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ENTIRE SOLUTION ORIGINATING FROM THREE FRONTS

FOR A DISCRETE DIFFUSIVE EQUATION

YAN-YU CHEN

Abstract. In this paper, we study a discrete diffusive equation with a bistable nonlinearity.

For this equation, there are three types of traveling fronts. By constructing some suitable

pairs of super-sub-solutions, we show that there are only two types of entire solutions

originating from three fronts of this equation. These results show us some new dynamics

of this discrete diffusive equation.

1. Introduction

In this work, we study the following discrete diffusive equation

ut (x, t )= d (u(x +1, t )+u(x −1, t )−2u(x, t ))+ f (u(x, t )), x ∈R, t ∈R, (1.1)

where the function f (u)∈C 2(R) satisfies

f (0) = f (1) = 0, f ′(0), f ′(1) < 0, (1.2)

f (a)= 0, f ′(a)> 0, a ∈ (0,1), f (u) 6= 0 for u ∈ (0, a)∪ (a,1), (1.3)
∫1

0
f (s)d s > 0. (1.4)

Here, d is a positive constant. By (1.2)-(1.3), u = 0 and u = 1 are stable and u = a is unstable

for the equation (1.1) when d = 0.

The equation (1.1) is the continuum version of the following lattice dynamical system

u̇ j (t )= d (u j+1(t )+u j−1(t )−2u j (t ))+ f (u j (t )), j ∈Z, t ∈R. (1.5)

where the dot denotes the derivative with respect to t . This system was studied extensively

in past years. One of the main concerns is the existence of the traveling wave solution. A
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solution {u j (t )} of (1.5) is called a traveling wave solution if u j (t ) =U ( j + ct ), j ∈Z, t ∈ R, for

some function U ∈ C 2(R) and some constant c . Here U is the wave profile and c is the wave

speed. Moreover, if a traveling wave solution connects two different constant states, we call it

traveling front. In [16, 17], Zinner showed there is a d∗ > 0 such that there exists a unique (up

to translations) traveling front of (1.5) connecting 0 and 1 with positive speed if d > d∗. For d

small, the non-existence of the traveling wave connecting 0 and 1 was shown by Keener [11].

Now we denote the wave profile and the wave speed of the traveling front connecting 0 and 1

by U0 and c0 > 0, respectively. Set ξ= j +c0t . Then U0(ξ) satisfies

c0 U ′
0(ξ) = d [U0(ξ+1)+U0(ξ−1)−2U0(ξ)]+ f (U0(ξ)), U ′

0(ξ) > 0, ξ ∈R,

U0(−∞) = 0, U0(∞) = 1.

On the other hand, from the results shown in [1, 2], there exists a c1,max < 0 such that there

exists a traveling front U1( j + c1t ) of (1.5) connecting 0 and a for each c1 ≤ c1,max . By setting

ξ= j +c1t , U1(ξ) satisfies

c1 U ′
1(ξ) = d [U1(ξ+1)+U1(ξ−1)−2U1(ξ)]+ f (U1(ξ)), U ′

1(ξ) > 0, ξ ∈R,

U1(−∞) = 0, U1(∞) = a.

Similarly, there exists a c2,mi n > 0 such that there exists a traveling front U2( j + c2t ) of (1.5)

connecting a and 1 for each c2 ≥ c2,mi n . For ξ= j +c2t , U2(ξ) satisfies

c2 U ′
2(ξ) = d [U2(ξ+1)+U2(ξ−1)−2U2(ξ)]+ f (U2(ξ)), U ′

2(ξ) > 0, ξ ∈R,

U2(−∞) = a, U2(∞) = 1.

For (1.1), the traveling front u(x, t ) with the speed c exists if u(x, t )=U (x +ct ) for some func-

tion U ∈ C 2(R) and it connects two different constant states. Now we set ξ := x + ct and sub-

stitute U (ξ) into (1.1). Then U (ξ) is the solution of the following equation

c U ′(ξ) = d [U (ξ+1)+U (ξ−1)−2U (ξ)]+ f (U (ξ)), ξ ∈R,

U (−∞) =α, U (∞) =ω.

where {α,ω} ⊂ {0, a,1} andα 6=ω. From the results shown in the above, (1.1) has three traveling

fronts u(x, t )=U0(x +c0t ), U1(x +c1t ), U2(x +c2t ).

