A CLASS OF SPACES AND THEIR ANTI SPACES

C. K. BASU

Abstract. The present paper is a continuation of the study of *S*-closed and *s*-closed topological spaces as introduced by Thompson [11] and Maio and Noiri [7] respectively. Although there is no relation between compactness with *S*-closedness or *s*-closedness, this paper yields some new characterizations of these concepts in terms of compactness.

1. Introudction

Since the introduction of semi-open sets by N. Levine [6], many mathematicians have introduced many new topological properties, using semi-open sets. Maio and Noiri [7] initiated the study of a class of topological spaces under the terminology "s-closed spaces", which is properly contained in the class of S-closed spaces as introduced by Thompson [11] and subsequently studied extensively by many mathematicians. Ganster and Reilly [4] have shown a remarkable result towards the distinction between these concepts that every infinite topological space can be represented as a closed subspace of a connected S-closed space which is not s-closed. The aim of this paper is to study these topological properties viz. S-closedness and s-closedness via compactness which reflect the distinction between the concepts of compactness and S-closeness or s-closedness. This, however, leads us to establish in a straight forward manner certain important characterization theorems of S-closed spaces and s-closed spaces which are already well-known. In the last section, we introduce and characterize the class of anti-S-closed and anti-s-closed spaces.

By (X, T) or simply by X we shall denote a topological space, and for a subset A of X, the closure of A and the interior of A will be denoted by cl A and int A respectively. A subset A of X is said to be *semi-open* [6] if there exists an open set U of X such that $U \subset A \subset$ cl U. Biswas [2] used semi-open sets to define semi-closed sets and semi-closure of a set. A subset A of X is *semi-closed* iff X - A is semi-open and the *semi-closure of* A, denoted by scl A, is the intersection of all semi-closed sets containing A [2]. A set which is semi-open as well as semi-closed is said to be a *semi-regular* set [7]. Maio and Noiri [7] characterized semi regular sets in terms of regular open sets as follows: a set

Received May 29, 2002; revised September 26, 2002.

²⁰⁰⁰ Mathematics Subject Classification. 54D99.

Key words and phrases. S-sets, s-sets, semi-regular sets, regular closed sets, s-accumulation point, SR-accumulation point, (θ, s) continuous function, γ -continuous function, anti-S-closed and anti-s-closed spaces.

³⁵⁷

C. K. BASU

A is semi-regular iff there exists a regular open set U of X such that $U \subset A \subset \operatorname{cl} U$. The family of all semi-open (resp. semi-regular, regular-open, regular closed) sets of X will be denoted by $\operatorname{SO}(X)$ (resp. $\operatorname{SR}(X)$, $\operatorname{RO}(X)$, $\operatorname{RC}(X)$). While the collection of all members of $\operatorname{SO}(X)$ (resp. $\operatorname{SR}(X)$, $\operatorname{RO}(X)$, $\operatorname{RC}(X)$) each containing a point x of X will be denoted by $\operatorname{SO}(x)$ (resp. $\operatorname{SR}(X)$, $\operatorname{RO}(x)$, $\operatorname{RC}(X)$) each containing a point x of X will be denoted by $\operatorname{SO}(x)$ (resp. $\operatorname{SR}(x)$, $\operatorname{RO}(x)$, $\operatorname{RC}(x)$). A subset A of X is said to be S-closed [9] (resp. s-closed [7]) relative to X or simply an S-set (s-set) iff every cover of A by sets of $\operatorname{SO}(X)$ admits a finite subfamily whose closures (resp. semi-closures) cover A. In case A = X and A is an S-set (s-set), then X is called an S-closed [11] (resp. s-closed [7]) space.

