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CERTAIN RESULTS ON N (k)-CONTACT METRIC MANIFOLDS

UDAY CHAND DE

Abstract. In the present paper we study contact metric manifolds whose characteris-

tic vector field ξ belonging to the k-nullity distribution. First we consider concircularly

pseudosymmetric N (k)-contact metric manifolds of dimension (2n + 1). Beside these,
we consider Ricci solitons and gradient Ricci solitons on three dimensional N (k)-contact

metric manifolds. As a consequence we obtain several results. Finally, an example is
given.

1. Introduction

In 1982, R. S. Hamilton [31] introduced the notion of Ricci flow to find a canonical metric

on a smooth manifold. The Ricci flow is an evolution equation for metrics on a Riemannian

manifold defined as follows:

∂

∂t
gi j =−2Ri j . (1.1)

A Ricci soliton is a generalization of an Einstein metric. We recall the notion of Ricci

soliton according to [14]. On the manifold M , a Ricci soliton is a triple (g ,V ,λ) with g , a

Riemannian metric, V a vector field, called potential vector field and λ a real scalar such that

$V g +2S +2λg = 0, (1.2)

where $ is the Lie derivative. Ricci solitons are special solutions of the Ricci flow equation

(1.1) of the form gi j = σ(t )ψ∗
t gi j with the initial condition gi j (0) = gi j , where ψt are diffeo-

morphism of M and σ(t ) is the scaling function.

Metrics satisfying (1.2) are interesting and useful in physics and are often referred as

quasi-Einstein ([16],[17]). Compact Ricci solitons are the fixed points of the Ricci flow ∂
∂t

g =
−2S projected from the space of metrics onto its quotient modulo diffeomorphisms and scal-

ings, and often arise blow-up limits for the Ricci flow on compact manifolds. Theoretical
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physicists have also been looking into the equation of Ricci soliton in relation with string

theory. The initial contribution in this direction is due to Friedan [30] who discusses some

aspects of it.

The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative,

zero and positive. If the vector field V is the gradient of a potential function − f , then g is

called a gradient Ricci soliton and equation (1.2) takes the form

∇∇ f = S +λg , (1.3)

where ∇ denotes the Riemannian connection.

A Ricci soliton on a compact manifold has constant curvature in dimension 2 (Hamilton

[31]), and also in dimension 3 (Ivey [33]). For details we refer to Chow and Knoff [22]. We also

recall the following significant result of Perelman [38]: A Ricci soliton on a compact manifold

is a gradient Ricci soliton.

Since the last two decades, the geometry of Ricci solitons has been the focus of attention

of many mathematicians. In particular, it has become more important after Grigory Perelman

solved the Poincare conjecture. An Einstein manifold is a trivial example of a gradient Ricci

soliton with constant potential function and therefore it is called a trivial Ricci soliton. There

exist many non-trivial examples of Ricci solitons which is compact as well as non-compact

([22], [33], [34]).

There are two aspects of the study of Ricci solitons, one looking at the influence on the

topology by the Ricci soliton structure of the Riemannian manifold ([27],[46]) and the other

looking at its influence on its geometry ([28], [29]).

On the other hand, the roots of contact geometry lie in differential equations as in 1872

Sophus Lie introduced the notion of contact transformation as a geometric tool to study sys-

tems of differential equations. This subject has manifold connections with the other fields

of pure mathematics and substantial applications in applied areas such as mechanics, optic,

phase space of dynamical system, thermodynamics and control theory.

Recently in [14] C. Calin and M. Crasmareanu have studied Ricci solitons in f -Kenmotsu

manifolds. Also in [1] Bejan et al. studied Ricci solitons in manifolds with quasi-constant cur-

vature. Also Ghosh et al. [32] studied gradient Ricci soliton in (k ,µ)-contact metric manifolds.

Ricci soliton have been studied by several authors such as ([18], [19], [20], [21]) and many

others.

Let (M , g ) be a Riemannian manifold and let ∇ be the Levi-Civita connection of (M , g ).