A classical solution u(x, t ) of (1.1) defined for all (x, t ) ∈ R
2 is called an entire solution of

(1.1). Obviously, the traveling front is an entire solution. In past years, the other types of entire

solutions were studied in the following reaction-diffusion equation

ut = uxx + f (u), x ∈R, t ∈R. (1.6)
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Indeed, the equation (1.1) is the discrete version of (1.6). From the results shown in [15, 5, 7,

10, 12], there are entire solutions which behave as two traveling fronts of (1.6) on the left x-axis

and right x-axis as t →−∞. We call this type of entire solution by entire solution originating

from two fronts. In [7], Guo and Morita proved the existence of the entire solution originating

from two fronts for the discrete KPP equation. Later on, under some conditions of the wave

speed, there are three types of the entire solution originating from two fronts shown in [9].

More precisely, they behave as (i) U0(−x +c0t ) and U0(x +c0t ), (ii) U1(x +c1t ) and U2(x +c2t )

and (iii) U0(−x +c0t ) and U1(x +c1t ) on the left x-axis and right x-axis as t →−∞. According

to these two works, all types of the entire solution originating from two fronts of (1.1) were

studied. For the entir e solution originating from two fronts of the other discrete diffusive

equation or lattice dynamical system, we refer the readers to [6, 8, 14, 13].

In this work, we would like to show the existence of the entire solution originating from

three fronts of (1.1). Here, we define this type of entire solution as follows.

Definition 1.1. Let (φi , vi ), i = 1,2,3 be the traveling fronts of (1.1). If the entire solution

u(x, t ) of (1.1) satisfies

limsup
t→−∞

{
∑

1≤i≤3

sup
di−1(t )<x<di (t )

|u(x, t )−φi (x +vi t +θi )|

}
= 0 (1.7)

where

v1 < v2 < v3, (1.8)

θ1, θ2, θ3 are some constants, di (t ) := −(vi + vi+1)t /2, d0(t ) = −∞ and d3(t ) =∞, it is called

the entire solution originating from three fronts of (1.1).

By (1.8), the continuity of entire solutions and the symmetry with respect to reflection,

there are only two possible types of the entire solution originating from three fronts of (1.1).

We state them in the following two main theorems.

Theorem 1.1. Consider (φ1(ξ), v1) = (U0(−ξ),−c0), (φi (ξ), vi ) = (Ui−1(ξ),ci−1), i = 2,3 where

(Ui ,ci ), i = 0,1,2 are the traveling fronts described as above. If

v1 < v2, (1.9)

then there exists an entire solution originating from three fronts of (1.1).

Theorem 1.2. Consider (φ1(ξ), v1) = (U0(−ξ),−c0), (φ2(ξ), v2) = (U1(ξ),c1), (φ3(ξ), v3) =

(U1(−ξ),−c1), where (Ui ,ci ), i = 0,1 are the traveling fronts described as above. If

v1 < v2,
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then there exists an entire solution originating from three fronts of (1.1). Moreover,

lim
t→∞

sup
x∈R

|u(x, t )−φ1(x +v1t +θ)| = 0 (1.10)

holds for some constant θ.

To show these two theorems, since the comparison principle can be applied, we only

need to construct a suitable pair of super-solution and sub-solution. In the study of the en-

tire solution originating from two fronts of (1.6), Morita and Ninomiya find some auxiliary

rational functions with certain properties to help them to construct super-sub-solutions (see

[12]). In [9], this method was used to prove some types of entire solution originating from two

fronts of (1.1). Therefore, we would like to apply it to obtain Theorem 1.1 and Theorem 1.2.

In fact, for (1.6), we already obtained the same results as Theorem 1.1 in [4]. Hence, we follow

the ideas used in [9] and [4] to prove Theorem 1.1. Similarly, Theorem 1.2 can be shown by

using a different auxiliary rational function to construct a suitable pair of super-sub-solution.

The remainder of this paper is organized as follows. We first show the proof of Theo-

rem 1.1 in §2. In §3, we prove Theorem 1.2.

