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INVERSE PROBLEMS FOR DIFFERENTIAL OPERATORS

WITH NONSEPARATED BOUNDARY CONDITIONS

IN THE CENTRAL SYMMETRIC CASE

VJACHESLAV YURKO

Abstract. Inverse spectral problems for Sturm-Liouville operators on a finite interval with

non-separated boundary conditions are studied in the central symmetric case, when the

potential is symmetric with respect to the middle of the interval. We discuss statements of

the problems, provide algorithms for their solutions along with necessary and sufficient

conditions for the solvability of the inverse problems considered.

1. Introduction

We study inverse spectral problems for the Sturm-Liouville operator

ℓy := y ′′
+q(x)y, x ∈ (0,π),

on the finite interval (0,π) with non-separated boundary conditions. Inverse problems con-

sist in recovering coefficients of differential operators from their spectral characteristics. Such

problems often appear in mathematics, mechanics, physics, geophysics, electronics and other

branches of natural sciences and engineering. Inverse problems also play an important role

in solving nonlinear evolution equations in mathematical physics. Inverse problems for dif-

ferential operators with separated boundary conditions have been studied fairly completely

by many authors (see the monographs [1]−[5] and the references therein). Inverse problems

for Sturm-Liouville operators with non-separated boundary conditions, which are more diffi-

cult for the investigation, were treated in [6]−[17] and other works. In particular, the periodic

boundary value problem was considered in [6, 7, 9, 14]. Stankevich [6] suggested a state-

ment of the inverse problem and proved the corresponding uniqueness theorem. Marchenko

and Ostrovskii [7] gave the characterization of the spectrum for the periodic boundary value

problem in terms of a special conformal mapping. Conditions considered in [7] are difficult
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to verify. Another method, used in [9], allowed to obtain necessary and sufficient conditions

for the solvability of the inverse problem for the periodic case that are easier to verify. Similar

results were obtained in [9] for another type of boundary conditions, namely

y ′(0)−a y(0)+by(π) = y ′(π)+d y(π)−by(0)= 0.

Later analogous results were established in [12, 13].

In this paper we study the case when the potential q is symmetric with respect to the

middle of the interval, i.e. q(x) = q(π− x) a.e. on (0,π). The symmetric case requires non-

trivial modifications in the method and allows us to specify less spectral information than

in the general case. Some results for the symmetric case were obtained in [10] and [17]. In

the present paper for the symmetric case we construct the solution of the inverse spectral

problem and give the characterization of the spectrum for various non-separated boundary

conditions. For convenience of readers in Section 2 we describe briefly the known results for

the general (non-symmetric) case.

2. Periodic boundary value problem

Consider the differential equation

−y ′′
+q(x)y =λy, x ∈ (0,π), (1)

where λ is the spectral parameter, and q(x) ∈ L2(0,T ) is a real-valued function. The function

q(x) is called the potential. Let C (x,λ),S(x,λ) and ψ(x,λ) be solutions of Eq. (1) with the

initial conditions C (0,λ) = S ′(0,λ) = −ψ′(π,λ) = 1, C ′(0,λ) = S(0,λ) = ψ(π,λ) = 0. For each

fixed x, the functions C (ν)(x,λ),S(ν)(x,λ) and ψ(ν)(x,λ),ν = 0,1, are entire in λ of order 1/2.

Moreover,

〈C (x,λ),S(x,λ)〉 ≡ 1, (2)

where 〈y, z〉 := y z ′− y ′z is the Wronskian of y and z. Denote

∆(λ) = (C (π,λ)+S ′(π,λ))/2, δ(λ) = (C (π,λ)−S ′(π,λ))/2, p(λ)= 1−∆(λ).

Zeros Λ = {λn}n≥0 of the entire function p(λ) coincide with the eigenvalues of the boundary

value problem (BVP) L = L(q) for Eq. (1) with periodic boundary conditions

y(0)− y(π) = y ′(0)− y ′(π) = 0.

