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AN INVERSE PROBLEM FOR THE NON-SELF-ADJOINT MATRIX

STURM-LIOUVILLE OPERATOR

NATALIA PAVLOVNA BONDARENKO

Abstract. The inverse problem of spectral analysis for the non-self-adjoint matrix Sturm-

Liouville operator on a finite interval is investigated. We study properties of the spectral

characteristics for the considered operator, and provide necessary and sufficient condi-

tions for the solvability of the inverse problem. Our approach is based on the constructive

solution of the inverse problem by the method of spectral mappings. The characteriza-

tion of the spectral data in the self-adjoint case is given as a corollary of the main result.

1. Introduction and main results

Consider the boundary value problem L = L(Q(x),h, H ) for the matrix Sturm-Liouville

equation

ℓY :=−Y ′′+Q(x)Y =λY , x ∈ (0,π), (1)

with the boundary conditions

U (Y ) := Y ′(0)−hY (0) = 0, V (Y ) := Y ′(π)+HY (π)= 0. (2)

Here Y (x) = [yk(x)]k=1,m is a column vector, λ is the spectral parameter, and Q(x) =
[Q j k(x)] j ,k=1,m, where Q j k (x) ∈ L2(0,π) are complex-valued functions. We will subsequently

refer to the matrix Q(x) as the potential. The boundary conditions are given by the matrices

h = [h j k ] j ,k=1,m, H = [H j k] j ,k=1,m, where h j k and H j k are complex numbers.

In this paper, we study the inverse problem of the spectral theory for the matrix Sturm-

Liouville operator L , L Y = ℓY , with a domain

Dom(L ) = {Y = [yk ]m
k=1 : yk ∈W 2

2 [0,π], k = 1,m, Y satisfies (2)}.

Inverse problems consist in recovering differentail operators from their spectral characteris-

tics. Such problems have many applications in science and engineering.
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Inverse problems for the scalar Sturm-Liouville equation (m = 1) have been studied fairly

completely (see monographs [1, 2, 3, 4]). The matrix case is a natural generalization of the

scalar one. A significant contribution in the inverse problem theory for the matrix operators

was made by Z.S. Agranovich and V.A. Marchenko [5], who studied the matrix Sturm-Liouville

operator on the half-line. For inverse problems on the finite interval, uniqueness theorems

were proved in works [6, 7, 8]. An algorithm for reconstuction of the matrix potential from

the spectral data was presented by V.A. Yurko [9] for the case of the simple spectrum. Then

D. Chelkak and E. Korotayev [10] have given the characterization of the spectral data (nec-

essary and sufficient conditions) for the matrix Sturm-Liouville operator with asymptotically

simple spectrum, which is a strong restriction. Necessary and sufficient conditions and an

algorithm for the solution in the general case, without any restrictions on the behavior of

the spectrum, provided in [11]. Ya.V. Mykytyuk and N.S. Trush [12] obtained characterization

of the spectral data for the potential from the Sobolev class W −1
2 . Necessary and sufficient

conditions for solvability of inverse problems for the matrix Sturm-Liouville operators on the

half-line and on the line were provided in [13] and [14], respectively. Inverse problems for

first-order systems in the general form were studied in [15, 16, 17].

All the previous works on the necessary and sufficient conditions for matrix Sturm-

Liouville operators on a finite interval deal with the self-adjoint case: when the matrices Q ,

h and H are Hermitian. In this paper, we study the non-self-adjoint case. We develop the

approach of [11], based on the method of spectral mappings [4, 18]. This method allows to re-

duce an inverse problem to a so-called main equation, which is a linear equation in a suitable

Banach space of infinite sequences. The reduction works for non-self-adjoint operators just

as well as for self-adjoint ones. Moreover, by necessity one can prove, that the main equation

is uniquely solvable. However, by sufficiency it is necessary to require its solvability even in

the scalar case (see the example in [4, Section 1.6.3]). For the non-self-adjoint scalar Sturm-

Liouville operator, a constructive solution of the inverse problem by the method of spectral

mappings and necessary and sufficient conditions were obtained by S.A. Buterin, C.-T. Shieh

and V.A. Yurko [19, 20]. In this paper, we generalize their results, and get necessary and suffi-

cient conditions for the spectral data of the matrix Sturm-Liouville operator.

Proceed to the formulation of the main results. Let ϕ(x,λ) and S(x,λ) be matrix-solutions

of equation (1) under the initial conditions

ϕ(0,λ) = Im , ϕ′(0,λ) = h, S(0,λ) = 0m , S ′(0,λ) = Im ,

where Im is the identity m ×m matrix, 0m is the zero m ×m matrix. The function ∆(λ) :=
detV (ϕ) is called the characteristic function of the boundary value problem L. The zeros of

the entire function ∆(λ) coincide with the eigenvalues of L.
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Let ω be some m ×m matrix. We will write L(Q(x),h, H ) ∈ A(ω), if the problem L has

a potential from L2(0,π) and h + H + 1
2

∫π
0 Q(x)d x = ω. In the self-adjoint case, the matrix

h + H + 1
2

∫π
0 Q(x)d x is diagonalizable by the unitary transform. In the general case, it is not

true, but we restrict ourselves to the class of diagonalizable matrices. Then without loss of

generality we can assume that

L ∈ A(ω), ω ∈D = {ω : ω= diag{ω1, . . . ,ωm}}.

One can achieve this condition applying the standard transform.

Before we proceed to asymptotics, let us agree to denote by {κn} different sequences

from l2.

Lemma 1. Let L ∈ A(ω), ω ∈D. The boundary value problem L has a countable set of eigenval-

ues {λnq }n≥0,q=1,m , and

ρnq :=
√

λnq = n +
ωq

πn
+
κn

n
, q = 1,m. (3)

Here the eigenvalues are counted with their multiplicities, which they have as zeros of the entire

characteristic function ∆(λ).

Since the matrix ω is diagonal, the proof of Lemma 1 repeats the proof of [11, Lemma 1].

Let Φ(x,λ) = [Φ j k (x,λ)] j ,k=1,m be a matrix-solution of equation (1) under the boundary

conditions U (Φ) = Im , V (Φ) = 0m . We call Φ(x,λ) the Weyl solution for L. Put M (λ) :=Φ(0,λ).

The matrix M (λ) = [M j k (λ)] j ,k=1,m is called the Weyl matrix for L. The notion of the Weyl

matrix is a generalization of the notion of the Weyl function (m-function) for the scalar case

(see [1], [4]). The Weyl functions and their generalizations often appear in applications and

in pure mathematical problems, and they are natural spectral characteristics in the inverse

problem theory for various classes of differential operators.

Using the definition for Φ(x,λ) and M (λ), one can easily check that

Φ(x,λ) = S(x,λ)+ϕ(x,λ)M (λ), (4)

M (λ) = −(V (ϕ))−1V (S). (5)

The matrix-function M (λ) is meromorphic in λ with poles at the eigenvalues {λnq } of L. In

general, the poles can be multiple, but we put the following restriction.

Assumption 1. All the poles of the matrix-function M (λ) are simple.

Note that Assumption 1 corresponds to the case, when the operator does not have as-

sociated functions (see [21]). If there is a finite number of multiple poles, one can use the

approach of [19, 20].
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Define the weight matrices:

αnq := Res
λ=λnq

M (λ).

