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FIXED POINT THEOREM FOR GENERALIZED SET-VALUED

CONTRACTIONS ON PARTIAL METRIC SPACES

MOSTEFA DJEDIDI, ABDELOUAHAB MANSOUR AND KHADRA NACHI

Abstract. In this paper, a new version of Ekeland’s variational principle on partial metric

spaces is given. Using this variational principle, we establish a general result on the ex-

istence of a fixed point for a class of genralized set-valued contractions on partial metric

spaces, other results are also given.

1. Introduction and preliminaries

Over the last decades, fixed point theory has shown to be a very powerful tool in the study

of nonlinear phenomena. In particular, fixed point techniques have been developed in pure

and applied analysis, topology and geometry. Among the most famous results of this theory,

the Banach contraction principle [11] has been extensively studied and generalized in sev-

eral settings. The variety of concepts and methods involved corresponds to the multiplicity of

purposes. Recently, studies on the existence and uniqueness of fixed points of self-mappings

on partial metric spaces have gained momentum ([36], [49], [26]). Partial metric space have

been introduced by Mathews [28] in 1992 as a part of the study of denotational semantics of

dataflow networks (see [29, 30]). In fact, partial metric spaces play an important role in con-

structing models in the theory of computation and also to model metric spaces via domain

theory (see, [14], [15], [25], [29]).

In 1994, Mathews [29] showed that the Banach contraction principle can be generalized

to partial metric spaces in view of applications in program verification. This remarkable paper

of Mathews constructed another important bridge between the domain theory in computer

sciences and fixed point theory in mathematics (see [40]). Later on, many researchers studied

fixed point theorems in partial metric spaces, particularly Oltra-Valero [36, 2004], Rus [39,

2008], Ćirić et al. [15, 2011], Romaguera [38, 2012], Aydi et al. [4, 2012].
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Our purpose in this paper is to give a new result on the existence of a fixed point for a

class of set-valued mappings satisfying a generalized contraction condition on a partial met-

ric space. Here our method relies on the Ekeland variational principle [17, 1972] (see also,

[18, 19]) and not on the classical method Banach–Picard. With this aim, we first show that the

classical Ekeland’s variational principle can be generalized to partial metric spaces. Ekeland’s

variational principle (in short, EVP) is one of the most applicable results of nonlinear analy-

sis: it is used for problems from fixed point theory, optimization, optimal control theory, game

theory, nonlinear equations, dynamic systems, etc; see, for example, ([1]-[2], [12], [13], [17]-

[20], [23], [27], [33], [35], [47]) and the references therein. Recall that the classical statement

of Ekeland’s variational principle is as follows:

Theorem 1 ([11], [8] Theorem 2.1, [35] Theorem B). Let (X ,d ) be a metric space. Then the

following properties are equivalent:

(1) (X ,d ) is complete,

(2) Every proper, lower semicontinuous and bounded from below function f : X → R∪ {∞}

admits a d−point that is, there exists x ∈ X such that

f (x) < f (y)+d (x, y) ∀y ∈ X , y 6= x. (1)

Let us start by recalling some basic definitions and properties of partial metric spaces

which can be found in [29, 28].

Definition 2. A partial metric on a nonempty set X is a function p : X ×X →R+ such that for

all x, y, z ∈ X :

(i) x = y ⇐⇒ p(x, x) = p(x, y)= p(y, y),

(ii) p(x, x)≤ p(x, y),

(iii) p(x, y)= p(y, x),

(iv) p(x, z)≤ p(x, y)+p(y, z)−p(y, y) (triangle inequality).

A partial metric space is a pair (X , p) such that X is a nonempty set and p is a partial

metric on X (called a p−metric).

From the definition of a partial metric, p(x, x) is not necessarly zero so that p is not a

metric. But it is clear (from (ii) and (i)), that if p(x, y)= 0 then x = y.