The function p(λ) is called the characteristic function for L. For convenience of readers we

describe briefly the well-known results related to the BVP L (see [6, 7, 9] for details).
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(1) All eigenvalues λn are real, and

λ0 <λ1 ≤λ2 <λ3 ≤λ4 < . . . , (3)

λ2n = (2n)2
+α+κ2n , λ2n−1 = (2n)2

+α+κ2n−1, {κn} ∈ l2, (4)

where α =
1
π

∫π
0 q(t )d t . Here and everywhere below one and the same symbol {κn} de-

notes various sequences from l2. The specification of Λ uniquely determines the charac-

teristic function p(λ) by the formula

p(λ) =
π2

2
(λ−λ0)

∞
∏

n=1

λ2n −λ

(2n)2

∞
∏

n=1

λ2n−1 −λ

(2n)2
. (5)

Moreover,

max
λ∈[λ2n ,λ2n+1]

p(λ) ≥ 2, n ≥ 0. (6)

(2) Let Λ+ = {λ+
n }n≥1 be zeros of the entire function p+(λ) := p(λ)−2. Then {λ+

n }n≥0 are real

and

λ0 <λ+
1 ≤λ+

2 <λ1 ≤λ2 <λ+
3 ≤λ+

4 <λ3 ≤λ4 . . . , (7)

λ+
2n = (2n −1)2

+α+κ2n , λ+
2n−1 = (2n −1)2

+α+κ2n−1, {κn} ∈ l2. (8)

Denote a2n = [λ2n−1,λ2n], a2n−1 = [λ+
2n−1,λ+

2n], n ≥ 1. Segments an are called the gaps.

(3) Denote d (λ) := 〈ψ(x,λ),S(x,λ)〉 = S(π,λ) = ψ(0,λ). Then zeros γ = {γn}n≥1 of the entire

function d (λ) coincide with the eigenvalues of the BVP L0 = L0(q) for Eq. (1) with Dirichlet

boundary conditions y(0) = y(π)= 0. The numbers γn are real, γn ∈ an , and

γ1 < γ2 < γ3 < ·· · ; γn = n2
+α+κn , {κn} ∈ l2. (9)

The specification of γ uniquely determines the characteristic function d (λ) of L0 by the

formula

d (λ) =π
∞
∏

n=1

γn −λ

n2
. (10)

The numbers αn :=
∫π

0 S2(x,γn)d x are called the weight numbers, and numbers

{γn ,αn }n≥1 are called the spectral data for the BVP L0. One has

αn = ḋ (γn)S ′(π,γn), ḋ (λ) :=
d

dλ
d (λ), (11)

αn > 0; αn =
π

2n2

(

1+
κn

n

)

, {κn} ∈ l2, (12)

ḋ (γn) =
(−1)nπ

2n2

(

1+
κn

n

)

, {κn} ∈ l2, sign ḋ(γn) = (−1)n . (13)

The functions S(x,γn) and ψ(x,γn) are eigenfunctions for L0, and

ψ(x,γn) =βnS(x,γn), βn 6= 0. (14)
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Lemma 1. The following relation holds

αnβn =−ḋ (γn). (15)

Proof. Since

−ψ′′(x,λ)+q(x)ψ(x,λ) =λψ(x,λ), −S ′′(x,γn)+q(x)S(x,γn) =γnS(x,γn),

we get
d

d x
〈ψ(x,λ),S(x,γn)〉 = (λ−γn)ψ(x,λ)S(x,γn),

and hence,

(λ−γn )

∫π

0
ψ(x,λ)S(x,γn)d x = 〈ψ(x,λ),S(x,γn)〉

∣

∣

∣

π

0
=−d (λ).

For λ→λn , this yields
∫π

0
ψ(x,γn)S(x,γn)d x =−ḋ (γn).

Using (14) we arrive at (15). ���

The inverse problem for the BVP L0 is formulated as follows.

Inverse problem 1. Given the spectral data {γn ,αn}n≥1, construct the potential q.

This inverse problem is related to the case of separated boundary conditions. It is known

that the specification of the spectral data {γn ,αn}n≥1 uniquely determines the potential q.

The global solution of Inverse problem 1 can be constructed by the transformation operator

method or by the method of spectral mappings (see [1]−[5] for details). In particular, these

methods allow one to describe necessary and sufficient conditions for the solvability of In-

verse problem 1 which are presented in the next theorem.

Theorem 1. For real numbers {γn ,αn }n≥1 to be the spectral data for a certain BVP L0 with a

real potential q(x)∈ L2(0,π), it is necessary and sufficient that (9) and (12) hold.