Assumption 2. The sequence of the matrices {αnq } is bounded in a matrix norm: ‖αnq‖ ≤C ,

for all n ≥ 0, q = 1,m.

For definiteness, here and below we consider the following matrix norm

‖A‖ = max
1≤ j≤m

m
∑

k=1

|a j k |, A = [a j k] j ,k=1,m. (6)

We say that the boundary value problem L belongs to the class A1,2(ω), if L ∈ A(ω) and L

satisfies Assumptions 1 and 2.

Note that Assumptions 1 and 2 hold in the following cases.

1. The self-adjoint case (see [11]).

2. Assumption 1 obviously holds, when the eigenvalues are simple. Assumption 2 holds

in view of (7), when the eigenvalues are asymptotically simple, i.e. all the values ωq are

distinct.

Let {λnk qk
}k≥0 be all the distinct eigenvalues from the collection {λnq }n≥0,q=1,m . Put

α′
nk qk

:=αnk qk
, k ≥ 0, α′

nq = 0m , (n, q)∉ {(nk , qk)}k≥0.

Fix the numbers 1 = m1 < m2 < ·· · < mp so that {ωms
}

p
s=1 are all the distinct values in the

collection {ωq }m
q=1. Let Js = {q : ωq = ωms

}, and α(s)
n =

∑

q∈Js

α′
nq , s = 1, p .1 Analogously to κn ,

denote by {Kn } different matrix sequences, such that norms of these matrices form sequences

from l2.

Lemma 2. Let L ∈ A1,2(ω), ω∈D. Then the following relations hold

α(s)
n =

2

π
I (s)+Kn , s = 1, p , n ≥ 0, (7)

(Im − I (s))αnq = Kn , n ≥ 0, s = 1, p , q ∈ Js , (8)

where

I (s) = [I (s)
j k

] j ,k=1,m, I (s)
j k

=
{

1, j = k ∈ Js ,

0, ot her wi se.

1In the case of multiple eigenvalues, the same weight matrices αnq occur in Λ multiple times. To count each

residue in the sum only once, we use the notation α′
nq .
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Put αn :=
p
∑

s=1
α(s)

n =
m
∑

q=1
α′

nq .

Lemma 3. Let L ∈ A1,2(ω), ω ∈D. Then the following relation holds

αn =
2

π
Im +

Kn

n
, n ≥ 0. (9)

The data Λ := {λnq ,αnq }n≥0, q=1,m are called the spectral data of the problem L. Consider

the following inverse problem.

Inverse Problem 1. Given the spectral data Λ, construct Q , h and H .

Let us describe the general strategy of our method. Suppose we know the spectral data

Λ of some unknown boundary value problem L ∈ A1,2(ω), ω ∈ D. Choose an arbitrary model

boundary value problem L̃ = L(Q̃(x), h̃, H̃) ∈ A1,2(ω) (for example, one can take Q̃(x) = 2
πω,

h̃ = 0m , H̃ = 0m). We agree that if a certain symbol γ denotes an object related to L, then the

corresponding symbol γ̃ with tilde denotes the analogous object related to L̃.

Denote λnq0 = λnq , λnq1 = λ̃nq , n ≥ 0, q = 1,m. Let ψ(x) = [ϕ(x,λnqi )]n≥0,q=1,m,i=0,1,

ψ̃(x) = [ϕ̃(x,λnqi )]n≥0,q=1,m,i=0,1. It is shown in Section 4, that for each fixed x ∈ [0,π], ψ(x)

satisfies the main equation

ψ̃(x) =ψ(x)(I + R̃(x)) (10)

in a suitable Banach space B of infinite bounded matrix sequences. Here I is the identity op-

erator in B , and the operator R̃(x) is constructed by the model problem L̃ and two collections

of spectral data Λ, Λ̃. Solving the main equation, one can recover the potential Q and the

coefficients of the boundary conditions h and H by Algorithm 1, provided in Section 4. Us-

ing the main equation, we obtain necessary and sufficient conditions for spectral data of the

problem L from A1,2(ω).

We will write {λnq ,αnq }n≥0,q=1,m ∈ Sp, if λnq are complex numbers, αnq are m×m matri-

ces, and for λnq =λkl we always have αnq =αkl .

Theorem 1. Let ω ∈ D. For data {λnq ,αnq }n≥0,q=1,m ∈ Sp to be the spectral data for a certain

problem L ∈ A1,2(ω) it is necessary and sufficient to satisfy the following conditions.

(A) The asymptotics (3), (7), (8) (9) are valid, and Assumption 2 holds for {αnq }.

(R) The ranks of the matrices αnq coincide with the multiplicities of the corresponding values

λnq .2

(M) The main equation (10) is uniquely solvable.

2By necessity, the multiplicity of λnq means the number of corresponding linearly independent vector eigen-

functions, equal to the multiplicity of zero of ∆(λ) by Lemma 5. By sufficiency, the multiplicity means the number

of times the value λnq occurs in the given collection.
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Condition (M) holds for any choice of a model problem L̃ ∈ A1,2(ω) by necessity and for at

least one problem L̃ by sufficiency.

Of particular interest are those cases, when the solvability of the main equation can be

proved or easily checked, namely, the self-adjoint case, the case of finite perturbations of the

spectral data and the case of small perturbations [19, 20]. As a corollary of Theorem 1, we

derive a result for the self-adjoint case: Q = Q†, h = h†, H = H † (the symbol † stands for

the conjugate transpose). Finite perturbations and small perturbations can also be studied

analogously to the scalar case. Note that in the self-adjoint case, the problem L always belongs

to the class A1,2(ω) with a diagonalizable ω (see Section 7). Condition (M) can be proved with

help of the simplier condition (E), so we obtain the following result.

Theorem 2. Let ω = ω† ∈ D. For data {λnq ,αnq }n≥0,q=1,m ∈ Sp to be the spectral data for a

certain self-adjoint problem L ∈ A(ω) it is necessary and sufficient to satisfy the following con-

ditions.

(A) The asymptotics (3), (7), (8) (9) are valid.

(R) The ranks of the matrices αnq coincide with the multiplicities of the corresponding values

λnq .

(S) All λnq are real, αnq = (αnq )†, αnq ≥ 0 for all n ≥ 0, q = 1,m.

(E) For any row vector γ(λ) that is entire in λ, and that satisfy the estimate

γ(λ) =O(exp(|Im
p
λ|π)), |λ|→∞,

if γ(λnq )αnq = 0 for all n ≥ 0, q = 1,m, then γ(λ) ≡ 0.3

Note that Assumption 2 in (A) is not necessary in the self-adjoint case, because it follows

from (9) and the condition αnq ≥ 0.

As we have already mentioned, the characterization of the spectral data of the self-adjoint

matrix Sturm-Liouville operator was obtained earlier in [11]. But the work [11] contains a

technical mistake in asymptotics of the weight matrices. In this paper, using the method of

[11], we obtain correct necessary and sufficient conditions for the self-adjoint case (Theo-

rem 2) as a corollary of the more general result (Theorem 1).

