
TAMKANG JOURNAL OF MATHEMATICS

Volume 34, Number 4, Winter 2003

A CLASS OF SPACES AND THEIR ANTI SPACES

C. K. BASU

Abstract. The present paper is a continuation of the study of S-closed and s-closed topological

spaces as introduced by Thompson [11] and Maio and Noiri [7] respectively. Although there is

no relation between compactness with S-closedness or s-closedness, this paper yields some new

characterizations of these concepts in terms of compactness.

1. Introudction

Since the introduction of semi-open sets by N. Levine [6], many mathematicians
have introduced many new topological properties, using semi-open sets. Maio and Noiri

[7] initiated the study of a class of topological spaces under the terminology “s-closed
spaces”, which is properly contained in the class of S-closed spaces as introduced by

Thompson [11] and subsequently studied extensively by many mathematicians. Ganster
and Reilly [4] have shown a remarkable result towards the distinction between these

concepts that every infinite topological space can be represented as a closed subspace of

a connected S-closed space which is not s-closed. The aim of this paper is to study these
topological properties viz. S-closedness and s-closedness via compactness which reflect

the distinction between the concepts of compactness and S-closeness or s-closedness.
This, however, leads us to establish in a straight forward manner certain important

characterization theorems of S-closed spaces and s-closed spaces which are already well-

known. In the last section, we introduce and characterize the class of anti-S-closed and
anti-s-closed spaces.

By (X, T ) or simply by X we shall denote a topological space, and for a subset A of
X , the closure of A and the interior of A will be denoted by cl A and int A respectively.

A subset A of X is said to be semi-open [6] if there exists an open set U of X such that
U ⊂ A ⊂ cl U . Biswas [2] used semi-open sets to define semi-closed sets and semi-closure

of a set. A subset A of X is semi-closed iff X − A is semi-open and the semi-closure of

A, denoted by scl A, is the intersection of all semi-closed sets containing A [2]. A set
which is semi-open as well as semi-closed is said to be a semi-regular set [7]. Maio and

Noiri [7] characterized semi regular sets in terms of regular open sets as follows: a set
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A is semi-regular iff there exists a regular open set U of X such that U ⊂ A ⊂ cl U .

The family of all semi-open (resp. semi-regular, regular-open, regular closed) sets of X

will be denoted by SO(X) (resp. SR(X), RO(X), RC(X)). While the collection of all

members of SO(X) (resp. SR(X), RO(X), RC(X)) each containing a point x of X will be

denoted by SO(x) (resp. SR(x), RO(x), RC(x)). A subset A of X is said to be S-closed

[9] (resp. s-closed [7]) relative to X or simply an S-set (s-set) iff every cover of A by sets

of SO(X) admits a finite subfamily whose closures (resp. semi-closures) cover A. In case

A = X and A is an S-set (s-set), then X is called an S-closed [11] (resp. s-closed [7])

space.

2. S−Closed and s−Closed Spaces

Analogous to a well known theorem on compactness, Asha Mathur [8] and Maio and

Noiri [7] respectively proved that a topological space X is S-closed (resp. s-closed) iff

every regular closed (resp. semi-regular) cover of X has a finite subcover. Although

it is well known that compactness and S-closedness (resp. s-closedness) are indepen-

dent notions, it is our intention in this section to study such spaces with the help of

compactness. An important and useful consequence of such study is to achieve a new

approach which not only simplifies (in a straightforward way) the proofs of some well-

known characterization theorems of S-closed and s-closed spaces but also improves some

characterization theorem of such spaces. Joseph and Kwack [5] and Ganguly and Basu

[3] initiated respectively (θ, s)-continuous function and γ-continuous function to study

S-closed (resp. s-closed) spaces. Using those functions, we derive that a topological space

X is S-closed (resp. s-closed) iff it is a (θ, s)-continuous (resp. γ-continuous) image of a

compact space. For these purposes we require some definitions and results.

Definition 2.1. A filter base ℑ on X is said to s-accumulate [11] (resp. SR-

accumulate [7]) to x ∈ X iff for each V ∈ SO(x) and each F ∈ ℑ satisfy F ∩ cl V 6= φ

(resp. F ∩ scl V 6= φ).