A simple example of a partial metric space is the pair (R+, p), where p(x, y) := max(x, y)

for all x, y ∈ [0,∞). Another example is the pair (X , p) with X := {[a,b] ⊂ R : a ≤ b} and

p([a,b], [c ,d ]) := min(b,d )−min(a,c).
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Notice that for a partial metric p on X , the function dp : X ×X → [0,∞) given by

dp (x, y) := 2p(x, y)−p(x, x)−p(y, y) (2)

is a (usual) metric on X . Moreover, cp : X → R+ given by cp (x) := p(x, x) is a nonexpansive

function in the sense that for any (x, y) ∈ X 2 one has
∣

∣c(x)−c(y)
∣

∣ ≤ dp (x, y). One has a con-

verse:

Proposition 3. Given a nonexpansive function c on a metric space (X ,d ) a partial metric on X

is obtained by setting for x, y ∈ X

pd ,c (x, y) :=
1

2
[d (x, y)+c(x)+c(y)].

Moreover, the map (d ,c) 7→ pd ,c is a bijection between the set of pairs (d ,c) as above and the set

of partial metrics whose inverse is the map p 7→ (dc ,cp ).

Observe that each partial metric p on X generates a T0 topology τp on X (see [29, p.

187]) which has as a base the family of open p−balls
{

Bp (x,ε), x ∈ X ,ε> 0
}

where Bp (x,ε) :=
{

y ∈ X , p(x, y)< p(x, x)+ε
}

for all x ∈ X and ε > 0. Similarly, the closed p-ball is defined by

Bp [x,ε] :=
{

y ∈ X , p(x, y)≤ p(x, x)+ε
}

.

Definition 4. Given (X , p) a partial metric space and (xn) a sequence in X . We will say that:

(a) (xn) converges to x ∈ X and we note xn
p
→ x if

lim
n→∞

p(xn , x) = p(x, x).

(b) (xn) is a Cauchy sequence if lim
n,m→∞

p(xn , xm) exists and is finite.

(c) The partial metric space (X , p) is complete if every Cauchy sequence (xn) in X converges,

with respect to τp , to a point x ∈ X such that p(x, x)= lim
n,m→∞

p(xn , xm).

The following lemma is useful, it highlights the link between the definition above and the

standard one in metric spaces.

Lemma 5 ([29]). Let (X , p) be a partial metric space and let dp be the metric given by (2). Then

(1) (xn) is a Cauchy sequence in (X , p) if and only if (xn) is a Cauchy sequence in (X ,dp ).

(2) A partial metric space (X , p) is complete if and only if the metric space (X ,dp ) is complete.

Furthermore, limn→∞ dp (x, xn) = 0 if and only if

p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn , xm). (3)
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2. Ekeland’s variational principle on partial metric space

In this section, we establish an Ekeland’s variational principle on partial metric spaces.

From this general EVP, we give in next section, a general fixed point theorem for set-valued

mappings satisfying some contraction condition. Let us first introduce the following defini-

tion:

Definition 6. Given (X , p) a partial metric space and f : X → R∪ {+∞} a function. A point

x ∈ dom f := f −1(R) is said a p−point of f if

f (x)+p(x, x) < f (y)+p(x, y) ∀y ∈ X , y 6= x / p(y, y)= p(x, x). (4)

Note that if p := d is a metric, this definition coincides with the usual one (1). Observe

that p−points are in dom f , and that global minima of f are p−points. Indeed, consider x

is a global minima of f and y 6= x such that p(y, y) = p(x, x). Hence, p(x, y) > p(x, x) and we

obtain

f (x) ≤ f (y)< f (y)+p(x, y)−p(x, x)

that is x is a p−point of f . Observe too that if x is a dp−point of f , it is a p−point of f /2.

Let f : X → R∪ {+∞} be a function defined on a partial metric space (X , p). We will say

that f is lower semicontinuous (l.s.c.) on X if for all x and any sequence (xn) in X , one has

p(xn , x)→ p(x, x)=⇒ f (x) ≤ liminf
n→∞

f (xn). (5)

Consider now the set

S(x) :=
{

y ∈ X / p(y, y)= p(x, x) and f (y)+p(y, x)≤ f (x)+p(x, x)
}

(6)

which is nonempty (x ∈ S(x)) and let f̂ := f|S(x) the restriction of f to S(x).

