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ON REPRODUCING PROPERTY AND 2-COCYCLES

SAEED HASHEMI SABABE, ALI EBADIAN AND SHAHRAM NAJAFZADEH

Abstract. In this paper, we study reproducing kernels whose ranges are subsets of a C∗-

algebra or a Hilbert C∗-module. In particular, we show how such a reproducing kernel
can naturally be expressed in terms of operators on a Hilbert C∗-module. We focus on
relative reproducing kernels and extend this concept to such spaces associated with co-
cycles.

1. Introduction

One of the important and fundamental theories which was developed in recent decades

is the theory of reproducing kernels on Hilbert and Banach spaces. Although, the main do-

main of emersion of this theory raised inside the domain of physics, the development of

theory digressed in stochastic process and signal processing. GreenâĂŹs functions of self-

adjoint ordinary differential equations, the Bergman kernels, the harmonic kernels, and the

Szegö kernels are the important examples of reproducing kernels. More interesting proper-

ties of reproducing kernel Banach and Hilbert spaces can be found in [3]. Reproducing kernel

Hilbert space method provides a rigorous and effective framework for smooth multivariate

interpolation of arbitrarily scattered data and for accurate approximation of general multidi-

mensional functions. Moreover, kernels on a semigroup are related to the problem of whether

irreversible evolutions of a quantum system can be obtained as restrictions of reversible dy-

namics in some larger system. Unitary representations of a group G acting on a space S in

which the Hilbert C∗-module is an operator-valued function space on S and the representa-

tion is a representation associated by a cocycle on S ×G is studied before by Heo [4].

In the other hand, there are several situations where it is more natural to consider projec-

tive representations rather than representations. For instance, in the theory of C∗-algebras,

we can see many results with various kinds of dilations and their covariant versions. There

are well-known representation theorems: Naimark-Nagy characterization of positive defi-

nite functions on groups and the Stinespring decomposition for completely positive maps
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on a C∗-algebra. Typical examples for the importance of projective representations are the

Bergman spaces on bounded symmetric domains. Upon closer inspection the theories pre-

sented in some of past researches generally only apply to simply connected groups. The rea-

son is that the cocycle for the projective representation is assumed continuous, and this prop-

erty can only be ensured for simply connected groups. However, for general locally compact

groups it can be proven that the cocycle can be chosen continuous in a neighborhood of the

identity, and for Lie groups the cocycle can even be chosen smooth in a neighborhood of the

identity.(see [1, 5])

It should be mentioned that cocycles may be non-continuous, but in the relation of re-

producing kernel spaces, we focus on continuous cocycles.

In this paper, we use projective representations on cocycles and 2-cocycles to construct

reproducing kernel Hilbert spaces and try to obtain some relations between cocycle based

reproducing kernels and 2-cocycle based reproducing kernels.

2. Preliminaries

When one considers Hilbert C∗-modules, one should be rather careful at certain points

concerning the existence of the adjoint of operators on a Hilbert C∗-module and the self-

duality of Hilbert C∗-modules. In the following, we define a Hilbert A -module. The base of

this definition comes from right Hilbert A -module but for abbreviation we just call it a Hilbert

A -module.

Throughout this article, S and A denote a nonempty set and a C∗-algebra, respectively.

We denote by X a self-dual Hilbert A -module of A -valued functions on S such that each

valuation f 7→ f (s)∈A is continuous and linear.

Definition 2.1. A Hilbert C∗-module over a C∗ -algebra A is a right A -module E equipped

with A -valued inner product 〈·, ·〉 which is conjugate A -linear in the first variable and A -

linear in the second variable such that E is a Banach space with respect to the norm ‖x‖ =

‖〈x, x〉‖1/2.