2. S-Closed and s-Closed Spaces

Analogous to a well known theorem on compactness, Asha Mathur [8] and Maio and Noiri [7] respectively proved that a topological space X is S-closed (resp. s-closed) iff every regular closed (resp. semi-regular) cover of X has a finite subcover. Although it is well known that compactness and S-closedness (resp. s-closedness) are independent notions, it is our intention in this section to study such spaces with the help of compactness. An important and useful consequence of such study is to achieve a new approach which not only simplifies (in a straightforward way) the proofs of some wellknown characterization theorems of S-closed and s-closed spaces but also improves some characterization theorem of such spaces. Joseph and Kwack [5] and Ganguly and Basu [3] initiated respectively (θ , s)-continuous function and γ -continuous function to study S-closed (resp. s-closed) spaces. Using those functions, we derive that a topological space X is S-closed (resp. s-closed) iff it is a (θ , s)-continuous (resp. γ -continuous) image of a compact space. For these purposes we require some definitions and results.

Definition 2.1. A filter base \Im on X is said to s-accumulate [11] (resp. SR-accumulate [7]) to $x \in X$ iff for each $V \in SO(x)$ and each $F \in \Im$ satisfy $F \cap \operatorname{cl} V \neq \phi$ (resp. $F \cap \operatorname{scl} V \neq \phi$).

Joseph and Kwack [5] and Maio and Noiri [7] respectively established that $\operatorname{RC}(x) = \{\operatorname{cl} V : V \in \operatorname{SO}(x)\}$ and $\operatorname{SR}(x) = \{\operatorname{scl} V : V \in \operatorname{SO}(x)\}$. Therefore an equivalent formulation of the above definition is that a filter base \Im on X is said to have an s-accumulation (resp. SR-accumulation) point x iff for each $F \in \Im$ and for each $V \in \operatorname{RC}(x)$ (resp. $V \in \operatorname{SR}(x)$), $F \cap V \neq \phi$.

Definition 2.2. A filter base \Im on X is said to s-converge [11] (resp. SR-converge [7]) to x iff for each $V \in \text{RC}(x)$ (resp. $V \in \text{SR}(x)$) there is an $F \in \Im$ satisfying $F \subset V$.

The corresponding definitions for nets are obvious.

Definition 2.3. Let (X,T) be a topological space. We define $T_{\rm RC}$ -topology (resp. $T_{\rm SR}$ -topology) on X as the topology on X which has ${\rm RC}(X)$ (resp. ${\rm SR}(X)$) as a subbase. It is to be noted that intersection of even two regular closed (resp. semi-regular) sets may

358

fail to be regular closed (resp. semi-regular). Therefore these collections do not form a base for topology.

Definition 2.4. A filter base \Im in (X, T) is said to be T_{RC} -convergent (resp. T_{SR} convergent) to x if \Im converges to x in (X, T_{RC}) (resp. in (X, T_{SR})).

Proposition 2.5. A filterbase \Im in (X,T) s-converges (resp. SR-converges) to x iff \Im $T_{\rm RC}$ -converges (resp. $T_{\rm SR}$ -converges) to x.

Proof. Straightforward.

The corresponding proposition using nets is also obvious.

Definition 2.6. A filter base \Im on (X, T) is said to have x as a T_{RC} -accumulation (resp. T_{SR} -accumulation) point if x is an accumulation point of \Im in (X, T_{RC}) (resp. in (X, T_{SR})).

Similarly, $T_{\rm RC}$ (resp. $T_{\rm SR}$)-accumulation point of a net can be defined.

Remark 2.7. Every $T_{\rm RC}$ -accumulation (resp. $T_{\rm SR}$ -accumulation) point of a filter or a net is also an *s*-accumulation (resp. SR-accumulation) point. But the converse is not necessarily true follows from the following example.

Example 2.8. Let X = R, be the set of reals with the usual topology then $(X, T_{\rm RC})$ (resp. $(X, T_{\rm SR})$) is clearly the discrete topology. Let $x_n = (-1)^n \cdot 1/n$ for each positive integer n, then the net $\{x_n\}_{n \in N}$ and the filter \Im based on the net $\{x_n\}_{n \in N}$ both have 0 as the s-accumulation (resp. SR-accumulation) point. But 0 is not a $T_{\rm RC}$ -accumulation (resp. $T_{\rm SR}$ -accumulation) point of $\{x_n\}_{n \in N}$ or \Im .