2. The Proof of Theorem 1.1

Without loss of generality, we assume that d = 1. Recall that (φ1(ξ), v1) = (U0(−ξ),−c0),

(φi (ξ), vi ) = (Ui−1(ξ),ci−1), i = 2,3. We know that

{
D[φi ](ξ)−viφ

′
i
(ξ)+ f (φi (ξ)) = 0, ξ ∈R,

φi (−∞) =αi , φi (∞) =ωi ,
(2.1)

where (α1,ω1,α2,ω2,α3,ω3) = (1,0,0, a, a,1) and D[φi ](ξ) =φi (ξ+1)+φi (ξ−1)−2φi (ξ). From

the results shown in [3], there are positive constants βi ,γi , i = 1,2,3, and K > 0 such that

{
|φ′

i
(ξ)| ≤ K exp(βiξ), ξ≤ 0,

|φ′
i
(ξ)| ≤ K exp(−γiξ), ξ≥ 0.

(2.2)

Also, there are constants m, M > 0 such that





m ≤
|φ1(ξ)−1|

|φ′
1(ξ)|

≤ M , ξ≤ 1, m ≤
|φ1(ξ)−0|

|φ′
1(ξ)|

≤ M , ξ≥−1,

m ≤
|φ2(ξ)−0|

|φ′
2(ξ)|

≤ M , ξ≤ 1, m ≤
|φ2(ξ)−a|

|φ′
2(ξ)|

≤ M , ξ≥−1,

m ≤
|φ3(ξ)−a|

|φ′
3(ξ)|

≤ M , ξ≤ 1, m ≤
|φ3(ξ)−1|

|φ′
3(ξ)|

≤ M , ξ≥−1.

(2.3)

Furthermore, we have the following lemma.
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Lemma 2.1. There exists a positive constant M̃ = (Me1/m)/m such that

|φ′
i (ξ+θ)| ≤ M̃ |φ′

i (ξ)|, i = 1,2,3 (2.4)

holds for all ξ ∈R, θ ∈ [−1,1].

Proof. For i = 1, given an arbitrary θ0 ∈ [−1,1], we have

∣∣∣∣
φ′

1(ξ+θ0)

φ′
1(ξ)

∣∣∣∣ =
∣∣∣∣

φ′
1(ξ+θ0)

1−φ1(ξ+θ0)

∣∣∣∣ ·
1−φ1(ξ+θ0)

1−φ1(ξ)
·

∣∣∣∣
1−φ1(ξ)

φ′
1(ξ)

∣∣∣∣

≤
1

m
exp

(
−

∫ξ+θ0

ξ

φ′
1(ζ)

1−φ1(ζ)
dζ

)
M ≤ M̃

for ξ≤ 0 by (2.3). For ξ≥ 0, by (2.3), we obtain

∣∣∣∣
φ′

1(ξ+θ0)

φ′
1(ξ)

∣∣∣∣ =
∣∣∣∣
φ′

1(ξ+θ0)

φ1(ξ+θ0)

∣∣∣∣ ·
φ1(ξ+θ0)

φ1(ξ)
·

∣∣∣∣
φ1(ξ)

φ′
1(ξ)

∣∣∣∣

≤
1

m
exp

(∫ξ+θ0

ξ

φ′
1(ζ)

φ1(ζ)
dζ

)
M ≤ M̃ .

Thus, (2.4) holds for i = 1.

By the similar argument as above, the proof of the other cases can be done. Therefore, we

get the conclusion. ���

Now we consider the solution u(x, t )=U (η, t ) of (1.1) with η := x+vt and v := (v1+v2)/2.

Then U (η, t ) satisfies the following equation

Ut (η, t ) = D[U ](η, t )−vUη(η, t )+ f (U (η, t )), (η, t ) ∈R
2. (2.5)

where D[U ](η, t ) := U (η+1, t )+U (η−1, t )−2U (η, t ). Obviously, U (η, t ) = φ1(η− s1t ),φ2(η+

s1t ),φ3(η+ s2t ) with s1 = (v2 −v1)/2 > 0 and s2 = v3−v > s1 are traveling fronts of (2.5).

Now we start to construct a pair of super-sub-solution of (2.5) by using the ideas in [4].

We first take the auxiliary rational function Q(y, z, w ) as follows.