Proposition 7. We have the following properties:

(1) x is a p−point of f if and only if S(x)= {x} ,

(2) If x̂ is a p−point of the restriction f̂ on S(x) then x̂ is a p−point of f on X ,

(3) If y ∈ S(x) then S(y)⊂ S(x),

(4) If f is lower semicontinuous on (X , p) then for any x, S(x) is closed in (X ,dp ) that is

∀(xn ) ⊂ S(x), lim
n→∞

dp (xn , x̄) = 0=⇒ x̄ ∈ S(x).

Proof.

(1) It is clear that if S(x) = {x} , x is a p−point of f . Conversely, consider a point y ∈ X such

that y 6= x. If p(y, y) 6= p(x, x), y ∉ S(x). Assume that p(y, y) = p(x, x) so f (x)+ p(x, x) <

f (y)+p(y, x) (by the assumption) i.e., y ∉ S(x).
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(2) Given x̂ is a p−point of f̂ on S(x) and y ∈ X , y 6= x̂ such that p(y, y) = p(x̂, x̂). Hence,

p(y, y)= p(x, x). If y ∈ S(x) then (4) is satisfied for x̂. Suppose now y ∉ S(x) and as x̂ ∈ S(x),

we get the conclusion since

f (x̂)+p(x, x̂) ≤ f (x)+p(x, x) < f (y)+p(y, x)

(3) Let y ∈ S(x) and z ∈ S(y) so p(z, z) = p(y, y)= p(x, x) and

f (z)+p(x, z) ≤ f (z)+p(x, y)+p(y, z)−p(y, y)

≤ f (y)+p(y, x)≤ f (x)+p(x, x)

that is z ∈ S(x).

(4) Assume f is lower semicontinuous and fix x in X . Consider a sequence (xn) in S(x) such

that lim
n→∞

dp (xn , x̄) = 0. Thus p(x̄, x̄) = limn→∞ p(x̄, xn) = limn→∞ p(xn , xn) = p(x, x) since

xn ∈ S(x) for all n. Moreover, using the following triangular inequality,

p(x̄, x) ≤ p(x̄, xn)+p(xn , x)−p(x, x),

we get

p(x̄, x) ≤ liminf
n→∞

p(xn , x).

In addition, by (6), we have

f (xn)+p(xn , x) ≤ f (x)+p(x, x)

and the lower semicontinuity of f leads to

f (x̄)+p(x̄, x) ≤ liminf
n→∞

( f (xn)+p(xn , x)) ≤ f (x)+p(x, x)

that is S(x) is closed. ���

We give now our main result about Ekeland’s variational principle on partial metric spaces.

Theorem 8. Let (X , p) be a complete partial metric space and let f : X → R∪ {∞} be a proper,

l.s.c. and bounded from below function. Let x0 ∈ dom f and λ > 0 be fixed. Then there exists

x̄ ∈ X such that p(x̄, x̄)= p(x0, x0) and

(1) f (x̄)− f (x0) ≤λ(p(x0, x0)−p(x̄ , x0)) ≤ 0,

(2) f (x̄)+λp(x̄, x̄) < f (y)+λp(x̄, y) for all y ∈ X , y 6= x̄ such that p(y, y) = p(x̄, x̄) that is f

admits a p−point.
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Proof. Without loss of generality we may suppose λ := 1. For x ∈ dom f define v(x) := inf
y∈S(x)

f (y) >−∞ since f is proper and bounded from below. Let x0 ∈ dom f and assume that x0 isn’t

a p−point (otherwise there is nothing to prove). There exists then x1 ∈ S(x0), x1 6= x0 such that

f (x1) ≤ v(x0)+ 1
2 . Assume that we have construct a sequence (xn) such that for any n,

xn+1 ∈ S(xn), xn+1 6= xn such that f (xn+1) ≤ v(xn)+
1

2n
. (7)

Observe first that from Proposition 7, the sequence (S(xn)) is decreasing (S(xm) ⊂ S(xn) for

m ≥ n) so for any m ≥ n, p(xm , xm) = p(xn , xn). Moreover, applying the triangular inequality,

we get for any n,

f (xn+2)+p(xn , xn+2) ≤ f (xn+2)+p(xn , xn+1)+p(xn+1, xn+2)−p(xn+1, xn+1)