Theorem 2.9. A topological space (X,T) is S-closed iff (X,T_{RC}) is compact.

Proof. Let (X,T) be S-closed. Then every regular closed cover of X has a finite subcover. But the collection of all regular closed sets of (X,T) is a subbase for $T_{\rm RC}$. Therefore every subbasic open cover of $(X,T_{\rm RC})$ has a finite subcover. By Alexander subbase theorem, $(X,T_{\rm RC})$ is compact.

Conversely, let $(X, T_{\rm RC})$ be compact. Since ${\rm RC}(X) \subset T_{\rm RC}$, every regular closed cover of (X, T) has a finite subcover. So (X, T) is S-closed by [Theorem 1 of Asha Mathur [8]].

Theorem 2.10. A topological space (X,T) is s-closed iff (X,T_{SR}) is compact.

Proof. It is similar to Theorem 2.9 and is thus omitted.

The following theorem for S-closed spaces improves Theorem 1 of Asha Mathur [8], Theorem 1.3 of T. Noiri [9] and Theorem 2 of Thompson [11]; and the theorem for s-closed spaces improves proposition 3.1 of Maio and Noiri [7].

Theorem 2.11. Let (X,T) be a topological space. Then the following are equivalent.

C. K. BASU

- i) (X,T) is S-closed (resp. s-closed)
- ii) every proper regular open (resp. Semi-regular) set is an S-set (resp. s-set) in (X,T).
- iii) every closed set of (X, T_{RC}) [resp. (X, T_{SR})] is an S-set (resp. s-set) in (X, T).
- iv) every family of regular open (resp. Semi-regular) subsets of (X,T) with the finite intersection property (f.i.p. for short) has non-void intersection.
- v) every family of closed subsets of (X, T_{RC}) [resp. (X, T_{SR})] with the f.i.p. has nonvoid intersection.
- vi) every filter base in (X,T) has an s-accumulation (resp. SR-accumulation) point.
- vii) every net in (X,T) has an s-accumulation (resp. SR-accumulation) point.
- viii) every filter base in (X,T) has a T_{RC} -accumulation (resp. T_{SR} -accumulation) point.
- ix) every net in (X,T) has a T_{RC} -accumulation (resp. T_{SR} -accumulation) point.
- x) every net in (X,T) has a T_{RC} -convergent (resp. T_{RS} convergent) subnet.
- xi) every filter \Im in (X,T) has a sub-ordinate filter \Im_0 of \Im which is T_{RC} -convergent (resp. T_{SR} -convergent).
- xii) every universal net in (X, T) is T_{RC} -convergent (resp. T_{SR} -convergent).
- xiii) every ultrafilter in (X, T) is T_{RC} -convergent (resp. T_{SR} -convergent).

Proof. The facts discussed above prove the theorem immediately.

Definition 2.12. A function $f : (X, T) \to (Y, T')$ is said to be (θ, s) -continuous [5] (resp. γ -continuous [3]) if for each $x \in X$ and each $W \in SO(f(x))$, there is an open set V containing x such that $f(V) \subset \operatorname{cl} W$ (resp. $f(V) \subset \operatorname{scl} W$).

Since $\operatorname{RC}(x) = \{\operatorname{cl} W : W \in \operatorname{SO}(x)\}$ [5] (resp. $\operatorname{SR}(x) = \{\operatorname{scl} W : W \in \operatorname{SO}(x)\}$ [7]), the above definition can equivalently be stated as: a function $f : (X,T) \to (Y,T')$ is (θ, s) -continuous (resp. γ -continuous) iff $f^{-1}(W)$ is open in X, for every $W \in \operatorname{RC}(Y)$ (resp. $W \in \operatorname{SR}(Y)$).

Theorem 2.13. A topological space (X,T) is S-closed iff it is a (θ,s) -continuous image of a compact space.