Joseph and Kwack [5] and Maio and Noiri [7] respectively established that RC(x) =

{cl V : V ∈ SO(x)} and SR(x) = {scl V : V ∈ SO(x)}. Therefore an equivalent

formulation of the above definition is that a filter base ℑ on X is said to have an s-

accumulation (resp. SR-accumulation) point x iff for each F ∈ ℑ and for each V ∈ RC(x)

(resp. V ∈ SR(x)), F ∩ V 6= φ.

Definition 2.2. A filter base ℑ on X is said to s-converge [11] (resp. SR-converge

[7]) to x iff for each V ∈ RC(x) (resp. V ∈ SR(x)) there is an F ∈ ℑ satisfying F ⊂ V .

The corresponding definitions for nets are obvious.

Definition 2.3. Let (X, T ) be a topological space. We define TRC-topology (resp.

TSR-topology) on X as the topology on X which has RC(X) (resp. SR(X)) as a subbase.

It is to be noted that intersection of even two regular closed (resp. semi-regular) sets may
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fail to be regular closed (resp. semi-regular). Therefore these collections do not form a
base for topology.

Definition 2.4. A filter base ℑ in (X, T ) is said to be TRC-convergent (resp. TSR-
convergent) to x if ℑ converges to x in (X, TRC) (resp. in (X, TSR)).

Proposition 2.5. A filterbase ℑ in (X, T ) s-converges (resp. SR-converges) to x iff

ℑ TRC-converges (resp. TSR-converges) to x.

Proof. Straightforward.

The corresponding proposition using nets is also obvious.

Definition 2.6. A filter base ℑ on (X, T ) is said to have x as a TRC-accumulation
(resp. TSR-accumulation) point if x is an accumulation point of ℑ in (X, TRC) (resp. in
(X, TSR)).

Similarly, TRC (resp. TSR)-accumulation point of a net can be defined.

Remark 2.7. Every TRC-accumulation (resp. TSR-accumulation) point of a filter or
a net is also an s-accumulation (resp. SR-accumulation) point. But the converse is not
necessarily true follows from the following example.

Example 2.8. Let X = R, be the set of reals with the usual topology then (X, TRC)
(resp. (X, TSR)) is clearly the discrete topology. Let xn = (−1)n.1/n for each positive
integer n, then the net {xn}n∈N and the filter ℑ based on the net {xn}n∈N both have 0
as the s-accumulation (resp. SR-accumulation) point. But 0 is not a TRC-accumulation
(resp. TSR-accumulation) point of {xn}n∈N or ℑ.

Theorem 2.9. A topological space (X, T ) is S-closed iff (X, TRC) is compact.

Proof. Let (X, T ) be S-closed. Then every regular closed cover of X has a finite
subcover. But the collection of all regular closed sets of (X, T ) is a subbase for TRC.
Therefore every subbasic open cover of (X, TRC) has a finite subcover. By Alexander
subbase theorem, (X, TRC) is compact.

Conversely, let (X, TRC) be compact. Since RC(X) ⊂ TRC, every regular closed cover
of (X, T ) has a finite subcover. So (X, T ) is S-closed by [Theorem 1 of Asha Mathur [8]].

Theorem 2.10. A topological space (X, T ) is s-closed iff (X, TSR) is compact.

Proof. It is similar to Theorem 2.9 and is thus omitted.

The following theorem for S-closed spaces improves Theroem 1 of Asha Mathur [8],
Theorem 1.3 of T. Noiri [9] and Theorem 2 of Thompson [11]; and the theorem for
s-closed spaces improves proposition 3.1 of Maio and Noiri [7].