Let us now return to the periodic BVP L. It follows from (2) that

∆
2(λ)−δ2(λ)−d (λ)d1(λ) ≡ 1, (16)

where d1(λ) :=C ′(π,λ). In particular, (16) yields

δ2(γn) =∆
2(γn)−1. (17)

Denote Ω= {ωn }n≥1, ωn = signδ(γn). The sequence Ω is called the Ω- sequence for q. In view

of (17) one has

δ(γn ) =ωn(∆2(γn)−1)1/2, (18)
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Since S ′(π,γn) =∆(γn)−δ(γn ), it follows from (11) and (18) that

αn = ḋ(γn)(∆(γn)−ωn (∆2(γn)−1)1/2). (19)

The inverse problem for the periodic case is formulated as follows [6].

Inverse problem 2. Given Λ,γ and Ω, construct the potential q.

This inverse problem was studied in [6, 7, 9, 14] and other works. It was proved in [6] that

the specification of Λ,γ and Ω uniquely determines the potential q. In order to construct q

one can calculate the functions p(λ) and d (λ) according to (5) and (10), and construct {αn }n≥1

via (19), where ∆(λ) = 1−p(λ). Then using data {γn ,αn}n≥1, we can construct the potential q

by solving Inverse problem 1.

Lemma 2. Fix n ≥ 1. Relation δ(γn) = 0 holds iff γn lies at one of the endpoints of the gap an .

Indeed, in view of (17), δ(γn) = 0, iff ∆(γn) =±1, i.e. γn lies at one of the endpoints of the

gap an .

Denote by J the set of sequences Ω = {ωn }n≥1 such that ωn = 0 if γn lies at one of the

endpoints of the gap an , and ωn =±1, otherwise. Clearly, if Ω is the Ω- sequence for L, then

Ω ∈ J . The next theorem [9] establishes necessary and sufficient conditions for the solvability

of Inverse problem 2.

Theorem 2 ([9]). Let real numbers Λ = {λn}n≥0 satisfying (3)−(4) be given. The sequence Λ is

the spectrum for a certain BVP L with a real potential q(x)∈ L2(0,π), iff relation (6) holds, where

p(λ) is constructed via (5). Moreover, if additionally we have a sequence γ = {γn}n≥1, γn ∈ an ,

satisfying (9), whereΛ+ = {λ+
n }n≥1 are zeros of p+(λ) = p(λ)−2, and a sequenceΩ= {ωn }n≥1 ∈ J ,

then there exists a unique real function q(x) ∈ L2(0,π) such that Λ and γ are the spectra of L

and L0, respectively, and Ω is the Ω- sequence for L.

The next theorem [9] shows that one of the endpoints of each gap can be chosen arbitrary

taking only asymptotics into account.

Theorem 3 ([9]). Let real numbers θn of the form θn = n2 +α+κn , {κn} ∈ l2, θn < θn+1, be

given. Then there exists a real function q(x)∈ L2(0,π) (not unique!) such that for this potential

the number θn lies at one of the endpoints of the gap an for all n ≥ 1.

3. Central symmetric case.

In this section we consider the case when the potential q is symmetric with respect to

the middle of the interval, i.e. with respect to the replacement x → π− x. We will say that

q(x)∈ L′
2(0,π) if q(x) ∈ L2(0,π) and q(x)= q(π−x) a.e. on (0,π).



382 V. YURKO

Theorem 4. q(x)∈ L′
2(0,π) iff βn = (−1)n−1, n ≥ 1.

Proof.

(1) Let q(x)∈ L′
2(0,π). Then ψ(x,λ) ≡ S(π−x,λ). Using (14) we calculate

ψ(x,γn) =βnS(x,γn)=βnψ(π−x,γn)=β2
nS(π−x,γn) =β2

nψ(x,γn).

Hence, β2
n = 1. On the other hand, it follows from (14) that βnS ′(π,γn) =−1. Using Sturm’s

oscillation theorem we conclude that βn = (−1)n−1, n ≥ 1.

(2) Let βn = (−1)n−1, n ≥ 1. Denote q̃(x) := q(π−x). We agree that here and below, if a certain

symbol θ denotes an object related to q, then θ̃ will denote the analogous object related

to q̃.