Example 2.2. Let X be a locally compact Hausdorff space and H a Hilbert space, the Ba-

nach space C0(X , H ) of all continuous H-valued functions vanishing at infinity is a Hilbert

C∗-module over the C∗-algebra C0(X ) with inner product
〈

f , g
〉

(x) :=
〈

f (x), g (x)
〉

and mod-

ule operation ( f ϕ)(x) = f (x)ϕ(x), for all f ∈C0(X , H ) and ϕ ∈C0(X ). Every C∗-algebra A is a

Hilbert C∗-module over itself with inner product 〈a,b〉 := a∗b.

Definition 2.3. Let B be a C∗-algebra. A kernel k : S ×S → B is positive definite if for every

n ∈N and s1, . . . , sn ∈ S the matrix [k(si , s j )]n
i , j=1 is positive in Mn(B).
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We recall that an element b of a C∗-algebra B is called positive if b = b∗ and σ(b) ⊂ R
+.

We refer readers to [2] for interesting properties of positive elements and positive operators

on C∗-modules.

It follows from the definition that a kernel k : S ×S → B is positive definite if and only if

for all s1, . . . , sn ∈ S and b1, . . . ,bn ∈B, the sum
∑n

i , j=1 b∗
i

k(si , s j )b j is positive in B. If a kernel

k from S ×S into LA (X ) can be written in the form

k(s, t )= v(s)∗v(t ) for any s, t ∈ S,

where v is a map from S to LA (X , Xv ) for some Hilbert A -module Xv , then k is automatically

positive definite. Such a map v is called the Kolmogorov decomposition for k. Conversely,

every positive definite kernel k with values in LA (X ) has an essentially unique minimal Kol-

mogorov decomposition.

Consider a Hilbert A -module of X -valued functions spanned by those of the form s 7→

k(s, t )x, for some t ∈ S and some x ∈ X . We denote by E0 the set of all X -valued functions on

S having finite support and by E the set of all X -valued functions on S. We can identify E with

a subspace of the algebraic antidual E ′
0 of E0 by defining the pairing of E and E0 by

(g , f ) =
∑

s∈S

〈

g (s), f (s)
〉

X g ∈ E , f ∈ E0.

Given a kernel k : S × S → LA (X ), we can define the associated convolution operator ËIJk̃ :

E0 → E by

(k̃ f )(s) =
∑

t∈S

k(s, t ) f (t ) for every s ∈ S.

Then the kernel k is positive definite if and only if its associated convolution operator k̃ËIJ :

E0 → E is positive, that is, (k̃ f , f ) ≥ 0 for all f ∈ E0.

For each s ∈ S and f ∈ X there exists an element gs ∈ X such that

f (s) =
〈

gs , f
〉

X .

The corresponding reproducing kernel κ : S ×S →A is given by

κ(s, t )=
〈

gs , gt

〉

X ∈A .

For every t ∈ S the function gt ∈ X will be denoted by κ(·, t ).

Theorem 2.4 (Theorem 3.2 [4]). If a kernel κ : S ×S →A is positive definite, then there exists a

Hilbert A -module X of A -valued functions on S such that κ is the reproducing kernel of X .

We continue our work with an important example.
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Example 2.5. Let G be a locally compact group with a left Haar measure µ, A a unital C∗-

algebra, and X a Hilbert A -module. Assume that G is unimodular. We denote by K (G ,A )

the right A -module of continuous functions from G to A with compact supports. For all f , g

in K (G ,A ), we define an A -valued map 〈·, ·〉 by

〈

f , g
〉

=

∫

G
f (a)∗g (a)dµ(a).

We denote L2(G ,A ) by its completion. Let π : G → LA (X ) be a strongly continuous unitary

representation and let x0 ∈ X be fixed. Let θ be the A -module map from the Hilbert A -

module X into the space of A -valued continuous maps defined by

[θ(x)](a)= 〈π(a)x0, x〉X x ∈ X , a ∈G .

It is not hard to see that [θ(π(a)x)](b)= [θ(x)](a−1b) for all x ∈ X and all a,b ∈G . Let Y denote

the image θ(X ) of X under θ. Assume that 〈x0, x0〉 = I and x0 is a cyclic unit vector for the

representation π, that is, the closed span of the set {π(a)x0α : a ∈G ,α ∈A } is the whole of X .