Proof. Let (X,T) be S-closed. Then by Theorem 2.9, $(X,T_{\rm RC})$ is compact. Let $i : (X,T_{\rm RC}) \to (X,T)$ be the identity function, which is obviously (θ, s) -continuous. Therefore there exist a compact space and a (θ, s) -continuous function such that the S-closed space (X,T) is the (θ, s) -continuous image of a compact space.

Conversely, let $f : (Y, T^*) \to (X, T)$ be (θ, s) -continuous surjection and (Y, T^*) be compact. Let $\{V_{\alpha} : \alpha \in I\}$ be a cover of (X, T) be regular closed sets of (X, T). Then $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is a cover of the compact space (Y, T^*) by open sets of (Y, T^*) . Therefore there exists a finite subset I_0 of I such that $\{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$ covers Y and hence $\{V_{\alpha} : \alpha \in I_0\}$ covers X. Therefore (X, T) is S-closed.

Theorem 2.14. A topological space (X,T) is s-closed iff it is a γ -continuous image of a compact space.

Proof. The proof is similarl to Theorem 2.13 and thus omitted.

360

Maio and Norir [7] initiated quasi-irresolute function and established that such functions preserve *s*-sets. Here we introduce a weaker form of quasi-irresolute function which also has the same property.

Definition 2.15. ([7]) A function $f : X \to Y$ is said to be quasi-irresolute if for each $x \in X$ and each $V \in SO(f(x))$ there exists a $U \in SO(x)$ such that $f(U) \subset scl V$.

Definition 2.16. A function $f : (X, T) \to (Y, T')$ is said to be weakly quasi-irresolute if $f : (X, T_{SR}) \to (Y, T'_{SR})$ is continuous.

Theorem 2.17. Every quasi-irresolute function is weakly quasi-irresolute.

Proof. Let $f: (X,T) \to (Y,T')$ be quasi-irresolute. Then $f^{-1}(V)$ is semi-regular set in (X,T) for every $V \in SR(Y)$. But the collection of all semi-regular sets of (Y,T') is a subbase for (Y,T'_{SR}) . Hence $f: (X,T_{SR}) \to (Y,T'_{SR})$ is continuous. Therefore $f: (X,T) \to (Y,T')$ is weakly quasi-irresolute.

Remark 2.18. That the coverse of the above theorem is not necessarily true follows from the following example.

Example 2.19. Let $f : R \to R$ where R is the set of reals with the usual topology T be a function defined by

$$f(x) = \begin{cases} r_1 & \text{if } x \text{ is rational,} \\ r_2 & \text{if } x \text{ is irrational, with } r_2 > r_1 > 0. \end{cases}$$

Clearly $T_{\rm SR}$ is the discrete topology; therefore $f:(R, T_{\rm SR}) \to (R, T_{\rm SR})$ is continuous and hence f is weakly quasi-irresolute function. But f is not a quasi-irresolute function. In fact if δ be such that $0 < \delta < |(r_2 - r_1)/2|$, then the open interval $J = (r_2 - \delta, r_2 + \delta)$ is a semi-regular set in (R, T); but $f^{-1}(J)$ is the set of all irrationals of R. Hence $f^{-1}(J)$ is not even a semi-open set in R.

Hence we get an improved result of Corollary 5.1 of Maio and Noiri [7].

Theorem 2.20. If $f : (X,T) \to (Y,T')$ is weakly quasi-irresolute and K is an s-set of (X,T), then f(K) is an s-set in Y.

Proof. Let $\{U_{\alpha} : \alpha \in I\}$ be a cover of f(K) by semi-regular sets of (Y, T'). Since $f : (X,T) \to (Y,T')$ is weakly quasi-irresolute, $\{f^{-1}(U_{\alpha}) : \alpha \in I\}$ is a cover of K by open sets of (X, T_{SR}) . By Theorem 2.10, K is compact in (X, T_{SR}) . Therefore, there exists a finite subset I_0 of I such that $K \subset \cup \{f^{-1}(U_{\alpha}) : \alpha \in I_0\}$. Which implies $f(K) \subset \cup_{\alpha \in I_0} U_{\alpha}$. Therefore f(K) is an *s*-set in Y.

