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ON INEQUALITIES OF HERMITE-HADAMARD TYPE FOR

STOCHASTIC PROCESSES WHOSE THIRD DERIVATIVE

ABSOLUTE VALUES ARE QUASI-CONVEX

JESUS MATERANO, NELSON MERENTES AND MARIA VALERA-LÓPEZ

Abstract. In this paper we give some estimates of the right-hand side inequality of Hermite-
Hadamad type for stochastic processes whose third derivatives in absolute values are
quasi-convex.

1. Introduction

In recent years, different inequalities have been established for convex functions and one

of most famous is the Hermite-Hadamard inequality, due to its rich geometrical significance

and applications (see [5], [13]). For Hermite-Hadamad’s inequality, several authors have esti-

mated the error in the approximation of its sides. The technique used consider derivatives of

different orders and properties as convexity and quasi-convexity, (see [1], [2], [4], [7], [8], [12],

[16]).

The stochastic processes study started from the endings of 30’s, and it was not until 1980

when K. Nikodem established the notion of convexity for stochastic processes and some prop-

erties of this kind of processes in [10], based on the definition of additive stochastic processes

introduced by B. Nagy in 1974, [9]. In the same year, K. Nikodem in [11] introduced some

properties of quasi-convex stochastic processes.

Some inequalities for convex and quasi-convex stochastic processes have been estab-

lished recently. In 2015, N. Merentes et al. in [3], started Jensen and Hermite-Hadamard type

inequalities. Additionally, in [6] prove some error estimations of a Hermite-Hadamad type

inequality for stochastic processes consider its first and second order derivatives convex and

quasi-convex.
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In this paper, we present the counterpart of the research made by S. Qaisar et al. in [14]

for stochastic processes to estimate different refinements of the right-hand side an inequality

of Hermite-Hadamard type considering its third mean-square derivatives at certain powers

quasi-convex.

2. Inequalities of Hermite-Hadamard type for quasi-convex stochastic processes

We will result some useful and important definitions for this research. Let (Ω,A ,P) be

a probability space. A function X : Ω → R is a random variable if it is A−measurable. A

stochastic processes is defined as a function X : I ×Ω→ R, where I ⊆ R is an interval, if for

every t ∈ I the function X (t , ·) is a random variable.

Consider a stochastic process X (t , ·) such that the expectation squared is bounded, i.e.

E[X (t )]2 <∞ for all t ∈ I . The stochastic process X is defined:

(1) Mean-square differentiable in I , if there exists a stochastic process X ′ (the derivative of X )

such that for all t0 ∈ I we have

lim
t→t0

E

[

X (t )−X (t0)

t − t0
−X ′(t0)

]2

= 0,

(2) Mean-square integrable on [a,b] ⊆ I , if there exists a random variable Y such that for all

normal sequence of partitions of the interval [a,b] a = t0 < t1 < ·· · < tn = b and for all

τk ∈ [tk−1, tk], k = 1, . . . ,n, we have

lim
n→∞

E

[(

n
∑

k=1
X (τk , ·)(tk − tk−1)−Y (·)

)2]

= 0.

The random variable Y : Ω→ R is called the mean-square integral of the process X on

[a,b]. In such case, we write

Y (·) =
∫b

a
X (s, ·)d s, (a.e).

Definition and basic properties of the mean-square derivative and mean-square integral

can be read in [15].

We say that a stochastic process X : I ×Ω→ R is a quasi-convex stochastic process if, for

every a,b ∈ I , λ ∈ (0,1), the following inequality is satisfied

X (λt1 + (1−λ)t2, ·) ≤max{|X (a, ·)|, |X (b, ·)|}, (a.e). (2.1)

If in (2.1) the reversed inequality holds, the stochastic process is quasi-concave.

In order to prove some inequalities for quasi-convex differentiable stochastic processes

which are connected with the right-hand side of Hermite-Hadamard’s inequality, it is neces-

sary to use the following lemma:
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Lemma 2.1. Let X : I×Ω→R be a mean-square differentiable stochastic process on I 0, a,b ∈ I 0

with a < b. If X (3)(t , ·) is mean-square integrable on [a,b], then the following equality takes

places almost everywhere:

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

=
(b −a)3

12

∫1

0
λ(λ−1)(2λ−1)X (3)(λa + (1−λ)b, ·)dλ. (2.2)

Proof. Integrating by parts the right-hand side of equation (2.2) , we have

∫1

0
λ(λ−1)(2λ−1)X (3)(λa + (1−λ)b, ·)dλ

=
1

a −b

∫1

0
(6λ2

−6λ+1)X (2)(λa + (1−λ)b, ·))dλ

=
X ′(a, ·)−X ′(b, ·)

(a −b)2
−6

[

X (a, ·)+X (b, ·)

(a −b)3

]

+
12

(a −b)3

∫1

0
X (λa + (1−λ)b, ·)dλ

=
X ′(a, ·)−X ′(b, ·)

(a −b)2
−6

[

X (a, ·)+X (b, ·)

(a −b)3

]

+
12

(a −b)3

∫1

0
X (λa + (1−λ)b, ·)dλ.

Multiplying by (b−a)3

12 :

(b −a)3

12

∫1

0
λ(λ−1)(2λ−1)X (3)(λa + (1−λ)b, ·)dλ

=
(b −a)

12
[X ′(a, ·)−X ′(b, ·)]+

[

X (a, ·)+X (b, ·)