Obviously, ψ̃(x,λ) ≡ S(π− x,λ), S̃(x,λ) ≡ψ(π− x,λ), and consequently, d (λ) ≡ d̃ (λ) and

γn = γ̃n , n ≥ 1. Since βn = (−1)n−1, it follows from (14) that ψ(x,γn) = (−1)n−1S(x,γn). More-

over, according to (14), ψ̃(x,γn) = β̃n S̃(x,γn), hence S(π− x,γn) = β̃nψ(π− x,γn), i.e. β̃n =

(βn)−1 = (−1)n−1. Thus, βn = β̃n for all n ≥ 1. Taking (15) into account we conclude that

αn = α̃n for all n ≥ 1. Since the specification of the spectral data {γn ,αn }n≥1 uniquely de-

termines the potential, we obtain that q(x)= q̃(x) a.e. on (0,π), i.e. q(x) ∈ L′
2(0,π). ���

Let us consider the inverse problem for the BVP L0. In the central symmetric case q(x) ∈

L′
2(0,π) we do not need to specify the weight numbers {αn }n≥1; it is sufficient to specify only

the spectrum γ.

Inverse problem 3. Given the spectrum γ= {γn}n≥1, construct the potential q.

It is known [1]−[5] that for the central symmetric case the specification of the spectrum

γ = {γn}n≥1 of the BVP L0 uniquely determines the potential q. In order to construct q, one

can calculate d (λ) via (10) and the weight numbers αn = (−1)n ḋ (γn), and then find q by solv-

ing Inverse problem 1. Moreover, the characterization of the spectrum of L0 is given by the

following assertion.

Theorem 5. For real numbers {γn}n≥1 to be the spectrum of a BVP L0 with a real potential

q(x) ∈ L′
2(0,π), it is necessary and sufficient that (9) holds.

Proof. The necessity is obvious. We will prove the sufficiency. Let real numbers {γn}n≥1 sat-

isfying (9) be given. We construct d (λ) via (10) and the numbers {αn }n≥1 by αn = (−1)n ḋ (γn).

Our plan is to use Theorem 1. For this purpose we should obtain the asymptotics for

the numbers αn . This seems to be difficult because the function d (λ) is by construction

the infinite product. But fortunately, for calculating the asymptotics of αn one can also use
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Theorem 1, as an auxiliary assertion. Indeed, by virtue of Theorem 1 there exists a poten-

tial q̃(x) ∈ L2(0,π) (not unique) such that γ = {γn}n≥1 is the spectrum of L̃0 := L0(q̃) with this

potential. Then d (λ) is the characteristic function of L̃0, and consequently, (13) holds. There-

fore, (12) is valid. Then, by Theorem 1 there exists a unique potential q(x)∈ L2(0,π) such that

{γn , αn}n≥1 are the spectral data of L0(q). Since βn = (−1)n−1, n ≥ 1, it follows from Theorem

4 that q(x)∈ L′
2(0,π). ���

Theorem 6 ([9]). q(x)∈ L′
2(0,π) iff γn lies at one of the endpoints of the gap an for all n ≥ 1.

Proof.

(1) Let q(x) = q(π− x) a.e. on (0,π). Using Lemma 4 from [8] we get C (π,λ) ≡ S ′(π,λ), i.e.

δ(λ) ≡ 0. By Lemma 2 we conclude that γn lies at one of the endpoints of the gap an for all

n ≥ 1.

(2) Let γn lie at one of the endpoints of the gap an for all n ≥ 1. By Lemma 1 one has δ(γn ) = 0

for all n ≥ 1. Then the function F (λ) := δ(λ)/d (λ) is entire in λ, and it vanishes at infinity.

This means that F (λ) ≡ 0, and consequently, C (π,λ) ≡ S ′(π,λ). Using Lemma 4 from [8]

we get q(x)= q(π−x) a.e. on (0,π). ���

We will write an ∈ I0, if the length of the gap an is equal to zero, and an ∈ I1, otherwise.