Q(y, z, w )= z + (1− z)
(1− y)z(w −a)+ y(a − z)(1−w )

(1− y)z(1−a)+ (a − z)(1−w )
. (2.6)

Then we define the functions U (η, t ) and U (η, t ) by

U (η, t ) :=Q(φ1(η−p1(t )),φ2(η+p1(t )),φ3(η+p2(t ))), (2.7)

U (η, t ) :=Q(φ1(η− r1(t )),φ2(η+ r1(t )),φ3(η+ r2(t ))). (2.8)

The functions pi (t ), ri (t ), i = 1,2 are the solutions of the following initial value problems

ṗ1 = s1 +Leκp1 , −∞< t < 0, p1(0) = p0; (2.9)
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ṗ2 = s2 +Leκp1 , −∞< t < 0, p2(0) = p0; (2.10)

ṙ1 = s1 −Leκr1 , −∞< t < 0, r1(0) = r0; (2.11)

ṙ2 = s2 −Leκr1 , −∞< t < 0, r2(0) = r0, (2.12)

where L > 2Kρ is a positive constant,

κ := min

{
γ1,γ2,β2,β3,

(s2 − s1)γ2

4s1
,

(s2 − s1)β3

4s1

}
.

and p0 and r0 satisfying

p0 =−
1

κ
log

(
e−κr0 −

2L

s1

)
<−δ, r0 <−

1

κ
log

(
2L

s1
+eκδ

)
.

Here, δ is a given sufficiently large positive constant and ρ is a positive constant to be deter-

mined later. Also, there exists a positive constant N such that

0 < p1(t )− r1(t ) = p2(t )− r2(t )≤ Neκs1t for all t ≤ 0, (2.13)

and p1(t ), p2(t ),r1(t ),r2(t ) ≤−δ for all t ≤ 0.

Set

L [U ] :=Ut −D[U ]+vUη− f (U ).

Then U is a super-solution (sub-solution, resp.) of (2.5) for t ≤ T with some constant T if

L [U ] ≥ 0 (L [U ] ≤ 0, resp.) holds for t ≤ T for some constant T . Now, we claim that U (η, t )

is a super-solution of (2.5) for t ≤ t0 with some constant t0 < 0. To simplify the notation, we

define

p1 = p1(t ), p2 = p2(t ),

U (η, t )=Q(φ1,φ2,φ3), φ1 =φ1(η−p1), φ2 =φ2(η+p1), φ3 =φ3(η+p2),

φ̃1
′
(τ) =φ′

1(η−p1 +τ), φ̃2
′
(τ) =φ′

2(η+p1 +τ), φ̃3
′
(τ) =φ′

3(η+p2 +τ),

Q̃y y (η1,η2,η3) = Qy y (φ1(η−p1 +η1),φ2(η+p1 +η2),φ3(η+p2 +η3)),

Q̃zz (η1,η2,η3) = Qzz (φ1(η−p1 +η1),φ2(η+p1 +η2),φ3(η+p2 +η3)),

Q̃w w (η1,η2,η3) = Qw w (φ1(η−p1 +η1),φ2(η+p1 +η2),φ3(η+p2 +η3)),

Q̃y z (η1,η2,η3) = Qy z (φ1(η−p1 +η1),φ2(η+p1 +η2),φ3(η+p2 +η3)),

Q̃y w (η1,η2,η3) = Qy w (φ1(η−p1 +η1),φ2(η+p1 +η2),φ3(η+p2 +η3)),

Q̃zw (η1,η2,η3) = Qzw (φ1(η−p1 +η1),φ2(η+p1 +η2),φ3(η+p2 +η3)).

Then, by using (2.9), (2.10) and the mean value theorem, we obtain that

L [U (η, t )] = −Qyφ
′
1(ṗ1 − s1)+Qzφ

′
2(ṗ1 − s1)+Qwφ′

3(ṗ2 − s2)−G(φ1,φ2,φ3)−H (φ1,φ2,φ3)
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= F (φ1,φ2,φ3) ·Leκp1 −G(φ1,φ2,φ3)−H (φ1,φ2,φ3)

where

F (φ1,φ2,φ3) :=−Qy (φ1,φ2,φ3)φ′
1 +Qz (φ1,φ2,φ3)φ′

2 +Qw (φ1,φ2,φ3)φ′
3,

G(φ1,φ2,φ3)