Corollary 2.21. If $f : (X,T) \to (Y,T')$ is weakly quasi-irresolute surjection and (X,T) is s-closed then (Y,T') is also s-closed.

Definition 2.22. ([7]) A space (X, T) is said to be weakly Hausdorff if every point of X is the intersection of regular closed sets of X.

The following theorem improves Corollary 5.2 of Maio and Noiri [7].

Theorem 2.23. Let $f : (X,T) \to (Y,T')$ be weakly quasi-irresolute, (X,T) is sclosed and (Y,T') be weakly Hausdorff. Then the image of each semi- θ -closed set [7] in X is semi- θ -closed in Y.

Proof. Let K be a semi- θ -closed set in (X, T). Then by Proposition 4.2 of Maio and Noiri [7], K is an s-set in X. By Theorem 2.20, f(K) is an s-set in Y. Therefore by Proposition 4.3 of Maio and Noiri [7], f(K) is semi- θ -closed set in (Y, T).

3. Anti-S-Closed and Anti-s-Closed Spaces

P. Bankston [1] studied topological anti-properties. Reilly & Vamanamurthy [10] extended these concepts to semi-compact spaces. In a similar fashion [10], here we introduce and characterize two new topological anti-properties under the terminology 'anti-S-closedness' and 'anti-s-closedness' along with their mutual relationships.

Definition 3.1. A topological space (X, T) is said to be anti-S-closed (resp. anti-s -closed) if only the finite subsets of (X, T) are S-sets (resp. s-sets) of (X, T).

An infinite subset A of (X, T) is said to be anti-S-closed (resp. anti-s-closed) relative to X if only the finite subsets of A are S-sets (resp. s-sets) in (X, T).

Theorem 3.2. A topological space (X,T) is anti-S-closed iff for every infinite set N of X and each point x of X, there exists a regular closed set R containing x such that $N \setminus R$ is not an S-set in (X,T).

Proof. Let the given condition hold. We have to show that (X, T) is anti-S-closed. Let N be any infinite set and let $x \in X$. Then by hypothesis, there exists a $R \in RC(x)$ such that $N \setminus R$ is not an S-set. Therefore there exists a cover \mathcal{A} of $N \setminus R$ by regular closed sets of X which has no finite subcover. So N is not an S-set in (X, T). Therefore (X, T) is anti-S-closed.

Conversely, let (X, T) be anti-S-closed space. Let N be any infinite subset of X and let x be any point of X. Then by definition of anti-S-closed space, N and hence $N \cup \{x\}$ is not an S-set. Therefore there exists a cover \mathcal{A} of $N \cup \{x\}$ by regular closed sets which has no finite subcover. Hence there exists a member $R \in \mathcal{A}$ such that $x \in R$. So $N \setminus R$ is not an S-set in (X, T).

Theorem 3.3. A topological space (X, T) is anti-s-closed iff for every infinite set N of X and each point x of X, there exists a $V \in SR(x)$ such that $N \setminus V$ is not an s-set in (X, T).

Proof. The proof is similar to that of the above theorem.

Theorem 3.4. If (X,T) is anti-S-closed then it is anti-s-closed.

362

Proof. The proof immediately follows because of the fact that every *s*-set is an *S*-set.

Remark 3.5. That the converse of the above theorem is not necessarily true follows from the following example.

Example 3.6. Let X be set of all integers with the topology T having the base $\{X, \{0\}, \{-1\}, \{-2\}, \ldots\}$. Then no infinite set of X is an s-set; if we have Z^+ , the set of positive integers, then $\{\{0, 1\}, \{0, 2\}, \{0, 3\}, \ldots\}$ is a semi-open cover of Z^+ and scl $\{0, n\} = \{0, n\}$. Then Z^+ is not an s-set. But Z^+ is an S-set; if we consider $Z - Z^+$ then $\{\{0\}, \{-1\}, \{-2\}, \ldots\}$ is a semi-open cover of $Z - Z^+$ and scl $\{-n\} = \{-n\}$. Therefore it has no finite subcover. So $Z - Z^+$ is not an s-set. If $L \subset X$ be such that it is infinite and contains finitely many points from Z^+ then again this can be shown to be a non s-set; if it contains infinitely many elements from Z^+ , the same thing happens. Thus X is anti-s-closed but not anti-S-closed.