A Riemannian manifold is called locally symmetric [7] if ∇R = 0, where R is the Riemannian

curvature tensor of (M , g ). A Riemannian manifold M is called semisymmetric if

R ·R = 0 (1.4)
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holds, where R denotes the curvature tensor of the manifold. It is well known that the class

of semisymmetric manifolds includes the set of locally symmetric manifolds (∇R = 0) as a

proper subset. Semisymmetric Riemannian manifolds were first studied by E. Cartan, A. Lich-

nerowich, R. S. Couty and N. S. Sinjukov. A fundamental study on Riemannian semisymmetric

manifolds was made by Z. I. Szabó [39], E. Boeckx et al [5] and O. Kowalski [13]. A Riemannian

manifold M is said to be Ricci semisymmetric if on M we have

R ·S = 0, (1.5)

where S is the Ricci tensor.

The class of Ricci-semisymmetric manifolds includes the set of Ricci symmetric mani-

folds (∇S = 0) as a proper subset. Ricci-semisymmetric manifolds were investigated by sev-

eral authors. We define the subsets UR , US of a Riemannian manifold M by UR = {x ∈ M :

R− κ
(n−1)n

G 6= 0 at x} and US = {x ∈ M : S− κ
n

g 6= 0 at x} respectively, where G(X ,Y )Z =
g (Y , Z )X − g (X , Z )Y and κ is the scalar curvature. Evidently we have US ⊂UR . A Riemannian

manifold is said to be pseudo-symmetric [41] if at every point of M the tensor R ·R and Q(g ,R)

are linearly dependent. This is equivalent to

R ·R = fRQ(g ,R)

on UR , where fR is some function on UR . Clearly, every semi-symmetric manifold is pseudo-

symmetric but the converse is not true [41].

A Riemannian manifold M is said to Ricci pseudo-symmetric if R ·S and Q(g ,S) on M are

linearly dependent. This is equivalent to

R ·S = fSQ(g ,S)

holds on US , where fS is a function defined on US .

In [4] Blair et al. studied N (k)-contact metric manifolds satisfying the curvature condi-

tions Z̃ · Z̃ = 0, Z̃ ·R = 0 and R · Z̃ = 0, where Z̃ is the concircular curvature tensor defined ([43],

[44])by

Z̃ (X ,Y )W = R(X ,Y )W −
r

2n(2n +1)
[g (Y ,W )X − g (X ,W )Y ], (1.6)

where X ,Y ,W ∈ T M and r is the scalar curvature. Recently, De et al. [8] studied N (k)-contact

metric manifolds satisfying the curvature conditions P ·R = 0, P ·S = 0 and P ·P = 0.

The purpose of this paper is to generalize a result of Blair [4] in a (2n +1)-dimensional

N (k)-contact metric manifold. Further we characterize three dimensional N (k)-contact met-

ric manifold admitting Ricci soliton and gradient Ricci soliton.

The present paper is organized as follows:
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After preliminaries in section 3, we consider concircularly pseudosymmetric N (k)-contact

metric manifolds of dimension (2n +1). In Section 4 we study Ricci solitons on three dimen-

sional N (k)-contact metric manifolds. Section 5 deals with gradient Ricci solitons on three

dimensional N (k)-contact metric manifolds. Finally, an example is given.

2. Preliminaries

A contact manifold is by definition an odd dimensional manifold M 2n+1 equipped with a

global 1-form satisfying η∧ (dη)n 6= 0 everywhere. It is well-known that there exists a unique

vector field ξ, the characteristic vector field for which η(ξ) = 1 and iξdη= 0. Further, one can

find an associated Riemannian metric g and a vector field φ of type (1,1) such that

η(X ) = g (X ,ξ),dη(X ,Y )= g (X ,φY ),φ2 X =−X +η(X )ξ (2.1)

where X and Y are vector fields on M . From (2.1) it follows that

φξ= 0,η◦φ= 0, g (φX ,φY ) = g (X ,Y )−η(X )η(Y ). (2.2)

The manifold M 2n+1 together with the structure tensor (η,ξ,φ, g ) is called a contact metric

manifold ([2], [3]).

