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A DOUBLE INEQUALITY FOR REMAINDER OF POWER SERIES OF

TANGENT FUNCTION

CHAO-PING CHEN AND FENG QI

Abstract. By mathematical induction, an identity and a double inequality for remainder of

power series of tangent function are established.

1. Introduction

It is well known that Bernoulli numbers Bi are defined [11] by

x

ex − 1
= 1 − 1

2
x +

∞
∑

i=1

(−1)i+1 Bi

(2i)!
x2i, |x| < 2π. (1)

About Bernoulli numbers, some new results can be found in [1, 3, 5].

The tangent and cotangent can be expanded into power series with coefficients in-

volving Bernoulli numbers as follows [11, p.5]:

tan x =

∞
∑

i=1

22i(22i − 1)Bi

(2i)!
x2i−1, |x| <

π

2
; (2)

cotx =
1

x
−

∞
∑

i=1

22iBi

(2i)!
x2i−1, |x| < π. (3)

Introduce two notations Sn(x) and rn(x) by

Sn(x) =

n
∑

i=1

22i(22i − 1)Bi

(2i)!
x2i−1, (4)

rn(x) = tanx − Sn(x) (5)
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for 0 < x < π
2 . Then tanx = limn→∞ Sn(x). We call rn(x) the remainder of power series

for tangent function.
For elementary functions sinx, cosx, and ex, there are much literature on estimates

of their remainder. For examples, see [6, 7, 9]. The methods used in [6, 7, 9] have

been applied to construct inequalities of elliptic integrals. See [8, 10]. Some inequalities
involving tanx were researched by the second author and others in [2].

In this article, we will establish a double inequality for remainder rn(x) of power
series for tan x. That is

Theorem 1. For x ∈ (0, π
2 ) and n ∈ N, we have

22(n+1)(22(n+1) − 1)Bn+1

(2n + 2)!
x2n tanx < tan x − Sn(x) <

( 2

π

)2n

x2n tan x. (6)

Remark 1. If taking n = 1 in (6), we have for x ∈ (0, 1)

π

2
· x

1 − 7π2

360 x2
< tan

πx

2
<

π

2
· x

1 − x2
. (7)

For 0 < x < 3
π

√

5(π2−8)
38 , the left inequality in (7) is better than the left inequality in the

following Becker-Stark inequality [4, p.351]:

4

π
· x

1 − x2
< tan

πx

2
<

π

2
· x

1 − x2
, x ∈ (0, 1). (8)

If taking n = 2 in (6), we obtain

x +
1

3
x3 +

2

15
x4 tan x < tan x < x +

1

3
x3 +

( 2

π

)4

x4 tan x, x ∈
(

0,
π

2

)

. (9)

The constants 2
15 and ( 2

π
)4 in (9) are best possible.

For x ∈ (0, π
6 ), the Djokvie inequality states [4, p.350] that

x +
1

3
x3 < tanx < x +

4

9
x3. (10)

Since
1

3
+
( 2

π

)4

x tan x <
1

3
+
( 2

π

)4

· π

6
· 1√

3
<

4

9
,

thus, the inequality in (9) is better than those in (10).

2. Proof of Theorem

Let

hn(x) =
tan x − Sn(x)

x2n tanx
(11)
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for n ∈ N. Then we have the following lemma.

Lemma 1. For x ∈ (0, π
2 ) and n ∈ N, we have

hn(x) =

n
∑

j=1

22(n−j+1)[22(n−j+1) − 1]Bn−j+1

[2(n − j + 1)]!

∞
∑

k=j

22kBk

(2k)!
x2(k−j). (12)

Proof. We shall prove this lemma by mathematical induction on n.
For n = 1, we have

h1(x) =
tan x − S1(x)

x2 tan x

=
1

x2
− cotx

x

=
1

x2
− 1

x

(

1

x
−

∞
∑

k=1

22kBk

(2k)!
x2k−1

)

=

∞
∑

k=1

22kBk

(2k)!
x2(k−1),

the formula (12) holds for n = 1.
For n = 2, we have

h2(x) =
tan x − S2(x)

x4 tan x

=
1

x4
− cotx

x3
− cotx

3x

=
1

x4
− 1

x3

(

1

x
− 1

3
x −

∞
∑

k=2

22kBk

(2k)!
x2k−1

)