Theorem 2.11. Let (X, T ) be a topological space. Then the following are equiva-

lent.
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i) (X, T ) is S-closed (resp. s-closed)

ii) every proper regular open (resp. Semi-regular) set is an S-set (resp. s-set) in (X, T ).

iii) every closed set of (X, TRC) [resp. (X, TSR)] is an S-set (resp. s-set) in (X, T ).

iv) every family of regular open (resp. Semi-regular) subsets of (X, T ) with the finite

intersection property (f.i.p. for short) has non-void intersection.

v) every family of closed subsets of (X, TRC) [resp. (X, TSR)] with the f.i.p. has non-

void intersection.

vi) every filter base in (X, T ) has an s-accumulation (resp. SR-accumulation) point.

vii) every net in (X, T ) has an s-accumulation (resp. SR-accumulation) point.

viii) every filter base in (X, T ) has a TRC-accumulation (resp. TSR-accumulation) point.

ix) every net in (X, T ) has a TRC-accumulation (resp. TSR-accumulation) point.

x) every net in (X, T ) has a TRC-convergent (resp. TRS convergent) subnet.

xi) every filter ℑ in (X, T ) has a sub-ordinate filter ℑ0 of ℑ which is TRC-convergent

(resp. TSR-convergent).

xii) every universal net in (X, T ) is TRC-convergent (resp. TSR-convergent).

xiii) every ultrafilter in (X, T ) is TRC-convergent (resp. TSR-convergent).

Proof. The facts discussed above prove the theorem immediately.

Definition 2.12. A function f : (X, T ) → (Y, T ′) is said to be (θ, s)-continuous [5]

(resp. γ-continuous [3]) if for each x ∈ X and each W ∈ SO(f(x)), there is an open set

V containing x such that f(V ) ⊂ cl W (resp. f(V ) ⊂ scl W ).

Since RC(x) = {cl W : W ∈ SO(x)} [5] (resp. SR(x) = {scl W : W ∈ SO(x)} [7]),

the above definition can equivalently be stated as: a function f : (X, T ) → (Y, T ′) is

(θ, s)-continuous (resp. γ-continuous) iff f−1(W ) is open in X , for every W ∈ RC(Y )

(resp. W ∈ SR(Y )).

Theorem 2.13. A topological space (X, T ) is S-closed iff it is a (θ, s)-continuous

image of a compact space.

Proof. Let (X, T ) be S-closed. Then by Theorem 2.9, (X, TRC) is compact. Let

i : (X, TRC) → (X, T ) be the identity function, which is obviously (θ, s)-continuous.

Therefore there exist a compact space and a (θ, s)-continuous function such that the

S-closed space (X, T ) is the (θ, s)-continuous image of a compact space.

Conversely, let f : (Y, T ∗) → (X, T ) be (θ, s)-continuous surjection and (Y, T ∗) be

compact. Let {Vα : α ∈ I} be a cover of (X, T ) be regular closed sets of (X, T ). Then

{f−1(Vα) : α ∈ I} is a cover of the compact space (Y, T ∗) by open sets of (Y, T ∗).

Therefore there exists a finite subset I0 of I such that {f−1(Vα) : α ∈ I0} covers Y and

hence {Vα : α ∈ I0} covers X . Therefore (X, T ) is S-closed.

Theorem 2.14. A topological space (X, T ) is s-closed iff it is a γ-continuous image

of a compact space.

Proof. The proof is similarl to Theorem 2.13 and thus omitted.
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Maio and Norir [7] initiated quasi-irresolute function and established that such func-
tions preserve s-sets. Here we introduce a weaker form of quasi-irresolute function which
also has the same property.

Definition 2.15. ([7]) A function f : X → Y is said to be quasi-irresolute if for each
x ∈ X and each V ∈ SO(f(x)) there exists a U ∈ SO(x) such that f(U) ⊂ scl V .

Definition 2.16. A function f : (X, T ) → (Y, T ′) is said to be weakly quasi-irresolute
if f : (X, TSR) → (Y, T ′

SR) is continuous.

Theorem 2.17. Every quasi-irresolute function is weakly quasi-irresolute.

Proof. Let f : (X, T ) → (Y, T ′) be quasi-irresolute. Then f−1(V ) is semi-regular
set in (X, T ) for every V ∈ SR(Y ). But the collection of all semi-regular sets of (Y, T ′)
is a subbase for (Y, T ′

SR). Hence f : (X, TSR) → (Y, T ′

SR) is continuous. Therefore
f : (X, T ) → (Y, T ′) is weakly quasi-irresolute.