Theorem 3.7. Any topological space (X,T) which is not S-closed (resp. not sclosed) has a proper infinite subset which is anti-S-closed (resp. anti-s-closed) relative to X.

Proof. Since (X,T) is not S-closed (resp. not s-closed), there exists, in particular, a countable cover \mathcal{A} of X by regular closed (resp. semi-regular) sets which has no finite subcover. We pick up the points $x_{m+1} \in X - \bigcup_{i=1}^{n} V_i$ (where $V_i \in \mathcal{A}$). Then the set $\{x_m, m \in N\}$, where N is the set of naturals, is a proper infinite subset of X which is not S-set (resp. s-set). Therefore every infinite subset of $\{x_m : m \in N\}$ is not an S-set (resp. s-set) in (X, T). Hence the infinite subset $\{x_m : m \in N\}$ is anti-S-closed (resp. anti-s-closed) relative to X.

Definition 3.8. A topological space (X, T) is said to be hereditarily S-closed (resp. hereditarily s-closed) if each of its subsets is S-set (resp. s-set) in (X, T).

Theorem 3.9. A topological space (X,T) is hereditarily S-closed (resp. hereditarily s-closed) iff (X,T) is anti-(anti-S-closed) [resp. anti-(anti-s-closed)].

Proof. Let (X, T) be anti-(anti-S-closed) [resp. anti-(anti-s-closed)]. If possible let (X, T) be not hereditarily S-closed (resp. hereditarily s-closed). Then there exists a subset B of X such that B is not an S-set (resp. s-set) and hence B must be infinite. Therefore by Theorem 3.7, B has an infinite subset M which is anti-S-closed (resp. anti-s-closed) relative to X-a contradiction to the definition of anti-(anti-S- closed) [resp. anti-(anti-s-closed)].

Coversely, let (X, T) be hereditarily S-closed (resp. hereditarily s-closed). If possible, let (X, T) be not anti-(anti-S-closed) [resp. anti-(anti-s-closed)]. Then by definition there exists an infinite subset V of X which is anti-S-closed (resp. anti-s-closed) relative to X. Therefore V is not an S-set (resp. s-set) in (X, T)-a contradiction.

Acknowledgements

The author gratefully acknowledges the learned referee for his constructive suggestions which improved the paper to a great extent.

References

- P. Bankston, The total negation of a topological property, Illinois J. Math. 23(1979), 241-252.
- [2] N. Biswas, On characterizations of semi-continuous functions, Atti Accad. Nat. Lincei Rend. Cl. Sci. Fis. Mat. Natur 48(1970), 399-402.
- [3] S. Ganguly and C. K. Basu, More on s-closed spaces, Soochow J. Math. 18(1992), 409-418.
- [4] M. Ganster and I. L. Reilly, A note on s-closed spaces, Indian J. Pure Appl. Math. 19(1988), 1031-1033.
- [5] J. E. Joseph and M. Kwack, On S-closed spaces, Proc. Amer. Math. Soc. 80(1980), 341-348.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70(1963), 36-41.
- [7] G. D. Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math. 18(1987), 226-233.
- [8] A. Mathur, A note on S-closed spaces, Proc. Amer. Math. Soc. 74(1979), 350-352.
- [9] T. Noiri, On S-closed spaces, Ann. Dela Soc. Sci. Sci. de Bruxelles T. 91 IV(1977), 189-194.
- [10] I. L. Reilly and M. K. Vamanamurthy, On semi-compact spaces, Bull. Malaysian Math. Soc. 2(1984), 61-67.
- [11] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc. 60(1976), 335-338.

Department of Mathematics, University of Kalyani, Kalyani, Dist.–Nadia, West Bengal, Pin–741235, India.

E-mail: cubasu@klyunivernet.in