≤ f (xn+1)+p(xn , xn+1)

≤ f (xn)+p(xn , xn)

so by induction, one has

f (xm)+p(xn , xm) ≤ f (xn)+p(xn , xn) (8)

for any n,m; m ≥n, or equivalently

0 ≤ p(xn , xm)−p(xn , xn) ≤ f (xn)− f (xm). (9)

Observe that (9) implies that ( f (xn)) is a decreasing sequence of real numbers and as it is

bounded from below, the sequence ( f (xn)) is convergent. Therefore,

lim
n,m→∞

(p(xn , xm)−p(xn , xn)) = 0.

Thus lim
n,m→∞

dp (xn , xm) = 2 lim
n,m→∞

(p(xn , xm)−p(xn , xn)) = 0 hence (xn) is a Cauchy sequence

in (X ,dp ) which is complete (by Lemma 5). There exists then x̄ ∈ X such that lim
n→∞

dp (xn , x̄) = 0

so from (3),

p(x̄, x̄)= lim
n→∞

p(x̄, xn) = lim
n,m→∞

p(xn , xm).

On the other hand, since S(xn+m) ⊂ S(xn) for any n, m so that the sequence (xn+m)m is in

S(xn) and satisfies lim
m→∞

dp (xn+m , x̄) = 0 for any n fixed thus x̄ ∈ S(xn) for all n (S(xn) is closed).

Particularly, x̄ ∈ S(x0) that is x̄ satisfies p(x̄, x̄) = p(x0, x0) and f (x̄)+p(x̄, x0) ≤ f (x0)+p(x0, x0).

Let us prove now that x̄ is a p−point of f . Consider a point y in S(x̄) with y 6= x̄. Then

y ∈ S(xn) ⊂ S(xn−1) for any n ≥ 1 and using (7), we get

f (y) ≤ f (y)+p(xn , y)−p(xn , xn) ≤ f (xn) ≤ v(xn−1)+
1

2n
≤ f (y)+

1

2n
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thus

0 ≤ p(xn , y)−p(xn , xn) ≤
1

2n
.

We conclude that limn→∞ p(xn , y) = p(x̄, x̄) since limn→∞ p(xn , xn) = p(x̄, x̄). As

p(x̄, y)+p(xn , xn)−p(x̄, xn) ≤ p(xn , y)≤ p(x̄, y)+p(xn , x̄)−p(x̄, x̄),

lim
n→∞

p(xn , y) = p(x̄, y). Thus p(x̄, , y) = p(x̄, x̄) = p(y, y) (y ∈ S(x̄)) and hence y = x̄ from (i) of

Definition 2. This leads that x̄ is a p−point. ���

The converse of the above theorem is as the following:

Theorem 9. A partial metric space (X , p) is complete if for every proper, lower semicontinuous

on (X , p) and bounded from below function f : X → R∪ {+∞} and for every ε > 0 there exists

xε ∈ X such that

f (xε) ≤ inf
x∈X

f (x)+ε

and

f (xε)+εp(xε, xε) ≤ f (x)+εp(x, xε) ∀x ∈ X .

Proof. Consider (xn) a Cauchy sequence on (X , p) and define a function f : X → R∪ {+∞}

such as f (x) := lim
n→∞

p(xn , x)−p(x, x) for any x ∈ X . Then f is proper, nonnegative and l.s.c.

on (X , p). Indeed, let y ∈ X and take a sequence (ym) such that lim
m→∞

p(ym , y) = p(y, y). Since

for any n and m,

p(xn , y)−p(y, y)≤ p(xn , ym)+p(ym , y)−p(ym , ym)−p(y, y)

we obtain for n →∞,

f (y) ≤ f (ym)+p(ym , y)−p(y, y)

and thus

f (y) ≤ liminf
m→∞

f (ym).

Moreover, since (xn) is a Cauchy sequence thus lim
m→∞

f (xm) = 0 by using the fact that

lim
n,m→∞

p(xn , xm)= lim
m→∞

p(xm , xm)∈R.