Let us now consider the inverse problem for the periodic BVP L. In the general case in In-

verse problem 2 we have to specify Λ, γ and Ω. In the central symmetric case we do not need

γ. On the other hand, the sequence Ω = {ωn }n≥1 does not bring any information because

in the central symmetric case ωn = 0 for all n ≥ 1. Unfortunately, in contrast to the sepa-

rated boundary conditions, for the periodic case the specification of the spectrum Λ does not

uniquely determine the potential q, and we need additional information. For this purpose we

introduce the sequence E = {ξn }n≥1, where ξn = 0 if an ∈ I0, ξn = 1, if an ∈ I1 and γn lies at the

right endpoint of an , ξn = −1, if an ∈ I1 and γn lies at the left endpoint of an . The sequence

E = {ξn}n≥1 is called the E- sequence for the potential q(x) ∈ L′
2(0,π). The inverse problem for

the periodic BVP L in the central symmetric case is formulated as follows.

Inverse problem 4. Given Λ and E , construct q.

Theorem 7 ([9]). Let q(x) ∈ L′
2(0,π). Then the specification of Λ and E uniquely determines the

potential q. The solution of Inverse problem 1 can be found by the following algorithm.

Algorithm 1. Given Λ and E .

(1) Construct p(λ) by (5).

(2) Calculate the functions ∆(λ) = 1−p(λ) and p+(λ) = p(λ)−2.
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(3) Find zeros Λ+ = {λ+
n }n≥1 of p+(λ).

(4) Construct γ= {γn}n≥1 as follows: γn lies at the right endpoint of an if ξn = 1; γn lies at the

left endpoint of an if ξn =−1, and γn = an if ξn = 0.

(5) Using {γn} construct the potential q(x) ∈ L′
2(0,π) by solving Inverse problem 3.

Denote by J1 the set of sequences E = {ξn}n≥1 such that ξn = 0 if an ∈ I0, and ξn = ±1 if

an ∈ I1. Clearly, if E is the E- sequence for q, then E ∈ J1. The next theorem [9] establishes

necessary and sufficient conditions for the solvability of Inverse problem 4.

Theorem 8 ([9]). Let real numbers Λ = {λn }n≥0 satisfying (3)−(4) be given. The sequence Λ

is the spectrum for a certain BVP L with a real potential q(x) ∈ L′
2(0,π), iff relation (6) holds,

where p(λ) is constructed via (5). Moreover, if additionally we have a sequence E = {ξn }n≥1 ∈ J1,

then there exists a unique real function q(x) ∈ L′
2(0,π) such that Λ is the spectrum of L, and E

is the E- sequence for q.

Proof. The necessity is obvious. We will prove the sufficiency. Let real numbers Λ = {λn }n≥0

satisfying (3)−(4) be given. We construct the function p(λ) by (5), and calculate the functions

∆(λ) = 1−p(λ) and p+(λ) = p(λ)−2. Let (6) holds. Then there exist zeros Λ
+ = {λ+

n }n≥1 of the

function p+(λ), and (7) holds. Using (5) by similar arguments as in the proof of Theorem 5

(see also [4]) one gets

p(λ) = 1−cosρπ−a
sinρπ

ρ
−
κ(ρ)

ρ
, (20)

where κ(ρ)∈ L2(−∞,∞) for real ρ. Since p+(λ) = p(λ)−2, it follows from (20) that (8) is valid.

Let a sequence E = {ξn}n≥1 ∈ J1 be given. We introduce real numbers γ = {γn}n≥1 as follows:

γn lies at the right endpoint of an if ξn = 1; γn lies at the left endpoint of an if ξn =−1; γn = an

if ξn = 0. Clearly, (9) is valid. We construct the function d (λ) by (10), and the sequence {αn }n≥1

via

αn = ḋ(γn)∆(γn), n ≥ 1. (21)

Since ∆(λ) = 1−p(λ), it follows from (20) that

∆(λ) = cosρπ+a
sinρπ

ρ
+
κ(ρ)

ρ
.

Together with (9) this yields

∆(γn)= (−1)n
(

1+
κn

n

)

, {κn} ∈ l2. (22)

Moreover, (13) is valid. It follows from (13), (21) and (22) that (12) holds. It is easy to check

that

sign ḋ (γn)= (−1)n , sign∆(γn)= (−1)n . (23)



INVERSE PROBLEMS FOR DIFFERENTIAL OPERATORS 385

In view of (21) and (23) we conclude that αn > 0, n ≥ 1. By Theorem 1 we infer that there exists

a unique real potential q(x)∈ L2(0,π) such that {γn ,αn }n≥1 are the spectral data for the BVP L0

for this potential. We construct solutions C (x,λ),S(x,λ) for Eq. (1) with this potential. Denote

∆̃(λ) = (C (π,λ)+S ′(π,λ))/2, p̃(λ) = 1− ∆̃(λ), p̃+(λ) = p̃(λ)−2.