Then the map θ : X → Y is an A -module isomorphism, so that the right A -module Y can be

given the structure of a Hilbert A-module isometric to X . Indeed, for all x, y ∈ X , we have

〈

θ(x),θ(y)
〉

Y =

∫

G
[θ(x)](a)∗[θ(y)](a)dµ(a)

=

∫

G
〈π(a)x0, x〉∗X

〈

π(a)x0, y
〉

X dµ(a)= 〈x, y〉X .

If G is a transformation group on S acting on the right, then there is a canonical action π of G

on the space of A -valued functions according to the formula

(π(a) f )(s) = f (sa) a ∈G , s ∈ S,

where f : S →A is a function. If X is a self-dual Hilbert A -module of A -valued functions on

S with a unitary representation π of G on X , that is, π(a) f ∈ X and ‖π(a) f ‖ = ‖ f ‖ for all a ∈G

and f ∈ X , then X is called a (G ,π)-Hilbert A -module.

Definition 2.6. Let X be a Hilbert A -module of A -valued functions on S such that each eval-

uation f 7→ f (s) is continuous and κ is the reproducing kernel of X . Let G be a transformation

group on S acting on the right. We denote by Z (A ) the center of A . A continuous function

α : S ×G →Z (A )\{0} is called a cocycle if

α(s, ab)=α(s, a)α(sa,b).

for all a,b ∈G and s ∈ S. For each cocycle α, there is an action πα of a group G on the space of

A -valued functions on S such that

(πα(a) f )(s) = f (s, a)α(s, a).
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Let α : S ×G → LA (X ) be a cocycle. A kernel κ : S ×S → LA (X ) is a G-kernel associated with κ

if for all s, t ∈ S and all a ∈G

κ(s, t )=α(s, a)κ(sa, t a)α(t , a)∗.

3. Main results

In this section, we discus reproducing kernel Hilbert C∗-modules and 2-inner product

version of this kind of spaces. We expand the Kolmogorov decomposition and make a relation

between Kolmogorov decomposition and 2-inner product Hilbert C∗-modules. Finally, we

introduce 2-cocycles and explain some of the properties of them. We start with definition of

2-inner product on a Hilbert C∗-module.

Definition 3.1. Let X be a Hilbert C∗-module over a C∗ -algebra A of dimension greater than

1. The function 〈., .; .〉 : X × X × X → A is called a 2-inner product if the following conditions

holds,

(1) 〈x, x; z〉 ≥ 0 and 〈x, x; z〉 = 0 iff x and z are linearly dependent.

(2) 〈x, x; z〉 = 〈z, z; x〉.

(3)
〈

y, x; z
〉

=
〈

x, y ; z
〉

.

(4)
〈

αx, y ; z
〉

=α
〈

x, y ; z
〉

, for all scalars α ∈ F .

(5)
〈

x1 +x2, y ; z
〉

=
〈

x1, y ; z
〉

+
〈

x2, y ; z
〉

.

Therefore, the pair (X ,〈., .; .〉) is called a 2-inner product Hilbert C∗-module.

Example 3.2. Let C0(X , H ) be the Hilbert C∗-module as explained in 2.2. We define a 2-inner

product over C0(X , H ) by

〈

f , g ;h
〉

= ‖h‖2
∫

g (x) f (x)d x −

∫

h(x) f (x)d x.

∫

g (x)h(x)d x.

Definition 3.3. Let S be a nonempty set and A be a C∗-algebra. Suppose X is a 2-inner

product Hilbert C∗-module over A and X is a subspace of X such that every evaluation E on

X is bounded. In this case, there exists a positive kernel in terms of 2.3 such that for every

x ∈ S

E ( f )(x) =
〈

f ,kx

〉

= f (x) for every x ∈ S, f ∈X . (1)

This X is called a reproducing kernel A -module.