Hence inf
x∈X

f (x)= 0.

Given ε ∈ (0,1) fixed so by assumption there exists x̄ ∈ X such as f (x̄) ≤ ε and

f (x̄)+εp(x̄, x̄) ≤ f (x)+εp(x, x̄) ∀x ∈ X

thus

f (x̄) ≤ f (xn)+ε(p(xn , x̄)−p(x̄, x̄)).



338 MOSTEFA DJEDIDI, ABDELOUAHAB MANSOUR AND KHADRA NACHI

Taking the limit for n → ∞, we get that f (x̄) ≤ ε f (x̄) and so f (x̄) = 0 that is lim
n→∞

p(xn , x̄) =

p(x̄, x̄). We conclude that (xn) converges to x̄ and (X , p) is complete. ���

3. Fixed point of generalized contraction set-valued mappings

The existence of fixed-points for various set-valued contractive mappings had been stud-

ied by many authors under different conditions. In 1969, Nadler [32] extended the famous

Banach contraction principle from single-valued mapping to set-valued mappings. The fixed

point theory of set-valued contractions initiated by Nadler was developed in different direc-

tions by many authors, in particular, by Reich [41, 1972], Mizoguchi-Takahashi [31, 1989],

Takahashi [46, 1991], Azé-Penot [9, 2006], Feng-Liu [21, 2006], Benahmed-Azé [11, 2010].

Recently, Aydi et al. [4, 2013] introduced the concept of a partial Hausdorff metric and

extended the Nadler’s fixed point theorem on partial metric spaces using the partial Hausdorff

metric.

Our purpose now is to establish a fixed point theorem on partial metric spaces using our

previous version of the Ekeland’s variational principle. We obtain then a new generalization

of Aydi’s result [4] and Benahmed’s result [11].

Let us recall the partial Hausdorff metric on a partial metric space (X ,d ). Given A,B two

nonempty subsets of X , the partial excess of A on B is defined as

ep (A,B ) := sup(p(x,B ), x ∈ A)

where p(x,B ) := inf(p(x, y), y ∈ B ). It is proved in [4], that ep satisfies the following properties:

ep (A, A) = sup
a∈A

p(a, a),

ep (A, A) ≤ ep (A,B ),

ep (A,B ) = 0 =⇒ A ⊆ B ,

ep (A,B ) ≤ ep (A,C )+ep (C ,B )− inf
c∈C

p(c ,c)

for any A,B ,C ∈ C B p (X ) where C B p (X ) is the family of all nonempty, closed and bounded

subsets of the partial metric space (X , p). Note that closedness is with respect to the partial

metric p : A is closed on (X ,τp ) if Ā = A, and boundedness is given as follows: A is a bounded

subset in (X , p) if there exists a ball Bp (x0,r ) such that A ⊂ Bp (x0,r ) that is p(x0, a) < p(a, a)+r

for any a ∈ A.

Consider now the partial Hausdorff metric of A and B defined in [4] which is given by

hp (A,B ) := max(ep (A,B ),ep (B , A))

for any A,B ∈C B p (X ).
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The next result is the generalized Banach contraction theorem given recently by Aydi et

al. [4]:

Theorem 10. Let (X , p) be a complete partial metric space and let k ∈ [0,1). If T : X →C B p (X )

is a set-valued mapping such that for all x, y ∈ X , we have

hp (T x,T y)≤ k p(x, y)

then T has a fixed point that is there exists x ∈ X such that x ∈ T x.

Let us introduce the following generalized contraction property of set valued mapping

on partial metric spaces: given a set-valued mapping T : X â X with nonempty values, we

will say that T is a p−generalized contraction if there exist θ,κ ∈ (0,1) so that for any x ∈ X

such that p(x,T x)> p(x, x) there exists y ∈ T x with y 6= x and p(y, y)= p(x, x) which satisfies















(i ) κp(x, y)+ (1−κ)p(x, x) < p(x,T x) ≤ p(x, y)

(i i ) p(y,T y)≤ θp(x, y)+ (1−θ)p(x, x).