The paper is organized as follows. At first we study algebraic and analytical properties of

the spectral characteristics (Section 2) and prove Lemmas 2 and 3 with asymptotic formulas

for the weight matrices (Section 3). In Section 4, we derive the main equation in a suitable

Banach space and provide a constructive algorithm for the solution of Inverse Problem 1. We

3The letters, denoting the conditions, have the following meanings: (A) Asymptotics, (R) Ranks, (M) solvability

of the Main equation, (S) Self-adjointness, (E) “Entire function condition”. The conditions (C) Completeness, and

(PW) Paley-Wiener class condition, appear later (in Section 5).
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also prove the unique solvability of the main equation, and this finish the proof of the neces-

sity in Theorem 1. Further, in Section 5, we discuss the connection between the conditions

(M), (E), (C) and (PW). Namely, they are connected as follows: (M ) ⇒ (E ) ⇒ (PW ) ⇔ (C ). Sec-

tion 6 devoted to the sufficiency in Theorem 1. In Section 7, we collect the results concerning

the self-adjoint case, and prove Theorem 2. We also give a reformulation of Theorem 2, using

the completeness of some system of vector functions (C).

Notation. Along with L we consider the boundary value problem L∗ = L∗(Q(x),h, H ) in the

form

ℓ∗Z :=−Z ′′+ZQ(x)=λZ , x ∈ (0,π),

U∗(Z ) := Z ′(0)−Z (0)h = 0, V ∗(Z ) := Z ′(π)+Z (π)H = 0,
(11)

where Z is a row vector. Let L̃∗ = L∗(Q̃(x), h̃, H̃ ). We agree that if a symbol γ denotes an object

related to L, then γ∗ and γ̃∗ denote corresponding objects related to L∗ and L̃∗, respectively.

We consider the space of complex column m-vectors Cm with the norm

‖Y ‖ = max
1≤ j≤m

|y j |, Y = [y j ] j=1,m,

the space of complex m×m matricesCm×m with the corresponding induced norm (6), and the

space of row vectorsCm,T . We use the spaces L2((0,π),Cm), L2((0,π),Cm,T ) and L2((0,π),Cm×m)

of column vectors, row vectors and matrices, respectively, with entries from L2(0,π). The

Hilbert spaces L2((0,π),Cm) and L2((0,π),Cm,T ) are equipped with the following scalar prod-

ucts

(Y , Z ) =
∫π

0
Y †(x)Z (x)d x =

∫π

0

m
∑

j=1

ȳ j (x)z j (x)d x,

(Y , Z ) =
∫π

0
Y (x)Z †(x)d x,

respectively. Denote 〈Y , Z 〉= Y ′Z −Y Z ′.

Put ρ :=
p
λ, Reρ ≥ 0, τ := Imρ. In estimates and asymptotics, we use the same symbol C

for different constants independent of x, ρ, etc.

2. Properties of the spectral data

The results of this section are valid for any boundary value problem L, satisfying Assump-

tion 1. First, we prove an alternative formulation of this assumption.

Lemma 4. Assumption 1 is equivalent to the condition, that all the poles of the matrix function

(V (ϕ(x,λ)))−1 in the λ-plane are simple.
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Proof. Suppose that λ0 is a nonsimple pole of (V (ϕ))−1, namely

(V (ϕ))−1 =
A−k

(λ−λ0)k
+·· ·+

A−1

λ−λ0
+ A0 +·· · , k > 1, Ak 6= 0m ,

in a neighborhood of λ0. The matrix-function V (S(x,λ)) is analytical: V (S(x,λ))=V (S(x,λ0))

+ d
dλV (S(x,λ0))(λ−λ0)+·· · . If λ0 is a simple pole of the Weyl matrix M (λ), then A−kV (S(x,λ0))

= 0m . The matrix-function I = (V (ϕ))−1V (ϕ) is entire, therefore we also have A−kV (ϕ(x,λ0)) =
0m . Since the columns of the matrices ϕ(x,λ) and S(x,λ) form a fundamental system of solu-

tions of equation (1), every solution ψ(x,λ) of this equation can be represented as their linear

combination: ψ(x,λ)=ϕ(x,λ)A+S(x,λ)B , and it also satisfies the relation A−kV (ψ(x,λ0))=0.

But if we choose the solution ψ(x,λ0), satisfying the initial conditions ψ(π,λ0)= 0m , ψ′(π,λ0)

= A†
−k

, we get A−kV (ψ(x,λ0)) 6= 0. The contradiction shows, that the simplicity of the poles of

(V (ϕ))−1 follows from the simplicity of the poles of M (λ). The inverse is obvious. ���

Lemma 5. The zeros of the characteristic function ∆(λ) coincide with the eigenvalues of the

boundary value problem L. The multiplicity of each zero λ0 of the function ∆(λ) equals to the

multiplicity of the corresponding eigenvalue (by the multiplicity of the eigenvalue we mean the

number of the corresponding linearly independent vector eigenfunctions).

Proof. 1. Let λ0 be an eigenvalue of L, and let Y 0 be an eigenfunction corresponding to λ0. Let

us show that Y 0(x) = ϕ(x,λ0)Y 0(0). Clearly, Y 0(0) = ϕ(0,λ)Y 0(0). It follows from U (Y 0) = 0

that Y 0′(0) = hY 0(0) = ϕ(0,λ)Y 0(0). Thus, Y 0(x) and ϕ(x,λ0)Y 0(0) are the solutions for the

same initial value problem for equation (1). Consequently, they are equal.

2. Let us have exactly k linearly independent eigenfunctions Y 1, Y 2, . . . , Y k corresponding

to the eigenvalue λ0. Choose the invertible m ×m matrix C such that the first k columns of

ϕ(x,λ0)C coincide with the eigenfunctions. Consider Y (x,λ) :=ϕ(x,λ)C ,

Y (x,λ) = [Yq (x,λ)]q=1,m , Yq (x,λ0) = Y q (x), q = 1,k . Clearly, the zeros of ∆1(λ) := detV (Y ) =
detV (ϕ) ·detC coincide with the zeros of ∆(λ) counting with their multiplicities. Note that

λ= λ0 is a zero of each of the columns V (Y1), . . . , V (Yk ). Hence, if λ0 is the zero of the deter-

minants ∆1(λ) and ∆(λ) with the multiplicity p , then p ≥ k .

3. Suppose that p > k . Rewrite ∆1(λ) in the form

∆1(λ) = (λ−λ0)k
∆2(λ),

∆2(λ) = det

[

V (Y1)

λ−λ0
, . . . ,

V (Yk )

λ−λ0
,V (Yk+1), . . . ,V (Ym)

]

.

In view of our supposition, we have ∆2(λ0) = 0, i. e. there exist not all zero coefficients αq ,

q = 1,m such that
k
∑

q=1

αq

dV (Yq (x,λ0))

dλ
+

m
∑

q=k+1

αq V (Yq (x,λ0)) = 0. (12)
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If αq = 0 for q = 1,k, then the function

Y +(x,λ) :=
m
∑

q=k+1

αq Yq (x,λ)

for λ = λ0 is an eigenfunction, corresponding to λ0, that is linearly independent with Y q ,

q = 1,k. Since the eigenvalue λ0 has exactly k corresponding eigenfunctions, we arrive at a

contradiction.

Otherwise we consider the function

Y +(x,λ) :=
k
∑

q=1

αq Yq (x,λ)+ (λ−λ0)
m
∑

q=k+1

αq Yq (x,λ).

Now we plan to use the simplicity of the poles of (V (ϕ))−1, following from Assumption 1 by

Lemma 4. Recall the following well-known fact (see [5, Lemma 2.2.1]):

The inverse (V (ϕ))−1 has a simple pole at λ=λ0 if and only if the relations at λ=λ0:

V (ϕ)a = 0,
d

dλV (ϕ)a +V (ϕ)b = 0,
(13)

where a and b are constant vectors, yield a = 0.