Given a contact metric manifold (M ,η,ξ,φ, g ), we define a symmetric (1,1)-tensor field h

as h = 1
2 Lξφ, where Lξφ denotes Lie differentiation in the direction of ξ. We have the following

identities:

hξ= 0, hφ+φh = 0, (2.3)

∇X ξ=−φX −φhX , (2.4)

∇ξφ= 0, (2.5)

R(ξ, X )ξ−φR(ξ,φX )ξ= 2(h2 +φ2)X , (2.6)

(∇ξh)X =φX −h2φX +φR(ξ, X )ξ, (2.7)

S(ξ,ξ)= 2n − trh2, (2.8)

R(X ,Y )ξ=−(∇X φ)Y + (∇Y φ)X − (∇X φh)Y + (∇Y φh)X . (2.9)

Here, ∇ is the Levi-Civita connection and R the Riemannian curvature tensor of (M , g ) with

the sign convention

R(X ,Y )Z =∇X∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z

for vector fields X , Y , Z on M . The tensor l = R(·,ξ)ξ is the Jacobi operator with respect to the

characteristic field ξ.
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If the characteristic vector field ξ is a Killing vector field , the contact metric manifold

(M ,η,ξ,φ, g ) is called K -contact manifold. This is the case if and only if h = 0. Finally, if the

Riemann curvature tensor satisfies

R(X ,Y )ξ= η(Y )X −η(X )Y

or, equivalently, if

(∇Xφ)Y = g (X ,Y )ξ−η(Y )X

holds, then the manifold is Sasakian. We note that a Sasakian manifold is always K -contact,

but the converse only holds in dimension three.

The k-nullity distribution N (k) of a Riemannian manifold is defined by [45]

N (k) : p −→ Np (k)= {Z ∈ Tp M : R(X ,Y )Z = k[g (Y , Z )X − g (X , Z )Y ]},

k being a real number. If the characteristic vector field ξ ∈ N (k), then we call a contact metric

manifold as N (k)-contact metric manifold [45]. If k = 1, then the manifold is Sasakian and if

k = 0, then the manifold is locally isometric to the product E n+1(0)×Sn(4) for n > 1 and flat

for n = 1 [2].

However, for a N (k)-contact metric manifold M of dimension (2n +1), we have [4]

(∇Xφ)Y = g (X +hX ,Y )ξ−η(Y )(X +hX ), (2.10)

where h = 1
2 $ξφ,

h2 = (k −1)φ2, (2.11)

R(X ,Y )ξ = k[η(Y )X −η(X )Y ], (2.12)

S(X ,Y ) = 2(n −1)g (X ,Y )+2(n −1)g (hX ,Y )

+[2nk −2(n −1)]η(X )η(Y ), n ≥ 1. (2.13)

S(Y ,ξ) = 2nkη(X ), (2.14)

(∇Xη)(Y ) = g (X +hX ,φY ), (2.15)

(∇X h)(Y ) = {(1−k)g (X ,φY )+ g (X ,hφY )}ξ+η(Y )[h(φX +φhX )], (2.16)

for any vector fields X ,Y , Z where R is the Riemannian curvature tensor and S is the Ricci

tensor. N (k)-contact metric manifolds have been studied by several authors such as ([9], [10],

[11], [25], [35], [36], [37]) and many others.

The curvature tensor of a 3-dimensional Riemannain manifold is given by

R(X ,Y )Z = [S(Y , Z )X −S(X , Z )Y + g (Y , Z )Q X − g (X , Z )QY ]

−r

2
[g (Y , Z )X − g (X , Z )Y ], (2.17)
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where S and r are the Ricci tensor and scalar curvature respectively and Q is the Ricci operator

defined by g (Q X ,Y )= S(X ,Y ).

In [3] Blair et al proved that in a three dimensional contact metric manifold with ξ be-

longing to the k-nullity distribution, the following conditions hold:

Q X = (
r

2
−k)X + (3k − r

2
)η(X )ξ, (2.18)

S(X ,Y ) = (
r

2
−k)g (X ,Y )+ (3k −

r

2
)η(X )η(Y ), (2.19)

Qφ = φQ , (2.20)

∇X ξ = −(1+α)φX , (2.21)

where α=±
p

1−k. Contact metric manifolds have also been studied by several authors such

as ([3], [23], [24], [42]) and many others.

We also recall the notion of D-homothetic deformation. For a given contact metric struc-

ture (φ,ξ,η, g ), this is the structure defined by

η̄= aη, ξ̄=
1

a
ξ, φ̄=φ, ḡ = ag +a(a −1)η⊗η,

where a is a positive constant. While such a change preserves the state of being contact met-

ric, K -contact, Sasakian or strongly pseudo-convex C R , it detroies a condition like R(X ,Y )ξ=
0 or, R(X ,Y )ξ= k{η(Y )X −η(X )Y }.