Let S be a set and F (S,R) be the space of functions f : S ×S → R. Clearly, F (S,R) is an

inner product vector space. Let X be a linear subspace of F endowed with a 2-inner product.
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Fix b ∈ X . So we can investigate about b-C∗-Hilbert module Xb . Let Xb be a subspace of Xb

such that all two indexed evaluations

E(x,y)( f )= f (x, y),

be bounded. So by theorem Riesz representation theorem, there exist a function kx,y such

that

E(x,y)( f ) = f (x, y)=
〈

f ,k(x,y);b
〉

. (2)

Now we can define a kernel function K : S ×S ×S →R by

K (x, y, z)=
〈

k(x,y),k(y,z);b
〉

. (3)

In this case

K (x, x, x)=
〈

k(x,x),k(x,x);b
〉

= ‖k(x,x),b‖2. (4)

The pair (Xb ,K ) is called a 2-inner product reproducing C∗-Hilbert module.

An examples of 2-inner product reproducing kernel Hilbert space is as follows:

Example 3.4. Let X 2
2 be the two variable Hardy-Hilbert space, consists of all analytic functions

having power series representations with square-summable complex coefficients and XI be

a subspace of X 2
2 such that

XI =

{

f : f (z1, z2) =
∞
∑

n=0
an zn

1 zn
2 : a1 = 0 and

∞
∑

n=0
|an |

2
<∞

}

,

where I denotes the identity function, f (z1, z2) =
∑∞

n=0 an zn
1 zn

2 and g (z1, z2) =
∑∞

n=0 bn zn
1 zn

2 .

The 2-inner product on XI is defined by

〈

f , g ; I
〉

= a0b0 +

∞
∑

n=2
anbn .

In this case, let k(z1,z2)(t1, t2) = 1+
∑∞

n=2 zn
1 zn

2 t n
1 t n

2 , then

f (z1, z2) =
〈

f ,k(z1,z2); I
〉

,

and

K (z1, z2, z3) =
〈

k(z1,z2),k(z2,z3); I
〉

= 1+
∞
∑

n=2
zn

1 zn
2 .

In the following, we explain some properties of 2-inner product reproducing kernel C∗-

modules and prove two important theorems.

Proposition 3.5. If E
† is a 2-inner product reproducing kernel C∗-module on A with repro-

ducing kernel k(x, y, z), then k(x, y, x)= k(y, x, y).
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Proof. By properties of 2-inner product we have

K (x, y, x)=
〈

k(x,y),k(y,x);b
〉

=
〈

k(y,x),k(x,y);b
〉

= K (y, x, y). ���

In the next theorem, we extend Kolmogorov decomposition to 2-inner product reproduc-

ing kernel C∗-modules.

Theorem 3.6. For a positive 2-inner product kernel k from S ×S ×S into LA (X ), there exists a

map v from S to LA (X , Xv ) for some Hilbert A -module Xv such that

k(x, y, z)= v(x)∗v(y)v∗(z) for all z,‖v(z)‖ 6= 0. (5)

Proof. If f : X × X → A has finite support, define k f : X × X → A by setting k f (x, y) =
∑

z∈S k(x, y) f (z) and denote by X ′
v the set of all these maps k f . Clearly, X ′

v is a right mod-

ule over A with point wise operations. This space can be naturally endowed with a 2-inner

product

〈

k f ,k g ,kh
〉

=
∑

x,y,z∈S

〈

k(x, y, z) f (x), g (y);h(z)
〉

.

Let Xv be the completion of X ′
0.

If x ∈ X , define v(x) : X → Xv by setting v∗(x) f = k( f (x)). It is easy to check that v(x) is

A -linear, bounded and adjointable. So we have

〈

v(x)∗v(y)v(z)∗ f , g ;h
〉

=
〈

k( f (x)),k( f (y));k( f (z))
〉

=
〈

k(x, y, z) f , g ; z
〉

,

and therefore

k(x, y, z)= v(x)∗v(y)v∗(z). ���

Equation 5 defined an extension of Kolmogorov decomposition. In particular cases, we

can choose v as a unitary mapping. The next theorem explains an application of this kind of

decomposition.