The function Y + has the form Y +(x,λ) = V (ϕ)a + (λ−λ0)V (ϕ)b, a 6= 0. In view of (12),

the relations (13) are satisfied, and we arrive at a contradiction with Assumption 1. Thus,

∆2(λ0) 6= 0 and p = k . ���

Lemma 6. The ranks of the residue-matrices of the Weyl matrix M (λ) coincide with the multi-

plicities of the corresponding eigenvalues of L.

Under Assumption 1, the proof of Lemma 6 does not differ from the proof in the self-

adjoint case (see [11, Lemma 4]).

Now let us consider the problem L∗, defined by (11). It is easy to check that

〈Z ,Y 〉x=0 =U∗(Z )Y (0)−Z (0)U (Y ), 〈Z ,Y 〉x=π =V ∗(Z )Y (π)−Z (π)V (Y ). (14)

where 〈Z ,Y 〉 = Z ′Y − Z Y ′. If Y (x,λ) and Z (x,λ) satisfy the equations ℓY (x,λ) = λY (x,λ),

ℓ∗Z (x,µ)=µZ (x,µ), respectively, then

d

d x
〈Z (x,µ),Y (x,λ)〉 = (λ−µ)Z (x,µ)Y (x,λ), (15)

Introduce the matrices ϕ∗(x,λ), S∗(x,λ) and Φ
∗(x,λ), satisfying the equation ℓ∗Z = λZ

and the conditions

ϕ∗(0,λ) = S∗′(0,λ) =U∗(Φ∗) = Im , ϕ∗′(0,λ) = h, S∗(0,λ) =V ∗(Φ∗) = 0m .
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Denote M∗(λ) :=Φ
∗(0,λ).

In view of (15), the expression 〈Φ∗(x,λ),Φ(x,λ)〉 does not depend on x. Using (14), we

obtain

〈Φ∗(x,λ),Φ(x,λ)〉x=0 = M (λ)−M∗(λ), 〈Φ∗(x,λ),Φ(x,λ)〉x=π = 0m .

Hence

M (λ)≡ M∗(λ). (16)

and consequently, the spectral data of the problems L and L∗ coincide.

Lemma 7. Let λ0, λ1 be eigenvalues of L, λ0 6= λ1, and αi = Res
λ=λi

M (λ), i = 0,1. The following

relations hold

α0

∫π

0
ϕ∗(x,λ0)ϕ(x,λ0)d xα0 =α0,

α0

∫π

0
ϕ∗(x,λ0)ϕ(x,λ1)d xα1 = 0m .

Proof. Using (14) and (15), we derive

∫π

0
ϕ∗(x,λ0)ϕ(x,λ0)d x = lim

λ→λ0

〈ϕ∗(x,λ0),ϕ(x,λ)〉|π0
λ−λ0

= lim
λ→λ0

V ∗(ϕ∗(x,λ0))ϕ(π,λ)−ϕ∗(π,λ0)V (ϕ(x,λ))

λ−λ0
.

In view of (5), the product V (ϕ)M (λ) is an entire function of λ. Taking its residues at λ0, we

get

V (ϕ(x,λ0))α0 = 0m . (17)

Similarly α0V ∗(ϕ∗(x,λ0)) = 0m . Consequently, we calculate

α0

∫π

0
ϕ∗(x,λ0)ϕ(x,λ0)d xα0

= α0ϕ
∗(π,λ0) lim

λ→λ0

V (ϕ(x,λ))

λ−λ0
× lim

λ→λ0

(λ−λ0)(V (ϕ(x,λ)))−1V (S(x,λ))

= α0ϕ
∗(π,λ0)V (S(x,λ0)) =−α0〈ϕ∗(x,λ0),S(x,λ0)〉x=π

= −α0〈ϕ∗(x,λ0),S(x,λ0)〉x=0 =α0.

Similarly one can derive the second relation of the lemma. ���

Lemma 8. Let {λnq ,αnq }n≥0,q=1,m be the spectral data of the problem L, satisfying Assump-

tions 1 and 2. Then (E) is valid.
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Proof. Let γ(λ) be a function described in (E). In view of (17), we have

V (ϕ(x,λnq ))αnq = 0m , n ≥ 0, q = 1,m. (18)

Since

rank V (ϕ(x,λnq ))+ rank αnq = m

and γ(λnq )αnq = 0, we get γ(λnq ) =Cnq V (ϕ(x,λnq )), i. e. the row γ(λnq ) is a linear combina-

tion of the rows of the matrix V (ϕ(x,λnq )) (here Cnq is a row of coefficients). Consider

f (λ) = γ(λ)(V (ϕ(x,λ)))−1.

The matrix-function (V (ϕ(x,λ)))−1 has simple poles in λ=λnq , therefore, we calculate

Res
λ=λnq

f (λ) = γ(λnq ) Res
λ=λnq

(V (ϕ(x,λ)))−1

= Cnq lim
λ→λnq

V (ϕ(x,λ)) lim
λ→λnq

(λ−λnq )(V (ϕ(x,λ)))−1 = 0.

Hence, f (λ) is entire. It is easy to show that

‖(V (ϕ(x,λ)))−1‖≤Cδ|ρ|−1 exp(−|τ|π), ρ ∈Gδ,

where Gδ = {ρ : |ρ−k | ≥ δ,k = 0,1,2, . . . , |ρ| ≥ ρ∗}, δ> 0. From this we conclude that ‖ f (λ)‖ ≤
C
|ρ| in Gδ. By the maximum principle this estimate is valid in the whole λ-plane. Using Liou-

ville‘s theorem, we obtain f (λ) ≡ 0. Consequently, γ(λ) ≡ 0. ���

3. Asymptotics

In this section, we prove Lemmas 2 and 3, providing asymptotic formulas for the weight

matrices αnq .

Lemma 9. For |ρ|→∞, the following asymptotic formulae hold

V (ϕ) = −ρ sinρπ · Im +ωcosρπ+κ(ρ), (19)

κ(ρ) =
1

2

∫π

0
Q(t )cosρ(π−2t )d t +O

(

exp(|τ|π)

ρ

)

;

V (S) = cosρπ · Im +
sinρπ

ρ
ω0 +

κ0(ρ)

ρ
, ω0 = H +

1

2

∫π

0
Q(t )d t , (20)

κ0(ρ) = −
1

2

∫π

0
sinρ(π−2t )Q(t )d t +O

(

exp(|τ|π)

ρ

)

.
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Proof. The assertion of the lemma immediately follows from the standard asymptotics:

ϕ(x,λ) = cosρx · Im +
sinρx

ρ
Q1(x)+

1

2ρ

∫x

0
sinρ(x −2t )Q(t )d t +O

(

exp(|τ|x)

ρ2

)

, (21)

ϕ′(x,λ) = −ρ sinρx · Im +cosρxQ1(x)+
1

2

∫x

0
cosρ(x −2t )Q(t )d t +O

(

exp(|τ|x)

ρ

)

, (22)

where Q1(x) =h + 1
2

∫x
0 Q(t )d t , and

S(x,λ) =
sinρx

ρ
· Im −

cosρx

2ρ2

∫x

0
Q(t )d t +

1

2ρ2

∫x

0
cosρ(x −2t )Q(t )d t +O

(

exp(|τ|x)

ρ3

)

,

S ′(x,λ) = cosρx · Im +
sinρx

2ρ

∫x

0
Q(t )d t −

1

2ρ

∫x

0
sinρ(x −2t )Q(t )d t +O

(

exp(|τ|x)

ρ2

)

.