However the form of the (k ,µ)-nullity condition is preserved under a D-homothetic de-

formation with

k̄ =
k +a2 −1

a2
, µ̄=

µ+2a −2

a

Given a non-Sasakian (k ,µ)-contact manifold M , Boeckx [6] introduced an invariant

IM =
1− µ

2p
1−k

and showed that for two non-Sasakian (k ,µ)-manifolds (Mi ,φi ,ξi ,ηi , gi ), i = 1,2, we have

IM1 = IM2 if and only if up to a D-homothetic deformation, the two manifolds are locally iso-

metric as contact metric manifolds.

Thus we see that from all non-Sasakian (k ,µ)-manifolds locally as soon as we have for ev-

ery odd dimension (2n+1) and for every possible value of the invariant I , one (k ,µ) manifold

M can be obtained with IM = I . For I > −1 such examples may be found from the standard

contact metric structure on the tangent sphere bundle of a manifold of constant curvature c

where we have I = 1+c
|1−c| . Boeckx also gives a Lie algebra construction for any odd dimension

and value of I ≤−1.
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Example 2.1. Using this invariant, Blair et al. [4] constructed an example of a (2n+1)-dimensional

N (1− 1
n )-contact metric manifold, n > 1. The example is given in the following:

Since the Boeckx invariant for a (1− 1
n ,0)-manifold is

p
n >−1, we consider the tangent sphere

bundle of an (n+1)-dimensional manifold of constant curvature c so chosen that the resulting

D-homothetic deformation will be a (1− 1
n

,0)-manifold. That is, for k = c(2− c) and µ =−2c

we solve

1− 1

n
= k +a2 −1

a2
, 0 = µ+2a −2

a

for a and c . The result is

c =
p

n ±1

n −1
, a = 1+c

and taking c and a to be these values we obtain N (1− 1
n )-contact metric manifold.

The above example will be used in the next section.

3. Concircularly pseudosymmetric N (k)-contact metric manifolds

A Riemannian manifold is said to be concircularly pseudosymmetric [41] if at every point

of the manifold the following relation holds

(R(X ,Y ) · Z̃ )(U ,V )W = L Z̃ ((X ∧Y ) · Z̃ )(U ,V )W, (3.1)

for any vector fields X , Y , U , V , W ∈ T M , where L Z̃ is some function of M . The endomor-

phism X ∧Y is defined by

(X ∧Y )Z = g (Y , Z )X − g (X , Z )Y . (3.2)

Now a Riemannian manifold is said to be concircularly pseudosymmetric if it satisfies the

condition

(R(X ,Y ) · Z̃ )(U ,V )W = L Z̃ ((X ∧Y ) · Z̃ )(U ,V )W, (3.3)

where L Z̃ is some function on M .

Let us suppose that a N (K )-contact metric manifold satisfies the condition

(R(X ,Y ) · Z̃ )(U ,V )W = L Z̃ ((X ∧Y ) · Z̃ )(U ,V )W. (3.4)

Putting Y =W = ξ (3.4) we have

(R(X ,ξ) · Z̃ )(U ,V )ξ= L Z̃ ((X ∧ξ) · Z̃ )(U ,V )ξ, (3.5)

It follows that

R(X ,ξ)Z̃ (U ,V )ξ− Z̃ (R(X ,ξ)U ,V )ξ− Z̃ (U ,R(X ,ξ)V )ξ
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−Z̃ (U ,V )R(X ,ξ)ξ= L Z̃ [(X ∧ξ)Z̃ (U ,V )ξ

−Z̃ ((X ∧ξ)U ,V )ξ− Z̃ (U , (X ∧ξ)V )ξ

−Z̃ (U ,V )(X ∧ξ)ξ]. (3.6)

In view of (1.6), the concircular curvature tensor of a (2n+1)-dimensional N (k)- contact man-

ifold is

Z̃ (X ,Y )W = R(X ,Y )W − r

2n(2n +1)
[g (Y ,W )X − g (X ,W )Y ]. (3.7)

Now from the above equation with the help of (2.12), we have

Z̃ (U ,V )ξ= (k − r

2n(2n +1)
)[η(V )U −η(U )V ], (3.8)

for any vector fields U , V .