:= σ1Q̃y y (a11σ1, a12σ2, a13σ3)φ̃1
′
(b11σ1)φ̃1

′
(d1)

+σ2Q̃y z (a11σ1, a12σ2, a13σ3)φ̃2
′
(b12σ2)φ̃1

′
(d1)

+σ3Q̃y w (a11σ1, a12σ2, a13σ3)φ̃3
′
(b13σ3)φ̃1

′
(d1)

+σ1Q̃y z (a21σ1, a22σ2, a23σ3)φ̃1
′
(b21σ1)φ̃2

′
(d2)

+σ2Q̃zz (a21σ1, a22σ2, a23σ3)φ̃2
′
(b22σ2)φ̃2

′
(d2)

+σ3Q̃zw (a21σ1, a22σ2, a23σ3)φ̃3
′
(b23σ3)φ̃2

′
(d2)

+σ1Q̃y w (a31σ1, a32σ2, a33σ3)φ̃1
′
(b31σ1)φ̃3

′
(d3)

+σ2Q̃zw (a32σ2, a32σ2, a33σ3)φ̃2
′
(b33σ3)φ̃3

′
(d3)

+σ3Q̃w w (a31σ1, a32σ2, a33σ3)φ̃3
′
(b33σ1)φ̃3

′
(d3)

+τ1Q̃y y (−a41τ1,−a42τ2,−a43τ3)φ̃1
′
(−b41τ1)φ̃1

′
(−d4)

+τ2Q̃y z (−a41τ1,−a42τ2,−a43τ3)φ̃2
′
(−b42τ2)φ̃1

′
(−d4)

+τ3Q̃y w (−a41τ1,−a42τ2,−a43τ3)φ̃3
′
(−b43τ3)φ̃1

′
(−d4)

+τ1Q̃y z (−a51τ1,−a52τ2,−a53τ3)φ̃1
′
(−b51τ1)φ̃2

′
(−d5)

+τ2Q̃zz (−a51τ1,−a52τ2,−a53τ3)φ̃2
′
(−b52τ2)φ̃2

′
(−d5)

+τ3Q̃zw (−a51τ1,−a52τ2,−a53τ3)φ̃3
′
(−b53τ3)φ̃2

′
(−d5)

+τ1Q̃y w (−a61τ1,−a62τ2,−a63τ3)φ̃1
′
(−b61τ1)φ̃3

′
(−d6)

+τ2Q̃zw (−a61τ1,−a62τ2,−a63τ3)φ̃2
′
(−b62τ2)φ̃3

′
(−d6)

+τ3Q̃w w (−a61τ1,−a62τ2,−a63τ3)φ̃3
′
(−b63τ3)φ̃3

′
(−d6),

H (φ1,φ2,φ3) := f (Q)−Qy f (φ1)−Qz f (φ2)−Qw f (φ3).

for constants ai j ,bi j ,di ,σ j ,τ j ∈ [0,1], i = 1, · · · ,6, j = 1,2,3.

From [4], we have the following lemmas.

Lemma 2.2 ([4], (iii) of Lemma 2.1). There exist functions R j , j = 1, · · · ,16, such that

Qy y (y, z, w ) = zR1(y, z, w )= (a − z)R2(y, z, w )= (1−w )R3(y, z, w ),

Qzz (y, z, w ) = (1− y)R4(y, z, w )= (1−w )R5(y, z, w )

= yR6(y, z, w )+ (w −a)R7(y, z, w ),

Qw w (y, z, w ) = (1− y)R8(y, z, w )= zR9(y, z, w )= (a − z)R10(y, z, w ),
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Qy z (y, z, w ) = (1−w )R11(y, z, w ), Qzw (y, z, w )= (1− y)R12(y, z, w ),

Qy w (y, z, w ) = (1− y)R13(y, z, w )= zR14(y, z, w )

= (a − z)R15(y, z, w )= (1−w )R16(y, z, w ).

Lemma 2.3 ([4], Lemma 2.2). There exist positive constants ǫ1, ǫ2 and ǫ3 such that

Qy (φ1(η−p1),φ2(η+p1),φ3(η+p2)) ≥ ǫ1 for η≤−p1,

Qz (φ1(η−p1),φ2(η+p1),φ3(η+p2)) ≥ ǫ2 for p1 ≤ η≤−p2,

Qw (φ1(η−p1),φ2(η+p1),φ3(η+p2)) ≥ ǫ3 for η≥−p1.