These formulas can be derived similarly to the scalar ones from [4, Lemma 1.1.2, Theorem

1.1.3]. ���

Proof of Lemma 2. Consider the contour

γ(s)
n :=

{

λ : λ=n2 +
2

π
µ, |µ−ωms

| =R :=
1

2
min

j ,k
|ω j −ωk |

}

.

Then for sufficiently large n, by virtue of (3) and the residue theorem,

α(s)
n =

1

2πi

∫

γ(s)
n

M (λ)dλ. (23)

Further in this proof, we fix s = 1, p and a sufficiently large n, and consider only λ =
n2 +

2

π
µ ∈ γ(s)

n . Taking a square root, we get

ρ =
p
λ= n +

µ

πn
+
κn(µ)

n
. (24)

Here and below {κn(µ)} denotes different sequences, depending on µ, but is majorized by a

constant sequence from l2, independent of µ:

∀µ : |µ−ωms
| = R , |κn(µ)| ≤ κn ,

∑

n

κ2
n <∞.

Similarly, {Kn(µ)} denotes sequences of matrices, whose norms form scalar sequences {κn (µ)}.

It follows from (19) and (20), that for λ∈ γ(s)
n ,

V (ϕ) = (−1)n (−µIm +ω+Kn(µ)), V (S)= (−1)n

(

Im +
Kn(µ)

n

)

.

Substitute this into (5):

M (λ) = (µIm −ω+Kn (µ))−1

(

Im +
Kn(µ)

n

)

.
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Since |µ−ωq | ≥R for all q = 1,m, the inverse M0(µ) := (µIm −ω)−1 is bounded, and

M (λ)−M0(µ) =Kn(µ),
1

2πi

∫

γ(s)
n

(M (λ)−M0(µ))dλ=Kn .

We calculate

1

2πi

∫

γ(s)
n

M0(µ)dλ=
2

π
·

1

2πi

∫

|µ−ωms |=R
(µIm −ω)−1 dµ=

2

π
I (s).

Together with (23), this gives (7).

By (3) and (19), V (ϕ(x,λnq )) = (−1)n (ω−ωq Im +Kn ). By Assumption 2, ‖αnq‖ ≤C . Using

these facts together with (18), we obtain (ω−ωq Im)αnq = Kn . This relation yields (8). ���

Lemma 10. Let a matrix A be such that ‖A‖< R. Then

1

2πi

∫

|µ|=R
(µIm − A)−1dµ= Im .

Proof. The matrix-function F (µ) = (µIm−A)−1 is analytic outside the circle |µ| < R . Therefore,

1

2πi

∫

|µ|=R
F (µ)dµ=− Res

µ=∞
F (µ).

The Laurent series

F (µ)=
1

µ

(

Im +
A

µ
+

A2

µ2
+·· ·

)

converge uniformly when |µ| ≥ R >‖A‖. Therefore

Res
µ=∞

F (µ) =−Im,

that yields the assertion of the lemma. ���

Proof of Lemma 3. Note that in fact, the asymptotics

αn =
2

π
Im +Kn , n ≥ 0,

are already proved. In order to improve the estimate, we will work with the remainder κ(ρ) in

(19).

Substituting the representation

ϕ′(x,λ) = −ρ sinρx · Im +cosρxQ1(x)+
1

2

∫x

0
cosρ(x −2t )Q(t )d t

+
sinρx

2ρ

∫x

0
Q(t )Q1(t )d t −

1

2ρ

∫x

0
sinρ(x −2t )Q(t )Q1(t )d t

+
1

2ρ

∫x

0
cosρ(x − t )Q(t )

∫t

0
sinρ(t −2s)Q(s)d s d t +O

(

exp(|τ|x)

ρ2

)

,
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Q1(x) := h +
1

2

∫x

0
Q(t )d t ,

and (21) into V (ϕ) =ϕ′(π,λ)+Hϕ(π,λ), we arrive at (19) with

κ(ρ) =
1

2

∫π

0
cosρ(π−2t )Q(t )d t +

sinρπ

ρ

(

1

2

∫π

0
Q(t )Q1(t )d t +HQ1(π)

)

+
1

2ρ

∫π

0
sinρ(π−2t )(HQ(t )−Q(t )Q1(t )) d t

+
1

2ρ

∫π

0
cosρ(π− t )Q(t )

∫t

0
sinρ(t −2s)Q(s)d s d t +O

(

exp(|τ|π)

ρ2

)

. (25)

Consider the contour

γn :=
{

λ : λ= n2 +
2

π
µ, |µ| = 3‖ω‖

}

.

Further in this proof, we fix a sufficiently large n, such that

αn =
1

2πi

∫

γn

M (λ)dλ. (26)

and consider only λ= n2 +
2

π
µ ∈ γn . Then the square root of λ takes the form (24).

Substitute (24) into (25). Then the first integral in (25) equals

1

2

∫π

0
cos n(π−2t )Q(t )d t +

Kn(µ)

n
,

and all the other terms are
Kn(µ)

n
. Then by (5), (19), (20), we get

M (λ) =
(

µIm −ω+Ln +
Kn(µ)

n

)−1 (

Im +
Kn(µ)

n

)

, λ∈ γn ,

where Ln is a matrix sequence independent of µ, and {‖Ln‖} ∈ l2. Thus, for large n, ‖Ln‖+
‖Kn(µ)/n‖≤ ‖ω‖ and the inverses

(

µIm −ω+Ln + Kn (µ)
n

)−1
and

(

µIm −ω+Ln

)−1
are bounded

for |µ| = 3‖ω‖. Therefore

1

2πi

∫

|µ|=3‖ω‖
M (λ)dµ=

1

2πi

∫

|µ|=3‖ω‖

(

µIm −ω+Ln

)−1
dµ+

Kn

n
.

Applying Lemma 10 to the right-hand side and changing dµ to dλ, we arrive at (9). ���

4. Solution of Inverse Problem 1

Let the spectral data Λ of the boundary value problem L ∈ A1,2(ω), ω ∈D, be given.
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Denote

D(x,λ,µ) =
〈ϕ∗(x,µ),ϕ(x,λ)〉

λ−µ
=

∫x

0
ϕ∗(t ,µ)ϕ(t ,λ)d t . (27)

We choose an arbitrary model boundary value problem L̃ = L(Q̃(x), h̃, H̃) ∈ A1,2(ω) (for

example, one can take Q̃(x) = 2
πω, h̃ = 0m , H̃ = 0m). Note that for this choice of the model

problem ω = ω̃, therefore the eigenvalues λ̃nq and the weight matrices α̃nq of L̃ satisfy the

same asymptotic formulae (3), (7), (8) and (9), as λnq and αnq . Put

ξn =
m
∑

q=1

|ρnq − ρ̃nq |+
p
∑

s=1

∑

q∈Js

|ρnq −ρnms
|+

p
∑

s=1

∑

q∈Js

|ρ̃nq − ρ̃nms
|+

p
∑

s=1

1

n
‖α(s)

n − α̃(s)
n ‖+‖αn − α̃n‖,

(28)

then

Ω :=
( ∞
∑

n=0

((n +1)ξn )2

)1/2

<∞,
∞
∑

n=0

ξn <∞. (29)

Denote

λnq0 =λnq , λnq1 = λ̃nq , ρnq0 = ρnq , ρnq1 = ρ̃nq , α′
nq0 =α′

nq , α′
nq1 = α̃′

nq ,

ϕnqi (x) =ϕ(x,λnqi ), ϕ̃nqi (x) = ϕ̃(x,λnqi ), ϕ∗
nqi (x)=ϕ∗(x,λnqi ), ϕ̃∗

nqi (x) = ϕ̃∗(x,λnqi ),

n ≥ 0, q = 1,m, i = 0,1.

