−1

n
∑

k=0

qk .

Choose wk =Q
−

1
2

k
, and applying the Lemma 1.1, one gets

n
∑

k=0

|zk |
p∗

k Q
−

1
2

k
≤ K (p)

1
pn−1

n
∑

k=0

qkQ
−

1
2

k
. (15)

Now applying the Hölder’s inequality on the factorization x = y.z, one obtains

( n
∑

k=0

qk |xk |

)pn

=

( n
∑

k=0

qk |yk |Q
1

2p∗n

k
|zk |Q

−
1

2p∗n

k

)pn

≤

( n
∑

k=0

(qk |yk |)
pn Q

pn−1

2

k

)( n
∑

k=0

|zk |
p∗

n Q
−

1
2

k

)pn−1
. (16)

Using inequalities (15) and (16), one gets

∞
∑

n=0

( 1

Qn

n
∑

k=0

qk |xk |

)pn

≤

∞
∑

n=0

1

Q
pn

n

( n
∑

k=0

(qk |yk |)
pn Q

pn−1

2

k

)( n
∑

k=0

|zk |
p∗

n Q
−

1
2

k

)pn−1

≤ K (p)
∞
∑

n=0

1

Q
pn
n

( n
∑

k=0

(qk |yk |)
pn Q

pn−1

2

k

)( n
∑

k=0

qkQ
−

1
2

k

)pn−1
. (17)

Note that

n
∑

k=0

qkQ
−

1
2

k
= q0Q

−
1
2

0 +

n
∑

k=1

qkQ
−

1
2

k

≤ q0Q
−

1
2

0 +

n
∑

k=1

∫Qk

Qk−1

x−
1
2 d x ≤ 2Q

1
2
n .

Using the above inequality, there exists a constant K5(p) = 2pn−1K (p), from inequality (17)

one can deduced that

∞
∑

n=0

( 1

Qn

n
∑

k=0

qk |xk |

)pn

≤ K5(p)
∞
∑

n=0

1

Q
pn
n

n
∑

k=0

(qk |yk |)
pn Q

pn−1

2

k
Q

pn−1

2
n

= K5(p)
∞
∑

k=0

(qk |yk |)
pn

∞
∑

n=k

(Qk

Qn

)

pn−1

2
.

1

Qn

= K5(p)
∞
∑

k=0

(qk |yk |)
pk (qk |yk |)

pn−pk

∞
∑

n=k

(Qk

Qn

)

pk −1

2
(Qk

Qn

)

pn−pk
2 1

Qn
. (18)

Using the monotonicity, boundedness of the sequence p and since the sequence qy = {qn yn}

is bounded as y ∈ qn
−1l (pn), so the sequences {(qk yk)pn−pk } and

{(

Qk

Qn

)

pn−pk
2

}

are also bounded

and hence from inequality (18) there exists a constant K6(p), one gets

∞
∑

n=0

( 1

Qn

n
∑

k=0

qk |xk |

)pn

≤ K6(p)
∞
∑

k=0

(qk |yk |)
pk

∞
∑

n=k

(Qk

Qn

)

pk−1

2
.

1

Qn
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=K6(p)
∞
∑

k=0

(qk |yk |)
pk Q

pk−1

2

k

∞
∑

n=k

1

Q
1+ 1

2
(pk−1)

n

. (19)

Since the sequence q = {qn} is bounded away from zero, so by definition there exists a c > 0

such that qn ≥ c for all n ≥ 0. Then it is known by a simple calculation that

∞
∑

n=k

1

Q
1+ 1

2
(pk−1)

n

≤
1

c
lim

N→∞

N
∑

n=k

qnQ
−1− 1

2
(pk−1)

n

≤
1

c

{

qkQ
−1− 1

2
(pk−1)

k
+ lim

N→∞

N
∑

n=k+1

∫Qk

Qk−1

x−1− 1
2

(pk−1)d x
}

≤
1

c

{

Q
−

1
2

(pk−1)

k
+

2

pk −1
Q

−
1
2

(pk−1)

k

}

=
(pk +1)

c(pk −1)
Q

−
1
2

(pk−1)

k
. (20)

Choose a constant K7(p) = K6(p)
(pk+1)

c(pk−1) , then by using inequality (20), from inequality (19)

one obtains

∞
∑

n=0

( 1

Qn

n
∑

k=0

qk |xk |

)pn

≤ K7(p)
∞
∑

k=0

(qk |yk |)
pk . (21)

Inequality (21) clearly implies that x ∈ ces[{pn}, {qn}], as the sequence y ∈ qn
−1l (pn). ���

Remark 1. If x ∈ q
−

1
pn

n l (pn), then x can be factorized as (3) with (6) by choosing y =
{

xn qn
−

1
p∗n

}

∈ q−1
n l (pn) and z= {q

1
p∗n

n }. Therefore Part (ii) of our theorem clearly indicates that

q
−

1
pn

n l (pn) ⊆ ces[{pn}, {qn}], pn > 1.

Using the hypothesis on q, an easy computation gives

q−1
n l (pn) ⊆ q

−
1

pn
n l (pn) ⊆ nor−C−1

q (q
−

1
pn l (pn)) ⊆ ces[{pn}, {qn}], pn > 1.

Remark 2. If qn = 1 for each n, then Theorem 5 gives the result obtained by Leindler (see [10],

Theorem 2.1.).

Remark 3. If pn = p for each n, then Theorem 5 with Remark 1 gives the factorized enhance-

ment of Copson’s inequality.
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