Lemma 2.4 ([4], Lemma 2.3). The following statements hold.

F (φ1,φ2,φ3) > 0 for η ∈R,

F (φ1,φ2,φ3) ≥
1

2
Qy |φ

′
1(η−p1)| for η≤ p1,

F (φ1,φ2,φ3) ≥
1

2

[
Qy |φ

′
1(η−p1)|+Qz |φ

′
2(η+p1)|

]
for p1 ≤ η≤−p1,

F (φ1,φ2,φ3) ≥
1

2

[
Qz |φ

′
2(η+p1)|+Qw |φ′

3(η+p2)|
]

for −p1 ≤ η≤−p2,

F (φ1,φ2,φ3) ≥
1

2
Qw |φ′

3(η+p2)| for η≥−p2,

Since the proof of Lemma 2.2-2.4 are the same as in [4], we omit them here. Also, for any

η1,η2,η3 ∈ [−1,1], we know that there exists a positive constant C such that

|R̃ j (η1,η2,η3)| ≤C , (2.14)

for η ∈R, j = 1, · · · ,16 where

R̃ j (η1,η2,η3) := R j (φ1(η−p1 +η1),φ2(η+p1 +η2),φ3(η+p2 +η3)).

By using the results shown in the above, we obtain the following key lemma.

Lemma 2.5 ([4], Lemma 2.4). There is a positive constant ρ such that

∣∣∣∣
H (φ1,φ2,φ3)+G(φ1,φ2,φ3)

F (φ1,φ2,φ3)

∣∣∣∣≤





ρ(|φ′
2|+ |φ′

3|) for η≤ 0,

ρ(|φ′
1|+ |φ′

3|) for 0 ≤ η≤−
p1 +p2

2
,

ρ(|φ′
1|+ |φ′

2|) for η≥−
p1 +p2

2
.

(2.15)

Proof. For the estimation of |H (φ1,φ2,φ3)/F (φ1,φ2,φ3)|, since the proof is the same as in the

proof of [4, Lemma 2.4], we do not repeat it here. Thus, we only estimate

|G(φ1,φ2,φ3)/F (φ1,φ2,φ3)|.
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To simplify the notation, we omit (φ1,φ2,φ3) for the functions G(φ1,φ2,φ3), F (φ1,φ2,φ3) and

so on.

For η≤ p1, we have F ≥ ǫ1|φ
′
1|/2 by Lemma 2.3 and Lemma 2.4. Then, for any η1,η2,η3 ∈

[−1,1], we derive

|Q̃y y (η1,η2,η3)| = |φ2(η+p1 +η2)||R̃1(η1,η2,η3)| ≤C |φ2(η+p1 +η2)|

≤ C M |φ′
2(η2)| ≤C M M̃ |φ′

2|

by Lemma 2.1, Lemma 2.2 and (2.3). Similarly, we have

|Q̃zz (η1,η2,η3)|, |Q̃w w (η1,η2,η3)|, |Q̃zw (η1,η2,η3)| ≤C M M̃ |φ′
1|,

|Q̃y z (η1,η2,η3)|, |Q̃y w (η1,η2,η3)| ≤C ,

for any η1,η2,η3 ∈ [−1,1]. Therefore, we obtain

∣∣∣∣
G

F

∣∣∣∣ ≤ 4

[
C M M̃ 3|φ′

2||φ
′
1|

2 +C M M̃ 3|φ′
1||φ

′
2|

2 +C M M̃ 3|φ′
1||φ

′
3|

2

ǫ1|φ
′
1|

]

+8

[
C M̃ 2|φ′

1||φ
′
2|+C M̃ 2|φ′

1||φ
′
3|+C M M̃ 3|φ′

1||φ
′
2||φ

′
3|

ǫ1|φ
′
1|

]

=
4C M̃ 2

ǫ1
[M M̃K |φ′

2|+M M̃K |φ′
2|+M M̃K |φ′

3|+2|φ′
2|+2|φ′

3|+2M M̃K |φ′
2|]

Similarly, we can show the estimation of |G/F | for η≥ p1 and we get the conclusion. ���

By the choice of κ, p1, p2, (2.2) and Lemma 2.5, there exist a t0 < 0 such that

|H (φ1,φ2,φ3)+G(φ1,φ2,φ3)| ≤ F (φ1,φ2,φ3) ·2Kρeκp1 .

for all t ≤ t0. Since

L [U (η, t )] = F (φ1,φ2,φ3) ·Leκp1 −G(φ1,φ2,φ3)−H (φ1,φ2,φ3)

≥ F (φ1,φ2,φ3)(L−2Kρ)eκp1 ≥ 0

for t ≤ t0, U (η, t ) is a super-solution of (2.5) for t ≤ t0.