− 1

3x

(

1

x
−

∞
∑

k=1

22kBk

(2k)!
x2k−1

)

=

∞
∑

k=2

22kBk

(2k)!
x2(k−1) +

∞
∑

k=1

22kBk

3 · (2k)!
x2(k−1),

the formula (12) holds for n = 2.
Assume formula (12) holds for n = m. Then for n = m + 1, we have

hm+1 =
tan x − Sm+1(x)

x2(m+1) tan x

=
tan x − Sm(x) − 22(m+1)(22(m+1)

−1)Bm+1

[2(m+1)]! x2m+1

x2(m+1) tanx

=
1

x2
· tan x − Sm(x)

x2m tan x
− 22(m+1)(22(m+1) − 1)Bm+1

[2(m + 1)]!
· cotx

x

=
1

x2

m
∑

j=1

22(m−j+1)[22(m−j+1) − 1]Bm−j+1

[2(m − j + 1)]!

∞
∑

k=j

22kBk

(2k)!
x2(k−j)
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−22(m+1)(22(m+1) − 1)Bm+1

[2(m + 1)]!
· 1

x

(

1

x
−

∞
∑

k=1

22kBk

(2k)!
x2k−1

)

=
1

x2

m
∑

j=1

22j(22j − 1)Bj

(2j)!
· 22(m−j+1)Bm−j+1

[2(m − j + 1)]!
(13)

+
m+1
∑

j=1

22(m−j+2)(22(m−j+2) − 1)Bm−j+2

[2(m − j + 2)]!

∞
∑

k=j

22kBk

(2k)!
x2(k−j)

−22(m+1)[22(m+1)−1]Bm+1

[2(m + 1)]!
· 1

x2
+

22(m+1)[22(m+1)−1]Bm+1

[2(m + 1)]!

∞
∑

k=1

22kBk

(2k)!
x2(k−1)

=

m+1
∑

j=1

22(m−j+2)[22(m−j+2) − 1]Bm−j+2

[2(m − j + 2)]!

∞
∑

k=j

22kBk

(2k)!
x2(k−j)

+
1

x2

m
∑

j=1

22j(22j − 1)Bj

(2j)!
· 22(m−j+1)Bm−j+1

[2(m − j + 1)]!
− 22(m+1)(22(m+1) − 1)Bm+1

[2(m + 1)]!
· 1

x2
.

Since tanx cotx = 1, we have
(

∞
∑

i=1

22i(22i − 1)Bi

(2i)!
x2i−1

)(

1

x
−

∞
∑

i=1

22iBi

(2i)!
x2i−1

)

= 1,

which is equivalent to

∞
∑

i=2

22i(22i − 1)Bi

(2i)!
x2i−2 =

[

∞
∑

i=1

22i(22i − 1)Bi

(2i)!
x2i−1

]

∞
∑

i=1

22iBi

(2i)!
x2i−1, (14)

equating coefficients of the term x2m on both sides of (14) yields

22(m+1)(22(m+1) − 1)Bm+1

(2(m + 1))!
=

m
∑

j=1

22j(22j − 1)Bj

(2j)!
· 22(m−j+1)Bm−j+1

[2(m − j + 1)]!
. (15)

Substituting (15) into (13) and simplifying gives us

hm+1(x) =

m+1
∑

j=1

22(m−j+2)(22(m−j+2) − 1)Bm−j+2

[2(m − j + 2)]!

∞
∑

k=j

22kBk

(2k)!
x2(k−j). (16)

By induction, the proof of Lemma 1 is complete.

Now we give a proof of Theorem 1.

Proof of Theorem 1. From (12), it is deduced that h′

n(x) > 0, and hn(x) is strictly
increasing in (0, π

2 ), Easy computing yields

hn(0 + 0) =
22n+2(22n+2) − 1)Bn+1

(2n + 2)!
,
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h
(π

2
− 0
)

=
( 2

π

)2n

.

Therefore, we have

22n+2(22n+2 − 1)Bn+1

(2n + 2)!
< hn(x) <

( 2

π

)2n

. (17)

Inequalities in (17) are equivalent to the double inequality (6).
The proof of Theorem 1 is complete.
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