From the equations (3.7) and (3.8) yields

R(X ,ξ)Z̃ (U ,V )ξ = (k −
r

2n(2n +1)
)[η(V )R(X ,ξ)U −η(U )R(X ,ξ)V ], (3.9)

Z̃ (R(X ,ξ)U ,V )ξ = (k −
r

2n(2n +1)
)[η(V )R(X ,ξ)U − g (R(X ,ξ)U ,ξ)V ], (3.10)

Z̃ (U ,R(X ,ξ)V )ξ = (k − r

2n(2n +1)
)[g (R(X ,ξ)V ,ξ)V −η(U )R(X ,ξ)V ], (3.11)

Z̃ (U ,V )R(X ,ξ)ξ = k[Z̃ (U ,V )X − r

2n(2n +1)
(η(X )η(V )U −η(X )η(U )V )]. (3.12)

In view of (3.9), (3.10), (3.11), (3.12) and substituting V = ξ in (3.6) we infer

k2{η(U )η(X )ξ−η(X )U } = −L Z̃ (k −
r

2n(2n +1)
){−3η(U )X

−3η(X )U +X +3η(U )η(X )ξ}. (3.13)

Putting U = ξ in (3.13) we have

L Z̃ (k −
r

2n(2n +1)
)= 0. (3.14)

It follows that either L Z̃ = 0 or r = 2nk(2n +1). Thus a concircularly pseudosymmetric N (k)-

contact metric manifold reduces to concircularly semisymmetric N (k)-contact metric man-

ifold or r = 2nk(2n + 1). Moreover the scalar curvature of N (k)-contact metric manifold is

r = 2nk +2(n −1)2n. Comparing the values of r we get k = (1− 1
n ). Thus in view of the above

result we can state the following:

Theorem 3.1. A (2n+1)-dimensional concircularly pseudosymmetric N (k)-contact metric man-

ifold is either concircularly semisymmetric or locally isometric to the Example 2.1.

Remark 3.1. In [4] Blair et al. studied concircularly semisymmetric N (k)-contact metric man-

ifolds. Therefore the above theorem generalizes the result of [4].
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4. Ricci solitons

In particular, let V be collinear with ξ i.e. V = bξ, where b is a function on the three

dimensional N (k)-contact metric manifold. Then

($V g +2S +2λg )(X ,Y ) = 0,

which implies that

g (∇X bξ,Y )+ g (∇Y bξ, X )+2S(X ,Y )+2λg (X ,Y ) = 0.

It follows that

bg (∇X ξ,Y )+ (X b)η(Y )+bg (∇Y ξ, X )

+ (Y b)η(X )+2S(X ,Y )+2λg (X ,Y ) = 0.
(4.1)

Using (2.21) in (4.1), we obtain

bg (−(1+α)φX ,Y )+bg (X ,−(1+α)φY )

+ (X b)η(Y )+ (Y b)η(X )+2S(X ,Y )+2λg (X ,Y ) = 0.
(4.2)

In (4.2) replacing Y by ξ it follows that

X b + (ξb)η(X )+4kη(X )+2λη(X ) = 0. (4.3)

Putting X = ξ in (4.3) we get

ξb =−(2k +λ). (4.4)

Putting this value in (4.3), we obtain

X b − (2k +λ)η(X )+4kη(X )+2λη(X ) = 0, (4.5)

which implies that

db =−(2k +λ)η. (4.6)

Applying d on (4.6) we get

0 = d 2b =−(2k +λ)dη. (4.7)

Since dη 6= 0 we have

λ=−2k . (4.8)

Using (4.8) in (4.6) yields b is a constant. Therefore from (4.2) it follows

S(X ,Y ) = 2k g (X ,Y ), (4.9)

which implies that M is an Einstein manifold. This leads to the following:
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Theorem 4.1. In a three dimensional N (k)-contact metric manifold, if the metric g is a Ricci

soliton and V is collinear with ξ, then V is a constant multiple of ξ and g is an Einstein mani-

fold.

In [3] the authors proved that a 3-dimensional N (k)-contact metric manifold is either

Sasakian, flat or locally isometric to a left invariant metric on the Lie groups SU (2) or SL(2,R).