Theorem 3.7. Let A be a C∗-algebra, X be a Hilbert A -module and X
† be a 2-inner product

A - module. Then there exists a faithful representation π of A on a Hilbert space X and an

isometric, linear isomorphism v from X
† onto a concrete Hilbert π(A )-module F of operators

from X to a Hilbert space Y such that

〈v(x), v(y); v(z)〉=π(〈x, y ; z〉) for all x, y, z ∈X
†. (6)
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Proof. Let (X ,π) be any faithful representation of A . Then the kernel, k : X × X × X → B (X )

defined by (x, y, z) 7→π(
〈

x, y ; z
〉

), is positive definite. Hence, the matrix π(〈x1, x2; x3〉 is positive

in Mn(B (X )). Since k is positive definite, it admits a Kolmogorov decomposition U : X →

B (X ,K ), where K is some Hilbert space. Using the fact that U (x)∗U (y)U (z)∗ = π(
〈

x, y ; z
〉

) for

all x, y, z ∈ X , one easily verifies that U is linear and isometric and that U (xa) =U (x)π(a) for

all x ∈ X and a ∈A . ���

Heo defines reproducing kernel associated with cocycles in [4]. In the following, we ex-

tend this notion to relative reproducing kernel associated with cocycles.

Definition 3.8. Let S be a non empty set, A a C∗-algebra and X a Hilbert A -module such that

for any s, t ∈ S and f ∈ LX we have f → f (s)− f (t ) is continuous. A function Ms,t : S ×S →A

is called a relative kernel if

f (s)− f (t )=
〈

f , Ms,t
〉

∀ f ∈ LA (X ), s, t ∈ S.

Theorem 3.9. For any strictly negative definite kernel M : S ×S → LA (X ) there exists a unique

Hilbert A -module YM of continuous functions f : S → X such that

• Y 0
M

is a dense submodule of YM .

• For each s ∈ S, the evaluation map Es is continuous from YM to X .

Proof. It is easy to check that Y 0
M ,the space of all relative kernels is dense on YM . Since the

relative kernels construct a basis for this subspace, each evaluation on YM is bounded and

Hence is continues. ���

The importance of theorem 3.9 is to verification of behavior of representation inherited

from A to YM . In the next theorems we feed back to this subject.

Definition 3.10. Let G be a group and α : S ×G → LA (X ) be a cocycle. A relative kernel M :

S ×S → LA (X ) is a relative G-kernel associated with α if for all s, t ∈ S and all a ∈G ,

M (s, t )=α(s, a)M (sa, t a)α(t , a)∗.

Theorem 3.11. For any relative G-kernel M associated with a cocycle α, the equation

[

π(a) f
]

(s)=α(s, a) f (sa),

defines a unitary representation π of G on the Hilbert A -module YM .
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Proof. For a continuous map α : S ×G → LA (X ) is a cocycle, then each α(s, a) is invertible.

Indeed, for each s and g ,

α(s, a)−1
=α(sa, a−1).

So for each f we have
〈

f , Ms,t
〉

= f (s)− f (t ) =π(a)∗π(a) f (s)−π(a)∗π(a) f (t )

=π(a)∗α(s, a) f (sa)−π(a)∗α(t , a) f (t a)

=π(a)∗
〈

α(s, a) f , Msa,t a

〉

=
〈

α(s, a) f ,π(a)Msa,t a

〉

. ���

Theorem 3.12. Let M be a relative G-kernel associated with a cocycle α and let A be an invert-

ible operator in LA (X ). The kernel MA defined by MA(s, t ) = A∗M (s, t )A is a positive definite

relative G-kernel associated with a cocycle αA given by

αA(s, a)= A∗α(s, a)(A−1)∗ s ∈ S, a ∈G .