By using the similar argument as above, U (η, t ) is a sub-solution of (2.5) for t ≤ t0. More-

over, by (2.13), Lemma 2.4, the function F is bounded above and

U (η, t )−U (η, t ) = Q(φ1(η−p1(t )),φ2(η+p1(t )),φ3(η+p2(t )))

−Q(φ1(η− r1(t )),φ2(η+ r1(t )),φ3(η+ r2(t )))

=

∫1

0
F (φ1(η−θp1 − (1−θ)r1),φ2(η+θp1 + (1−θ)r1),
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φ3(η+θp2 + (1−θ)r2))dθ · (p1 − r1),

we have

U (η, t ) ≥U (η, t ) for η ∈R, t ≤ t0, (2.16)

sup
η∈R

{U (η, t )−U (η, t )} ≤µeκs1t for t ≤ t0, (2.17)

for some constant µ> 0.

By using the same method as in [5, 7], there exists an unique entire solution u(x, t ) of (1.1)

such that

U (x +v t , t )≤ u(x, t )≤U (x +v t , t )

for all x ∈ R and t ≤ t0 where the functions U and U are defined as (2.7) and (2.8). Then we

take

θ1 =
1

κ
log

(
e−κr0 −

L

s1

)
, θ2 = θ3 =−θ1,

and the entire solution u(x, t ) of (1.1) shown in the above satisfies (1.7) (see [4, Theorem 3.3]).

The proof of Theorem 1.1 has been completed.

3. The Proof of Theorem 1.2

First, we consider the auxiliary rational function Q(y, z, w ) as follows.

Q(y, z, w )= z +
(1− y)z(a −w )(−z)+ y(a − z)w (1− z)

(1− y)za + (a − z)w
.

Then we take the functions pi (t ), ri (t ), i = 1,2 are the solutions of the following initial value

problems

ṗ1 = s1 +Leκp1 , −∞< t < 0, p1(0) = p0,

ṙ1 = s1 −Leκr1 , −∞< t < 0, r1(0) = r0,

ṗ2 = s2 −Leκp1 , −∞< t < 0, p2(0) = r0,

ṙ2 = s2 +Leκr1 , −∞< t < 0, r2(0) = p0,

where p0,r0 are the same as in §2, L > 2Kρ is a positive constant and

κ := min

{
γ1,γ2,β2,β3,

(s2 − s1)γ2

4s1
,

(s2 − s1)β3

4s1

}
.
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Define the functions u(x, t ) and u(x, t ) as follows.

u(x, t ) =Q(φ1(x +v t −p1(t )),φ2(x +v t +p1(t )),φ3(x +v t +p2(t )))

u(x, t ) =Q(φ1(x +v t − r1(t )),φ2(x +vt + r1(t )),φ3(x +v t + r2(t ))).

By the similar argument as in §2, the functions u(x, t ) and u(x, t ) are a pair of super-sub-

solution of (1.1) for t ≤ t0 with some constant t0 < 0. Hence, the existence and uniqueness of

the entire solution u(x, t ) of (1.1) can be shown and u(x, t ) satisfies

u(x, t )≤ u(x, t )≤ u(x, t )

for all x ∈R and t ≤ t0. Moreover, it is not difficult to check the entire solution u(x, t ) satisfies

(1.7) by using the similar argument as in [4, Theorem 3.3] and taking

θ1 =−θ2 :=
1

κ
log

(
e−κr0 −

L

s1

)
, θ3 :=

1

κ
log

(
e−κr0 −

L

s1

)
+p0 + r0.

Finally, (1.10) holds from the result shown in [16, Theorem 1.1]. Therefore, the proof of Theo-

rem 1.2 has been done.
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