Using (10) and (21) we get

∆(γn) = ∆̃(γn), n ≥ 1.

Then the function F0(λ) := (∆(λ)− ∆̃(λ))/d (λ) is entire in λ, and it vanishes at infinity. This

yields F0(λ) ≡ 0, i.e. ∆(λ) ≡ ∆̃(λ), and consequently, p(λ) ≡ p̃(λ), p+(λ) ≡ p̃+(λ). In particular,

this means that the sequence Λ = {λn}n≥0 coincides with the spectrum of the BVP L for the

potential q. Since γn lies at one of the endpoints of the gap an for all n ≥ 1, it follows from

Theorem 6 that q(x) ∈ L′
2(0,π). Now it is clear that E is the E- sequence for q. ���

Similar results are valid for other non-separated boundary conditions. For convenience

of readers and for completeness of the presentation, we formulate here briefly the main re-

sults from [10] related to the boundary conditions

y ′(0)−a y(0)+by(π) = y ′(π)+a y(π)−by(0)= 0. (24)

We consider the BVP B for the differential equation

−y ′′
+q(x)y =λy, x ∈ (0,π), q(x)∈ L′

2(0,π), (25)

with the non-separated boundary conditions (24), where a and b are real numbers, b 6= 0.

Let θ(x,λ) be the solution of Eq. (25) under the initial conditions θ(0,λ) = 1, θ′(0,λ) = a.

Eigenvalues µ= {µn}n≥0 of the BVP B coincide with zeros of the entire function

r (λ) =−θ′(π,λ)−aθ(π,λ)+b2S(π,λ)+2b.

The eigenvalues µn are real, and

µn <µn+2, µn = n2
+π−1(h + (−1)n+14b)+κn , {κn} ∈ l2, (26)

where h = 4a +
∫π

0 q(t )d t . The specification of the spectrum µ uniquely determines the char-

acteristic function r (λ) via

r (λ) =π(λ−µ0)
∞
∏

n=1

µn −λ

n2
. (27)

Moreover,

max
λ∈Qn

|r (λ)| ≥ |4b|, (28)
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where Qn = [µ2n ,µ2n+1] if b > 0, and Qn = [µ2n−1,µ2n] if b < 0. Let ν= {νn}n≥0 be zeros of the

entire function θ(π,λ). Denote ηn = sign (|θ′(π,νn)|− |b|). The sequence η = {ηn }n≥0 is called

the η- sequence for B. The inverse problem is formulated as follows

Inverse problem 5. Given µ and η, construct q, a and b.

The next theorem gives us the characterization of the spectrum of the BVP B.

Theorem 9. For real numbers {µn}n≥0 (µn ≤µn+1) to be the eigenvalues of a certain BVP B with

real potential q(x)∈ L′
2(0,π), it is necessary and sufficient that (26) and (28) hold, where r (λ) is

constructed by (27).

Denote by J ′ the set of sequences η= {ηn}n≥0 such that

(i) ηn = ±1 if the corresponding zeros of the functions r (λ) and r (λ)− 4b are simple, and

ηn = 0 otherwise;

(ii) there exists N (depending on the sequence) such that ηn = 1 for all n > N .

Clearly, if η is the η- sequence for B , then η ∈ J ′. The next theorem gives us necessary and

sufficient conditions for the solvability of Inverse problem 5.

Theorem 10. Let real numbers {µn}n≥0 (µn ≤ µn+1) satisfying (26) and (28) be given, where

r (λ) is constructed by (27). Then for each sequence η ∈ J ′ there exists a unique real function

q(x) ∈ L′
2(0,π) and real numbers a and b such that µ = {µn}n≥0 is the spectrum of B , and η is

the η- sequence for B.

We note that in [17] stability of the solution of the inverse problem for the BVP B is es-

tablished. Some other results related to the inverse problem theory for the Sturm-liouville

operators can be found in [18]−[20] and other works.
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