Proof. Positiveness of MA(s, t ) is a direct corollary of this fact that M (s, t ) and A are positive

define. Moreover we have

MA(s, t )= A∗M (s, t )A = A∗α(s, a)M (sa, t a)α(t , a)∗A

= A∗α(s, a)M (sa, t a)(A∗α(t , a))∗. ���

In the following, we take an important example which leads us to application of the above

theorems.

Example 3.13. Let X =G be a unimodular locally compact group and suppose that ϕ : G →C

is a continuous hermitian positive function. It is easy to see that ϕ defines a reproducing ker-

nel Hilbert space. The construction is as follows. Let C0(G) denotes the continuous functions

of compact support on G . Define

ϕ(G) = { f ∗ϕ| f ∈C0(G)}

where

( f ∗ϕ)(x) =

∫

f (y)ϕ(y−1x)d y.

Let ϕ( f ) = f ∗ϕ and define an inner product on ϕ(G) by

〈

ϕ( f ),ϕ(g )
〉

=

∫

ϕ(y−1x) f (x)g (y)d xd y

where d x is Haar measure on G . Let H (ϕ) be the completion of ϕ(G) in the norm comes from

above inner product. It is easy to see that in such a way, H (ϕ) is a relative reproducing Hilbert

module. Representation associated to H (ϕ) is defined as
[

πx (ϕ) f
]

(y) =ϕ( f )(x−1 y).
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In this section we define 2-cocycles on a group G and try to extend concepts and relations

of cocycles to 2-cocycles. Moreover, we try to find some relations between cocycles and 2-

cocycles.

Definition 3.14. Let S be a set and A be an abelian group. Let G be a transformation group

on S acting on the right. A continuous function ρ : S ×G → A is called a 2-cocycle if

ρ(s, g h)ρ(s,h)=ρ(s, g )ρ(sg ,h) (7)

for all g ,h ∈G and s ∈ S.

Clearly for an invertible ρ we have

ρ(s, g )= ρ(s, g h)ρ(s,h)ρ−1(sg ,h)

We denote the set of all invertible 2-cocycles by Inv2(S,G).

The concept of 2-cocycles can be related to reproducing kernel spaces in a natural way.

The construction is as follows. Let X be a Hilbert A -module of A -valued functions on S such

that each evaluation f 7→ f (s) is continuous and κ is the reproducing kernel of X . Let G be a

transformation group on S acting on the right. The function ρ defined as the equation 7 is a

2-cocycle on a reproducing kernel space. Clearly, ρ belongs to X .

Similar to definition of a kernel associated to cocycles, one can extend the definition as-

sociated to 2-cocycles.

Definition 3.15. Let ρ : S×G → LA (X ) be a 2-cocycle. A kernel κ : S×S → LA (X ) is a G-kernel

associated with ρ if for all s, t ∈ S and all g ∈G ,

κ(s, t )=ρ(s, g )κ(sg , t g )ρ(t , g )∗.

Lemma 3.16. Let α : S ×G → LA (X ) and ρ : S ×G → LA (X ) be a cocycle and 2-cocycle, respec-

tively. If ρ(s, g h)ρ(sg ,h)−1 = 1 for all g ,h ∈G then ρ(s, g )=α(s, g ).

Proof. If ρ(s, g h)ρ(sg ,h)−1 = 1 then ρ(s, g h)= ρ(sg ,h). So by definition of 2-cocycle we have

ρ(s, g )= 1 for all g ,h ∈G ,

therefore

α(s, g h)α(sg ,h)−1
= ρ(s, g h)ρ(sg ,h)−1 for all g ,h ∈G . ���

Theorem 3.17. Let Inv(S,G) and Inv2(S,G) denotes the set of all invertible cocycles and 2-

cocycles, respectively. then Inv(S,G)⊂ Inv2(S,G).
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Proof. Let α : S ×G → LA (X ) be a cocycle. One can easily fined a 2-cocycle ρ such that

ρ(s, g h) = ρ(sg ,h). In this way, by lemma 3.16, α(s, g ) = ρ(s, g ) for all g ∈ G and hence α ∈

Inv2(S,G). ���
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