Remark 2.18. That the coverse of the above theorem is not necessarily true follows
from the following example.

Example 2.19. Let f : R → R where R is the set of reals with the usual topology
T be a function defined by

f(x) =

{

r1 if x is rational,

r2 if x is irrational, with r2 > r1 > 0.

Clearly TSR is the discrete topology; therefore f : (R, TSR) → (R, TSR) is continuous and
hence f is weakly quasi-irresolute function. But f is not a quasi-irresolute function. In
fact if δ be such that 0 < δ < |(r2 − r1)/2|, then the open interval J = (r2 − δ, r2 + δ) is
a semi-regular set in (R, T ); but f−1(J) is the set of all irrationals of R. Hence f−1(J)
is not even a semi-open set in R.

Hence we get an improved result of Corollary 5.1 of Maio and Noiri [7].

Theorem 2.20. If f : (X, T ) → (Y, T ′) is weakly quasi-irresolute and K is an s-set
of (X, T ), then f(K) is an s-set in Y .

Proof. Let {Uα : α ∈ I} be a cover of f(K) by semi-regular sets of (Y, T ′). Since
f : (X, T ) → (Y, T ′) is weakly quasi-irresolute, {f−1(Uα) : α ∈ I} is a cover of K by
open sets of (X, TSR). By Theorem 2.10, K is compact in (X, TSR). Therefore, there
exists a finite subset I0 of I such that K ⊂ ∪{f−1(Uα) : α ∈ I0}. Which implies
f(K) ⊂ ∪α∈I0Uα. Therefore f(K) is an s-set in Y .

Corollary 2.21. If f : (X, T ) → (Y, T ′) is weakly quasi-irresolute surjection and

(X, T ) is s-closed then (Y, T ′) is also s-closed.

Definition 2.22. ([7]) A space (X, T ) is said to be weakly Hausdorff if every point
of X is the intersection of regular closed sets of X .
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The following theorem improves Corollary 5.2 of Maio and Noiri [7].

Theorem 2.23. Let f : (X, T ) → (Y, T ′) be weakly quasi-irresolute, (X, T ) is s-

closed and (Y, T ′) be weakly Hausdorff. Then the image of each semi-θ-closed set [7] in

X is semi-θ-closed in Y .

Proof. Let K be a semi-θ-closed set in (X, T ). Then by Proposition 4.2 of Maio and

Noiri [7], K is an s-set in X . By Theorem 2.20, f(K) is an s-set in Y . Therefore by

Proposition 4.3 of Maio and Noiri [7], f(K) is semi-θ-closed set in (Y, T ).

3. Anti−S−Closed and Anti−s−Closed Spaces

P. Bankston [1] studied topological anti-properties. Reilly & Vamanamurthy [10]

extended these concepts to semi-compact spaces. In a similar fashion [10], here we

introduce and characterize two new topological anti-properties under the terminology

‘anti-S-closedness’ and ‘anti-s-closedness’ along with their mutual relationships.

Definition 3.1. A topological space (X, T ) is said to be anti-S-closed (resp. anti-s

-closed) if only the finite subsets of (X, T ) are S-sets (resp. s-sets) of (X, T ).

An infinite subset A of (X, T ) is said to be anti-S-closed (resp. anti-s-closed) relative

to X if only the finite subsets of A are S-sets (resp. s-sets) in (X, T ).

Theorem 3.2. A topological space (X, T ) is anti-S-closed iff for every infinite set N

of X and each point x of X, there exists a regular closed set R containing x such that

N \ R is not an S-set in (X, T ).

Proof. Let the given condition hold. We have to show that (X, T ) is anti-S-closed.

Let N be any infinite set and let x ∈ X . Then by hypothesis, there exists a R ∈ RC(x)

such that N \ R is not an S-set. Therefore there exists a cover A of N \ R by regular

closed sets of X which has no finite subcover. So N is not an S-set in (X, T ). Therefore

(X, T ) is anti-S-closed.