(10)

When we consider the partial metric as a metric in (10), we recover as a particular case the

notion of generalized set-valued contraction mappings introduced by Benahmed-Azé [11].

Let us denote by FT := {x ∈ X : x ∈ T x} the fixed points set of T and observe that when

each value of T is closed with respect to the topology τp one has

FT :=
{

x ∈ X : p(x,T x)= p(x, x)
}

(11)

since we have the equivalence (see [4, Remark 2.1])

a ∈ Ā ⇐⇒ p(a, A) = p(a, a) (12)

for any nonempty set A ⊂ X .

Our first statement is to show that every set-valued mapping T : X â X which is a

p−generalized contraction satisfies an approximate fixed point property (see [16]) that is

inf
x∈X

(p(x,T x)−p(x, x)) = 0

or equivalently, for any ε> 0 there exists xε ∈ X such that

p(xε,T xε) < p(xε, xε)+ε.

Remark that p(x, x) ≤ p(x,T x) since p(x, x)≤ p(x, y) for any x, y ∈ X .
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Proposition 11. Let (X , p) be a partial metric space and T : X â X a p−generalized contraction

set valued mapping with closed values and such that θ< κ. Then inf
x∈X

(p(x,T x)−p(x, x)) = 0.

Proof. Given x0 ∈ X such that p(x0,T x0) > p(x0, x0). From (10), we can pick x1 ∈ T (x0), x1 6= x0

and p(x1, x1) = p(x0, x0) so that














κp(x0, x1)+ (1−κ)p(x0, x0) < p(x0,T x0)

p(x1,T x1) ≤ θp(x0, x1)+ (1−θ)p(x0, x0).

Note that p(x1, x1) ≤ p(x1,T x1). If p(x1,T x1) = p(x1, x1), we get the conclusion of the lemma.

Assume now that p(x1,T (x1)) > p(x1, x1) and suppose we have constructed a finite sequence

(xi )i=0,..,n such that for all i ∈ {0, . . . ,n} , p(xi ,T xi ) > p(xi , xi ) and for i ∈ {0, . . . ,n −1}, xi+1 ∈ T xi

(xi+1 6= xi , p(xi+1, xi+1) = p(xi , xi )) with














κp(xi , xi+1)+ (1−κ)p(xi , xi ) < p(xi ,T xi )

p(xi+1,T xi+1) ≤ θp(xi , xi+1)+ (1−θ)p(xi , xi ).

(13)

Applying assumption (10), one can find xn+1 ∈ T xn such that xn+1 6= xn , p(xn+1, xn+1) =

p(xn , xn) and














κp(xn , xn+1)+ (1−κ)p(xn , xn) < p(xn ,T xn)

p(xn+1,T xn+1) ≤ θp(xn , xn+1)+ (1−θ)p(xn , xn).

(14)

If p(xn+1,T xn+1)= p(xn+1, xn+1) then inf
x∈X

(d (x,T x)−p(x, x)) = 0.

Suppose p(xn+1,T xn+1) > p(xn+1, xn+1). By induction, either the process stops if there

exists k ∈N
∗ such that p(xk ,T xk ) = p(xk , xk ) or we construct a sequence (xn) satisfying p(xn ,

T xn)> p(xn , xn) and (14) for all n. Let us setδn := p(xn ,T xn)−p(xn , xn) andµn := p(xn , xn+1)−

p(xn , xn). Observe that 0 ≤ δn ≤µn since xn+1 ∈ T xn . Moreover, as θ < κ, we get from (13) and

(14) and the fact that p(xn , xn) = p(xn+1, xn+1),

δn+1 ≤ θ(p(xn , xn+1)−p(xn , xn))

≤ κ(p(xn , xn+1)−p(xn , xn)) ≤δn

and

µn < κ−1(p(xn ,T xn)−p(xn , xn))

≤ θκ−1(p(xn , xn−1)−p(xn−1, xn−1)) ≤µn−1 (15)

so that (δn ) and (µn) are nonnegative decreasing sequences in R. Hence (δn) and (µn) con-

verge to some real number δ̄ and µ̄ respectively which satisfy 0 ≤ δ̄≤ µ̄. If δ̄> 0 it yields, from

the following inequalities,

δn+1 ≤ θ(p(xn , xn+1)−p(xn , xn)) ≤
θ

κ
κ(p(xn , xn+1)−p(xn , xn))
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≤ c(p(xn ,T xn)−p(xn , xn)) ≤ cδn

the contradiction δ̄≤ cδ̄< δ̄ since c =
θ

κ
< 1. We conclude that lim

n→∞
(p(xn ,T xn)−p(xn , xn)) = 0

and thus the announced result follows.