Thus we are in a position to state the following:

Corollary 4.1. In a three dimensional N (k)-contact metric manifold, if the metric g is a Ricci

soliton and V is collinear with ξ, then V is a constant multiple of ξ and the manifold is either

Sasakian, flat or locally isometric to a left invariant metric on the Lie groups SU (2) or SL(2,R).

Now, we recall the following result:

Lemma 4.1 ([15]). If (g ,V ) is a Ricci soliton of a Riemannian manifold, then we have

1

2
∥ $V g ∥2= dr (V )+2di v(λV −QV ), (4.10)

where r denotes the scalar curvature of g and Q is the Ricci operator defined by S(X ,Y ) =
g (Q X ,Y ).

In the study of Ricci solitons there are two special situations regarding the vector field V :

V ∈ span ξ and V orthogonal to ξ. But the second class is too complex to analysis. This is why

we consider the only case V = ξ [14].

Let M be a three dimensional N (k)-contact metric manifold admitting a Ricci soliton whose

potential vector field is the Reeb vector field. Then we have from (pp. 48 of [15])

1

2
($ξg +S +λg )(X ,Y ) = 0, (4.11)

which implies that

1

2
g (∇X ξ,Y )+ g (∇Y ξ, X )+S(X ,Y )+λg (X ,Y ) = 0. (4.12)

Using (2.4) in (4.12) gives

−1

2
{g (φX ,Y )+ g (φhX ,Y )+ g (φY , X )+ g (φhY , X )}

+S(X ,Y )+λg (X ,Y ) = 0, (4.13)

from which we infer

S(X ,Y )− g (φhX ,Y )+λg (X ,Y )= 0. (4.14)

This implies

Q X =φhX −λX . (4.15)
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Substituting X = ξ in the above equation we get Qξ=λξ. Since trace of φh vanishes, from

(4.15) we have the scalar curvature r =−3λ, a constant. Now, we assume that V = ξ in (4.10),

then we have $ξg = 0, that is, ξ is a Killing vector field. Therefore the manifold becomes a

K -contact manifold. For three dimensional case a K -contact manifold is a Sasakian manifold

[12]. Also, since ξ is a Killing vector field, from (4.11) it follows that the manifold is Einstein.

Conversely, if the manifold is Sasaki-Einstein, then (4.11) is valid. This leads to the following:

Theorem 4.2. A three dimensional N (k)-contact metric manifold admits a Ricci soliton (g ,ξ)

if and only if the manifold is Sasaki-Einstein.

In [40] Sharma proved the following:

Proposition 4.1. Let (M ,η, g ) be a contact metric mnaifold with ξ an eigenvector of the Ricci

tensor, and g be a Ricci soliton. Then the Ricci soliton vector field V is Jacobi along ξ if and only

if the Ricci curvature along ξ is constant.

In a three dimensional N (k)-contact metric manifold, S(ξ,ξ)= 2nk = constant. Therefore

in a three dimensional N (k)-contact metric manifold Ricci curvature along ξ is constant. An

immediate consequence is the following:

Theorem 4.3. If a three dimensional N (k)-contact metric manifold admits a Ricci soliton, then

V is a Jacobi vector field along the geodesic vector field ξ.

5. Gradient Ricci solitons

Let M be a three dimensional N (k)-contact metric manifold with g as a gradient Ricci

soliton. Then the equation (1.3) can be written as

∇Y D f =QY +λY (5.1)

for all vector fields Y in M , where D denotes the gradient operator of g . From (5.1) it follows

that

R(X ,Y )D f = (∇X Q)Y − (∇Y Q)X , X ,Y ∈ T M . (5.2)

Using (2.21) we have

g (R(ξ, X )D f ,ξ) = k g ((D f − (ξ f )ξ), X ). (5.3)

Also in a three dimensional N (k)-contact metric manifold, it follows that

g ((∇ξQ)Y − (∇Y Q)ξ,ξ) = 0. (5.4)
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Assuming that k 6= 0. Therefore from (5.2), (5.3) and (5.4) we get

k(D f − (ξ f )ξ) = 0,

or,

D f = (ξ f )ξ, (5.5)

Using (5.5) in (5.1) we obtain

S(X ,Y )+λg (X ,Y ) =−(1+α)(ξ f )g (φY , X )+Y (ξ f )η(X ). (5.6)

Putting X = ξ in (5.6) we get

Y (ξ f ) = (2k +λ)η(Y ). (5.7)