By the standard way (see [4, Lemma 1.6.2]), using Schwarz’s lemma, we get

Lemma 11. The following estimates are valid for x ∈ [0,π], n,k ≥ 0, q, l ,r = 1,m, i , j , s = 0,1:

‖ϕnqi (x)‖ ≤C , ‖ϕnqi (x)−ϕnl j (x)‖ ≤C |ρnqi −ρnl j |,

‖D(x,λnqi ,λkl j )‖≤
C

|n −k |+1
, ‖D(x,λnqi ,λkl j )−D(x,λnqi ,λkr s )‖ ≤

C |ρkl j −ρkr s |
|n −k |+1

.

The analogous estimates are also valid for ϕ̃nqi(x), D̃(x,λnqi ,λkl j ), as well as for similar matrix

functions, related to the problems L∗, L̃∗.

The next theorem plays a crucial role in the derivation of the main equation of the inverse

problem. It can be proved similarly to [9, Lemma 1] by the contour integral method.

Theorem 3. The following relations hold

ϕ̃(x,λ) =ϕ(x,λ)+
∞
∑

k=0

m
∑

l=1

(

ϕkl0(x)α′
kl0D̃(x,λ,λkl0)−ϕkl1(x)α′

kl1D̃(x,λ,λkl1)
)

(30)

D̃(x,λ,µ)−D(x,λ,µ) =
∞
∑

k=0

m
∑

l=1

(

D(x,λkl0,µ)α′
kl0D̃(x,λ,λkl0)−D(x,λkl1,µ)α′

kl1D̃(x,λ,λkl1)
)

.

Both series converge absolutely and uniformly with respect to x ∈ [0,π] and λ, µ on compact

sets.
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Analogously one can obtain the following relation

Φ̃(x,λ) =Φ(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) jϕkl j (x)α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉

λ−λkl j

. (31)

It follows from Theorem 3 that

ϕ̃nqi (x) =ϕnqi (x)+
∞
∑

k=0

m
∑

l=1

(ϕkl0(x)α′
kl0D̃(x,λnqi ,λkl0)−ϕkl1(x)α′

kl1D̃(x,λnqi ,λkl1)), (32)

α′
ηr j D̃(x,λnqi ,ληr j )−α′

ηr j D(x,λnqi ,ληr j ) =
∞
∑

k=0

m
∑

l=1

(

α′
ηr j D(x,λkl0,ληr j )α′

kl0D̃(x,λnqi ,λkl0)

−α′
ηr j D(x,λkl1,ληr j )α′

kl1D̃(x,λnqi ,λkl1)
)

. (33)

for n,η≥ 0, q,r = 1,m, i , j = 0,1.

For each fixed x ∈ [0,π], the relation (32) can be considered as a system of linear equa-

tions with respect to ϕnqi (x), n ≥ 0, q = 1,m, i = 0,1. But the series in (32) converges only

“with brackets”. Therefore, it is not convenient to use (32) as a main equation of the inverse

problem. Below we will transfer (32) to a linear equation in a corresponding Banach space of

sequences.

Introduce collections Gn = {ρnqi }q=1,m,i=0,1, n ≥ 0. Fix n and, for convenience, renu-

merate the elements of the collection: Gn = {gi }2m
i=1

. Consider a finite-dimensional space

B (Gn) =
{

f : Gn → C
m×m

}

of matrix-functions f , such that f (gi ) = f (g j ) if gi = g j , with the

norm

‖ f ‖B (Gn ) = max

{

max
i

‖ f (gi )‖, max
i , j : g i 6=g j

‖ f (gi )− f (g j )‖ · |gi − g j |−1

}

.

Introduce a Banach space of infinite row vectors

B = { f = { fn}∞n=0 : fn ∈ B (Gn), ‖ f ‖B := sup
n≥0

‖ fn‖B (Gn ) <∞}.

Fix x ∈ [0,π]. Lemma 11 gives the following estimates:

‖ϕ(x, g 2
i )‖ ≤C , ‖ϕ(x, g 2

i )−ϕ(x, g 2
j )‖ ≤C |gi − g j |, gi , g j ∈Gn ,

where the constant C does not depend on n. Therefore, ϕ(x,ρ2) forms an element of B :

ϕ(x,ρ2)|B := {ϕ(x,ρ2)|Gn
}n≥0 ∈ B , ϕ(x,ρ2)|Gn

= {ϕ(x,λnqi )}q=1,m,i=0,1.

Denote ψ(x) :=ϕ(x,ρ2)|B , ψ̃(x) := ϕ̃(x,ρ2)|B . Then (32) and (33) can be transformed into the

following relations in the Banach space B :

ψ̃(x) =ψ(x)(I + R̃(x)), (34)
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R̃(x)−R(x) = R(x)R̃(x), (35)

where I is the identity operator in B , and R(x), R̃(x) are linear operators, acting from B to B .4

The explicit form of R̃(x) and R(x) can be derived from (32) and (33). Further we investigate

the operator R(x), the same properties for R̃(x) can be obtained symmetrically.

According to (32) and (33), the operator R(x) acts on an arbitrary element ψ= {ψk }∞
k=0

∈ B

in the following way:

(ψR(x))n =
∞
∑

k=0

ψk Rk ,n(x), Rk ,n : B (Gk ) → B (Gn), k ,n ≥ 0, (36)

(ψk Rk ,n(x))(ρnqi ) =
m
∑

l=1

(

ψk (ρkl0)α′
kl0D(x,λnqi ,λkl0)−ψk (ρkl1)α′

kl1D(x,λnqi ,λkl1)
)

. (37)

Lemma 12. The series in (36) converge in B (Gn)-norm and the operator R(x) is bounded and,

moreover, compact on B.

Proof. Let ψ = {ψk }∞
k=0

∈ B . Fix x ∈ [0,π] and n,k ≥ 0. Denote ψkl j := ψk (ρkl j ), ηnqi ,k :=
(ψk Rk ,n(x))(ρnqi ). Let us show that

‖ηnqi ,k‖≤
Cξk‖ψk‖B (Gk )

|n −k |+1
, q = 1,m, i = 0,1, (38)

where ξk was defined in (28) and the constant C does not depend on n and k .

Using (37), we derive

ηnqi ,k =
m
∑

l=1

[

(ψkl0 −ψkl1)α′
kl0D(x,λnqi ,λkl0)

+ψkl1α
′
kl0(D(x,λnqi ,λkl0)−D(x,λnqi ,λkl1))+ψkl1(α′

kl0 −α′
kl1)D(x,λnqi ,λkl1)

]

.