Let us remark that from (15), lim
n→∞

(p(xn , xn+1)−p(xn , xn)) = 0. ���

The next result is devoted to the existence of fixed points for generalized contraction on

partial space.

Theorem 12. Given a complete partial metric space (X , p) and let T : X â X be a set-valued

map with closed and nonempty values. Assume that:

(i) T is a p−generalized contraction with 0< θ < κ< 1,

(ii) the function x → p(x,T x)−p(x, x) is lower semicontinuous.

Then FT 6=∅ and for any x ∈ X such that p(x,T x)> p(x, x),

(κ−θ)p(x,FT ) ≤ p(x,T x)− (1− (κ−θ))p(x, x).

Proof. Define f : X →R as f (x) := (κ−θ)−1(p(x,T x)−p(x, x)) which is nonnegative and lower

semicontinuous (by assumption (ii)). Hence by Theorem 8, f admits a p−point denoted by x̄.

Otherwise, for any x ∈ X such that p(x,T x) > p(x, x), there exists from assumption (i), y ∈ T x

(with y 6= x and p(y, y)= p(x, x)) such that















κp(x, y)+ (1−κ)p(x, x) ≤ p(x,T x)

p(y,T y)≤ θp(x, y)+ (1−θ)p(x, x).

Hence

p(y,T y)+ (κ−θ)p(x, y)≤ p(x,T x)+ (κ−θ)p(x, x)

or equivalently,

f (y)+p(x, y) ≤ f (x)+p(x, x).

We conclude that any x such that p(x,T x) > p(x, x) isn’t a p−point of f thus d (x̄,T x̄) ≤

p(x̄, x̄). Because d (x̄, x̄) ≤ p(x̄,T x̄), we obtain that p(x̄,T x̄) = p(x̄, x̄) and from (12, 11), FT 6=

∅. In the same way, any p−point y of f in S(x) (which exists by Theorem 8) with

p(x,T (x))> p(x, x) is such as y ∈FT and satisfies

p(x, y)≤ f (y)+p(x, y)≤ f (x)+p(x, x)
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thus

(κ−θ)p(x,FT )≤ p(x,T x)− (1− (κ−θ))p(x, x)

and the theorem is proved. ���

Note that the assumption (ii) is satisfied whenever one has

p(x, y)→ p(x, x)=⇒ ep (T y,T x)→ 0

since

p(x,T x)−p(x, x) ≤ p(x, y)+p(y,T x)−p(y, y)−p(x, x)

≤ [p(x, y)−p(x, x)]+ [p(y,T y)−p(y, y)]+ep(T y,T x)

by using the fact that

p(y,T x)≤ p(y,T y)+ep(T y,T x)− inf
z∈T y

p(z, z)≤ p(y,T y)+ep(T y,T x).

Remark 13. Notice that the previous theorems can be generalized for set-valued mappings

T satisfying the following p−generalized contraction condition: for any x ∈ X such that px :=

p(x,T x)−p(x, x) > 0 there exists y ∈ T x with y 6= x and p(y, y)= p(x, x) so that















(i ) κ(px )p(x, y)+ (1−κ(px ))p(x, x) < p(x,T x) ≤ p(x, y)

(i i ) p(y,T y)≤ θ(p(x, y))p(x, y)+ (1−θ(p(x, y)))p(x, x)

where κ(·) : (0,+∞) → [κ̄,1] with κ̄ ∈ (0,1] is a nonincreasing function and θ(·) : (0,+∞) → [0,1)

such as θ(·) < κ(·) and limsup
t↓s

θ(t )/κ(t )< 1 for any s > 0.
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