From (5.6) and (5.7) we get

S(X ,Y )+λg (X ,Y )=−(1+α)(ξ f )g (φY , X )+ (2k +λ)η(X )η(Y ). (5.8)

Interchanging X and Y in (5.8) we obtain

S(Y , X )+λg (Y , X )=−(1+α)(ξ f )g (φX ,Y )+ (2k +λ)η(Y )η(X ). (5.9)

Adding (5.8) and (5.9) we get

2S(X ,Y )+2λg (X ,Y ) = 2(2k +λ)η(X )η(Y ) (5.10)

Using (5.10) in (5.1), we have

∇Y D f = (2k +λ)η(Y )ξ. (5.11)

Using (5.11) we compute R(X ,Y )D f and obtain

g (R(X ,Y )(ξ f )ξ,ξ) = 2(2k +λ)dη(X ,Y ). (5.12)

Thus we get

2k +λ= 0. (5.13)

Therefore from equation (5.7) we have Y (ξ f ) = 0, that is, ξ f = c , where c is a constant. Thus

the equation (5.5) gives d f = cη. Its exterior derivative implies that cdη = 0, which implies

c = 0. Hence f is a constant. Consequently (5.1) reduces to S(X ,Y ) = 2k g (X ,Y ). Hence M is

Einstein. So we have the following:

Theorem 5.1. If the metric g of a three dimensional N (k)-contact metric manifold is a gradient

Ricci soliton, then the manifold is an Einstein manifold.
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Since a 3-dimensional Einstein manifold is a manifold of constant curvature, hence we

get the following:

Corollary 5.1. If the metric g of a three dimensional N (k)-contact metric manifold is a gradient

Ricci soliton, then the manifold is a manifold of constant curvature.

6. Example of A N (k)-contact metric manifold

We consider 3-dimensional manifold M = {(x, y, z) ∈ R3, (x, y, z) 6= (0,0,0)}, where (x, y, z)

are the standard coordinate in R3. Let e1, e2, e3 are three linearly independent vector fields in

R
3 which satisfies

[e1,e2] = (1+α)e3, [e2,e3] = 2e1 and [e3,e1] = (1−α)e2,

where α 6= ±1 is a real number.

Let g be the Riemannian metric defined by

g (e1,e3) = g (e2,e3) = g (e1,e2) = 0, g (e1,e1) = g (e2,e2)= g (e3,e3) = 1.

Let η be the 1-form defined by

η(U ) = g (U ,e1)

for any U ∈χ(M ). Let φ be the (1,1)-tensor field defined by

φe1 = 0, φe2 = e3, φe3 =−e2.

Using the linearity of φ and g we have

η(e1) = 1,

φ2(U ) = −U +η(U )e1

and

g (φU ,φW ) = g (U ,W )−η(U )η(W )

for any U ,W ∈χ(M ). Moreover

he1 = 0, he2 =αe2 and he3 =−αe3.

The Riemannian connection ∇ of the metric tensor g is given by Koszul’s formula which

is given by,

2g (∇X Y , Z ) = X g (Y , Z )+Y g (Z , X )−Z g (X ,Y )
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−g (X , [Y , Z ])− g (Y , [X , Z ])+ g (Z , [X ,Y ]).

Using Koszul’s formula we get the following:

∇e1 e1 = 0, ∇e1 e2 = 0, ∇e1 e3 = 0,

∇e2 e1 =−(1+α)e3, ∇e2 e2 = 0, ∇e2 e3 = (1+α)e1,

∇e3 e1 = (1−α)e2, ∇e3 e2 =−(1−α)e1, ∇e3 e3 = 0.

In view of the above relations we have

∇X ξ=−φX −φhX , for e1 = ξ

Therefore the manifold is a contact metric manifold with the contact structure (φ,ξ,η, g ).

Now, we find the curvature tensors as follows:

R(e1,e2)e2 = (1−α2)e1, R(e3,e2)e2 =−(1−α2)e3,

R(e1,e3)e3 = (1−α2)e1, R(e2,e3)e3 =−(1−α2)e2,

R(e2,e3)e1 = 0, R(e1,e2)e1 =−(1−α2)e2, R(e3,e1)e1 = (1−α2)e3.

In view of the expressions of the curvature tensors we conclude that the manifold is a

N (1−α2)-contact metric manifold.
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