Since

‖ψkl1‖≤ ‖ψk‖B (Gk ), ‖ψkl0 −ψkl1‖≤ |ρkl0 −ρkl1|‖ψk‖B (Gk ) ≤ ξk‖ψk‖B (Gk ), l = 1,m,

‖α′
kl0

‖≤C , and D(x,λnqi ,λkl j ) satisfy estimates of Lemma 11, one easily obtain the estimate

(38) for the first two terms.

Recall that Js = {q : ωq = ωms
}, s = 1, p , are indices in groups with equal terms ωq in

asymptotics (3). Continue to work with the third term:

m
∑

l=1

ψkl1(α′
kl0 −α′

kl1)D(x,λnqi ,λkl1)

4The action of operators R(x) and R̃(x) is, in fact, a multiplication of an infinite row vector to an infinite

matrix. It is more convenient to write operators to the right of operands, to keep the correct order in elementwise

multiplication, which is the noncommutative multiplication of m ×m matrices.
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=
p
∑

s=1

[

∑

l∈Js

(ψkl1 −ψkms 1)(α′
kl0 −α′

kl1)D(x,λnqi ,λkl1)

+
∑

l∈Js

ψkms 1(α′
kl0 −α′

kl1)(D(x,λnqi ,λkl1)−D(x,λnqi ,λkms 1))

+ψkms 1(α(s)
k

− α̃(s)
k

)D(x,λnqi ,λkms 1)
]

Applying the estimate

‖ψkl1 −ψkms 1‖ ≤ |ρkl1 −ρkms1|‖ψk‖B (Gk ) ≤ ξk‖ψk‖B (Gk ), l ∈ Js ,

estimates for α′
kl j

and Lemma 11, we arrive at (38) for the first two terms again and continue

to investigate the third one.

p
∑

s=1

ψkms 1(α(s)
k

− α̃(s)
k

)D(x,λnqi ,λkms 1)

=
p
∑

s=1

(ψkms 1 −ψk11)(α(s)
k

− α̃(s)
k

)D(x,λnqi ,λkms 1)

+
p
∑

s=1

ψk11(α(s)
k

− α̃(s)
k

)(D(x,λnqi ,λkms 1)−D(x,λnqi ,λk11))+ψk11(αk − α̃k )D(x,λnqi ,λk11).

Now we use the estimates

‖ψkms 1 −ψk11‖≤ |ρkms1 −ρk11|‖ψk‖B (Gk ) ≤
‖ψk‖B (Gk )

k
,

‖α(s)
k

− α̃(s)
k
‖≤ kξk , ‖αk − α̃k‖ ≤ ξk ,

(following from (7), (9) and similar asymptotics for α̃nq ) and Lemma 11. Finally we arrive

at (38).

Analogously one can obtain the estimate

‖ηnqi ,k −ηnl j ,k‖ ≤
Cξk‖ψk‖B (Gk )|ρnqi −ρnl j |

|n −k |+1
, q, l = 1,m, i , j = 0,1.

Together with (38), this gives

‖Rk ,n(x)‖B (Gk )→B (Gn ) ≤
Cξk

|n −k |+1
, k ,n ≥ 0, (39)

where the constant C does not depend on n and k . Substitute (39) into (36) and use (29):

‖ψR(x)‖B = sup
n≥0

∥

∥(ψR(x))n

∥

∥≤ ‖ψ‖B

(

∞
∑

k=0

Cξk

|n −k |+1

)

≤C‖ψ‖B .

Hence ‖R(x)‖B→B <∞.

The operator R(x) can be approximated by a sequence of finite-dimensional operators

in B . Indeed, let R s
k ,n

(x) = Rk ,n(x) for all n ≥ 0, 0 ≤ k ≤ s, and all the other components of

R s(x) equal zero. It is easy to show using (39), that lim
s→∞

‖R s(x)−R(x)‖B→B = 0. Therefore the

operator R(x) is compact. ���
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Theorem 4. For each fixed x ∈ [0,π], the operator I + R̃(x) has a bounded inverse operator, and

equation (34) is uniquely solvable in the Banach space B.

Proof. It follows from (35), that for each fixed x ∈ [0,π], (I −R(x))(I + R̃(x)) = I . Symmetri-

cally, one gets (I + R̃(x))(I −R(x)) = I . Hence the operator (I + R̃(x))−1 exists, and it is a linear

bounded operator by Lemma 12. ���

Equation (34) is called the main equation of Inverse Problem 1. Theorem 4 together with

Lemmas 1, 2, 3 and 6 gives the necessity part in Theorem 1.

Now turn to the problem L∗, defined in (11). Take the model problem L̃∗ = L∗(Q̃(x), h̃, H̃)

with the same potential Q̃ as the problem L̃ has. By virtue of (16), the problems L and L∗ (sim-

ilarly, L̃ and L̃∗) have the same spectral data. Symmetrically to (32), we obtain the relations

ϕ̃∗
nqi (x) =ϕ∗

nqi (x)+
∞
∑

k=0

m
∑

l=1

(

D̃(x,λkl0,λnqi )α′
kl0ϕ

∗
kl0(x)− D̃(x,λkl1,λnqi )α′

kl1ϕ
∗
kl1(x)

)

, (40)

for each fixed x ∈ [0,π], n ≥ 0, q = 1,m, i = 0,1. Similarly to B , introduce the Banach space B∗

of column vectors. Then ψ∗ = {ψ∗
k

}∞
k=0

, ψ∗
k
= [ϕ∗

kl j
(x)]l=1,m, j=0,1 satisfy the linear equation

(I + R̃∗(x))ψ∗(x) = ψ̃∗(x) (41)

in B∗ for each fixed x ∈ [0,π]. Here ψ̃∗(x) and R̃∗(x) are constructed symmetrically to ψ̃(x)

and R̃(x) by the model problem L̃∗ and the spectral data Λ, Λ̃.

Lemma 13. For each fixed x ∈ [0,π], equation (41) is uniquely solvable in the Banach space B∗

if and only if equation (34) is uniquely solvable.

Proof. Fix x ∈ [0,π]. In view of Lemma 12, the operators R̃(x) and R̃∗(x) are compact in the

corresponding Banach spaces. Therefore it is sufficient to consider homogeneous equations

γ(x)(I + R̃(x)) = 0 and (I + R̃∗(x))γ∗(x) = 0. Let us prove only the “if” part, since the “only if”

part can be proved symmetrically.

Suppose the equation γ(x)(I+R̃(x)) = 0 is uniquely solvable. Then there exists a bounded

inverse operator P̃ (x) = (I + R̃(x))−1 of the following form

(ψP̃ (x))nqi =
∞
∑

k=0

m
∑

l=1

(

ψkl0P̃kl0,nqi (x)−ψkl1P̃kl1,nqi (x)
)

,

P̃(x) = [P̃k ,n(x)]k ,n≥0 = [P̃kl j ,nqi (x)], ψ= [ψkl j ] ∈ B , n,k ≥ 0 q, l = 1,m, i , j = 0,1.