2

]

−

∫1

0
X (λa + (1−λ)b, ·)dλ.

Then, making the change of variable on the right hand side of the above equation t = λa +

(1−λ)b and d t = (a −b)dλ, is obtained:

(b −a)3

12

∫1

0
λ(λ−1)(2λ−1)X (3)(λa + (1−λ)b, ·)dλ

=
X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

(b −a)

12
[X ′(b, ·)−X ′(a, ·)],

Obtaining the desired result. ���

Theorem 2.2. Let X : I ×Ω→ R be three times mean-square differentiable stochastic process

on I 0 such that a,b ∈ I 0, a < b. If X (3) is mean-square integrable on [a,b] and |X (3)| is quasi-

convex on [a,b], then we have the following inequality:

∣

∣

∣

∣

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

∣

∣

∣

∣

≤
(b −a)3

192
max{|X (3)(a, ·)|, |X (3)(b, ·)|}. (2.3)
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Proof. Using Lemma 2.1 and quasi-convexity of |X (3)|, we get:

∣

∣

∣

∣

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

∣

∣

∣

∣

≤
(b −a)3

12

∫1

0
λ(1−λ)|2λ−1||X (3)(λa + (1−λ)b, ·)|dλ

≤
(b −a)3

12
max{|X (3)(a, ·)|, |X (3)(b, ·)|}

∫1

0
λ(1−λ)|2λ−1|dλ

=
(b −a)3

192
max{|X (3)(a, ·)|, |X (3)(b, ·)|},

where

∫1

0
λ(1−λ)|2λ−1|dλ=

∫1/2

0
λ(1−λ)(1−2λ)dλ+

∫1

1/2
λ(1−λ)(2λ−1)dλ=

1

16
. (2.4)

���

In the following theorem, we establish the corresponding version for powers of the abso-

lute value of the second derivative:

Theorem 2.3. Let X : I ×Ω→ R be three times mean-square differentiable stochastic process

on I 0 such that a,b ∈ I 0, a < b. If X (3) is mean-square integrable on [a,b] and |X (3)|p/(p−1) is

quasi-convex on [a,b] and p > 1, then we have the following inequality:

∣

∣

∣

∣

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

∣

∣

∣

∣

≤
(b −a)3

96

(

1

p +1

)1/p

max{|X (3)(a, ·)|q , |X (3)(b, ·)|q }1/q , (2.5)

where q = p/(p −1).

Proof. By using Lemma 2.1 and the well know Hölder’s integral inequality, we have:

∣

∣

∣

∣

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

∣

∣

∣

∣

≤
(b −a)3

12

∫1

0
λ(1−λ)|2λ−1||X (3)(λa + (1−λ)b, ·)|dλ

≤
(b −a)3

12

(
∫1

0
λ

p (1−λ)p
|2λ−1|p dλ

)1/p (
∫1

0
|X (3)(λa + (1−λb, ·))|q dλ

)1/q

.

Since 0 < 2λ−1 < 1 and p > 1, we have:

∫1

0
λ

p (1−λ)p
|2λ−1|p dλ≤

∫1

0
λ

p (1−λ)p
|2λ−1|dλ.
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Then,
∣

∣

∣

∣

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

∣

∣

∣

∣

≤
(b −a)3

12

(
∫1

0
λ

p (1−λ)p
|2λ−1|dλ

)1/p (
∫1

0
|X (3)(λa + (1−λb, ·))|q dλ

)1/q

=
(b −a)3

12

(

1

22p+1(1+p)

)1/p

max{|X (3)(a, ·)|q , |X (3)(b, ·)|q }1/q ,

where
∫1

0
(λ(1−λ))p

|2λ−1|dλ=

∫1/2

0
(λ(1−λ))p (1−2λ)dλ+

∫1

1/2
(λ(1−λ))p (2λ−1)dλ

=

(

1

22p+1(1+p)

)

. ���

Theorem 2.4. Let X : I ×Ω→ R be three times mean-square differentiable stochastic process

on I 0 such that a,b ∈ I 0, a < b. If X (3) is mean-square integrable on [a,b] and |X (3)|q is quasi-

convex on [a,b] and p > 1, then we have the following inequality:

∣

∣

∣

∣

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

∣

∣

∣

∣

≤
(b −a)3

192
max{|X (3)(a, ·)|q , |X (3)(b, ·)|q }1/q . (2.6)

Proof. Using Lemma 2.1 and the well know power-mean inequality, we get:

∣

∣

∣

∣

X (a, ·)+X (b, ·)

2
−

1

b −a

∫b

a
X (t , ·)d t −

b −a

12
[X ′(b, ·)−X ′(a, ·)]

∣

∣

∣

∣

≤
(b −a)3

12

∫1

0
λ(1−λ)|2λ−1||X (3)(λa + (1−λ)b, ·)|dλ

≤
(b −a)3

12

(
∫1

0
λ(1−λ)|2λ−1|dλ

)1−1/q (
∫1

0
λ(1−λ)|2λ−1||X (3)(λa + (1−λb, ·))|q dλ

)1/q

=
(b −a)3

12

(

1

16

)1−1/q (

1

16
max{|X (3)(a, ·)|q , |X (3)(b, ·)|q }

)1/q

=
(b −a)3

192
max{|X (3)(a, ·)|q , |X (3)(b, ·)|q }1/q

where we use the equality (2.4). ���
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