Conversely, let (X, T ) be anti-S-closed space. Let N be any infinite subset of X and

let x be any point of X . Then by definition of anti-S-closed space, N and hence N ∪{x}

is not an S-set. Therefore there exists a cover A of N ∪ {x} by regular closed sets which

has no finite subcover. Hence there exists a member R ∈ A such that x ∈ R. So N \ R

is not an S-set in (X, T ).

Theorem 3.3. A topological space (X, T ) is anti-s-closed iff for every infinite set N

of X and each point x of X, there exists a V ∈ SR(x) such that N \V is not an s-set in

(X, T ).

Proof. The proof is similar to that of the above theorem.

Theorem 3.4. If (X, T ) is anti-S-closed then it is anti-s-closed.



A CLASS OF SPACES AND THEIR ANTI SPACES 363

Proof. The proof immediately follows because of the fact that every s-set is an S-set.

Remark 3.5. That the converse of the above theorem is not necessarily true follows

from the following example.

Example 3.6. Let X be set of all integers with the topology T having the base

{X, {0}, {−1}, {−2}, . . .}. Then no infinite set of X is an s-set; if we have Z+, the set

of positive integers, then {{0, 1}, {0, 2}, {0, 3}, . . .} is a semi-open cover of Z+ and scl

{0, n} = {0, n}. Then Z+ is not an s-set. But Z+ is an S-set; if we consider Z−Z+ then

{{0}, {−1}, {−2}, . . .} is a semi-open cover of Z − Z+ and scl{−n} = {−n}. Therefore
it has no finite subcover. So Z − Z+ is not an s-set. If L ⊂ X be such that it is infinite

and contains finitely many points from Z+ then again this can be shown to be a non

s-set; if it contains infinitely many elements from Z+, the same thing happens. Thus X

is anti-s-closed but not anti-S-closed.

Theorem 3.7. Any topological space (X, T ) which is not S-closed (resp. not s-

closed) has a proper infinite subset which is anti-S-closed (resp. anti-s-closed) relative to

X.

Proof. Since (X, T ) is not S-closed (resp. not s-closed), there exists, in particular,
a countable cover A of X by regular closed (resp. semi-regular) sets which has no finite

subcover. We pick up the points xm+1 ∈ X − ∪n
i=1Vi (where Vi ∈ A). Then the set

{xm, m ∈ N}, where N is the set of naturals, is a proper infinite subset of X which

is not S-set (resp. s-set). Therefore every infinite subset of {xm : m ∈ N} is not an
S-set (resp. s-set) in (X, T ). Hence the infinite subset {xm : m ∈ N} is anti-S-closed

(resp. anti-s-closed) relative to X .

Definition 3.8. A topological space (X, T ) is said to be hereditarily S-closed (resp.

hereditarily s-closed) if each of its subsets is S-set (resp. s-set) in (X, T ).

Theorem 3.9. A topological space (X, T ) is hereditarily S-closed (resp. hereditarily

s-closed) iff (X, T ) is anti-(anti-S-closed) [resp. anti-(anti-s-closed)].

Proof. Let (X, T ) be anti-(anti-S-closed) [resp. anti-(anti-s-closed)]. If possible let
(X, T ) be not hereditarily S-closed (resp. hereditarily s-closed). Then there exists a

subset B of X such that B is not an S-set (resp. s-set) and hence B must be infinite.

Therefore by Theorem 3.7, B has an infinite subset M which is anti-S-closed (resp. anti-

s-closed) relative to X-a contradiction to the definition of anti-(anti-S- closed) [resp. anti-

(anti-s-closed)].
Coversely, let (X, T ) be hereditarily S-closed (resp. hereditarily s-closed). If possible,

let (X, T ) be not anti-(anti-S-closed) [resp. anti-(anti-s-closed)]. Then by definition there

exists an infinite subset V of X which is anti-S-closed (resp. anti-s-closed) relative to X .

Therefore V is not an S-set (resp. s-set) in (X, T )-a contradiction.
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