It follows from (ψP̃ (x)) ∈ B , that

‖P̃r st ,nqi (x)− P̃r st ,nl j (x)‖ ≤C |ρnqi −ρnl j |, r,n ≥ 0, s, q, l = 1,m, t , i , j = 0,1. (42)
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For simplicity, assume that all the values {λnqi } are distinct (the general case requires

minor modifications). The relation P̃(x)(I + R̃(x)) = I yields

P̃r st ,nqi (x)+
∞
∑

k=0

n
∑

l=1

(

P̃r st ,kl0(x)α′
kl0D̃(x,λnqi ,λkl0)− P̃r st ,kl1(x)α′

kl1D̃(x,λnqi ,λkl1)
)

=δr st ,nqi ,

(43)

n,r ≥ 0, s, q = 1,m, t , i = 0,1,

where δr st ,nqi = Im , if (r, s, t )= (n, q, i ), and δr st ,nqi = 0m otherwise.

Let γ∗(x) = [γ∗
nqi

(x)] be a solution of the equation (I + R̃∗(x))γ∗(x) = 0:

γ∗nqi (x)+
∞
∑

k=0

m
∑

l=1

(

D̃(x,λkl0,λnqi )α′
kl0γ

∗
kl0(x)− D̃(x,λkl1,λnqi )α′

kl1γ
∗
kl1(x)

)

= 0m , (44)

n ≥ 0, q = 1,m, i = 0,1. Then

∞
∑

n=0

m
∑

q=1

1
∑

i=0

(−1)i P̃r st ,nqi (x)α′
nqi γ

∗
nqi (x)

+
∞
∑

n,k=0

m
∑

q,l=1

1
∑

i , j=0

(−1)i+ j P̃r st ,nqi (x)α′
nqi D̃(x,λkl j ,λnqi )α′

kl jγ
∗
kl j (x) = 0m , r ≥ 0, s = 1,m, t = 0,1.

Convergence of the series can be proved with help of (42). Using (43), we obtain

∞
∑

n=0

m
∑

q=1

1
∑

i=0

(−1)i P̃r st ,nqi (x)α′
nqiγ

∗
nqi (x)+

∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j (δr st ,kl j − P̃r st ,kl j (x))α′
kl jγ

∗
kl j (x) = 0m .

Consequently, α′
kl j

γ∗
kl j

(x) = 0m for all k ≥ 0, l = 1,m, j = 0,1. In view of (44), we conclude that

γ∗(x) = 0, so the homogeneous equation (I + R̃∗(x))γ∗(x) = 0 is uniquely solvable. ���

Note that in the proof of Lemma 13 we do not use the fact, that Λ is the spectral data of L,

but use only properties (A) and (R). Therefore this lemma can be used in the sufficiency part.

The main equation gives us a constructive solution of Inverse problem 1. Solving (34), we

find the vector ψ(x), i.e. the matrix-functions ϕnqi (x).

Denote

ε0(x) =
∞
∑

k=0

m
∑

l=1

(

ϕkl0(x)α′
kl0ϕ̃

∗
kl0(x)−ϕkl1(x)α′

kl1ϕ̃
∗
kl1(x)

)

, ε(x) =−2ε′0(x). (45)

Lemma 14. The series in (45) converges absolutely and uniformly on [0,π], the function ε0(x)

is absolutely continuous, and ε(x) ∈ L2((0,π),Cm×m).

Proof. Here we use ideas similar to the proof of Lemma 12. Group the terms of (45) in the

following way:

m
∑

l=1

(

ϕkl0(x)α′
kl0ϕ̃

∗
kl0(x)−ϕkl1(x)α′

kl1ϕ̃
∗
kl1(x)

)
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=
m
∑

l=1

(ϕkl0(x)−ϕkl1(x))α′
kl0ϕ̃

∗
kl0(x)+

m
∑

l=1

ϕkl1(x)α′
kl0(ϕ̃∗

kl0(x)− ϕ̃∗
kl1(x))

+
p
∑

s=1

∑

l∈Js

(ϕkl1(x)−ϕkms 1(x))(α′
kl0 −α′

kl1)ϕ̃∗
kl1(x)

+
p
∑

s=1

∑

l∈Js

ϕkms 1(x)(α′
kl0 −α′

kl1)(ϕ̃∗
kl1(x)− ϕ̃∗

kms 1(x))

+
p
∑

s=1

(ϕkms 1(x)−ϕk11(x))(α(s)
k

− α̃(s)
k

)ϕ̃∗
kms 1(x)

+
p
∑

s=1

ϕk11(x)(α(s)
k

− α̃(s)
k

)(ϕ̃∗
kms 1(x)− ϕ̃∗

k11(x))+ϕk11(x)(αk − α̃k )ϕ̃∗
k11(x). (46)

It follows from (28), (29) and Lemma 11, that the series in (45) converges absolutely and uni-

formly on [0,π]:

‖ε0(x)‖ ≤C
∞
∑

k=0

ξk <∞.

Let us analyze the derivative of the first term in (46):

S ′(x) :=
d

d x

(

(ϕkl0(x)−ϕkl1(x))α′
kl0ϕ̃

∗
kl0(x)

)

= (ϕ′
kl0(x)−ϕ′

kl1(x))α′
kl0ϕ̃

∗
kl0(x)+ (ϕkl0(x)−ϕkl1(x))α′

kl0ϕ̃
∗′

kl0(x)

The other terms can be treated similarly. Using asymptotics (3), (21) and (22) together with

Schwarz’s lemma, one gets

ϕ′
kl0(x)−ϕ′

kl1(x) = −cos k xγkl xIm +
Kk (x)

k +1
, ϕ̃∗

kl0(x) = cos k x +O(k−1),

ϕkl0(x)−ϕkl1(x) = −sin k x
γkl

k +1
xIm +

Kk (x)

(k +1)2
, ϕ̃∗′

kl0(x) =−k sink x +O(1),

where γkl = (k+1)(ρkl0−ρkl1), {γkl } ∈ l2, Kk (x) denotes various sequences of matrix functions,

continuous on [0,π], such that {max
x

‖Kk (x)‖} ∈ l2. Then

S ′(x) =−cos 2k xγkl xα′
kl0 +

Kk (x)

k +1
.

By the Riesz-Fischer theorem,

x
∞
∑

k=0

cos 2k xγklα
′
kl0 ∈ L2((0,π),Cm×m).

The series
∞
∑

k=0

Kk (x)

k +1
converges absolutely and uniformly with respect to x ∈ [0,π]. Hence

ε(x) ∈ L2((0,π),Cm×m). ���

The next lemma gives formulas for recovering the potential Q(x) and the coefficients of

the boundary conditions h and H .
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Lemma 15. The following relations hold

Q(x) = Q̃(x)+ε(x), h = h̃ −ε0(0), H = H̃ +ε0(π), (47)

Proof. The proof is similar to [11, Lemma 8]. Differentiating (30) twice with respect to x and

using (27) and (45) we get

ϕ̃′(x,λ)−ε0(x)ϕ̃(x,λ) = ϕ′(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) jϕ′
kl j (x)α′

kl j D̃(x,λ,λkl j ),

ϕ̃′′(x,λ) = ϕ′′(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j [ϕ′′
kl j (x)α′

kl j D̃(x,λ,λkl j )

+2ϕ′
kl j (x)α′

kl j ϕ̃
∗
kl j (x)ϕ̃(x,λ)+ϕkl j (x)α′

kl j (ϕ̃∗
kl j (x)ϕ̃(x,λ))′].

We replace here the second derivatives, using equation (1), and then replace ϕ(x,λ), using

(30). This yields

Q̃(x)ϕ(x,λ) = Q(x)ϕ̃(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j [ϕkl j (x)α′
kl j 〈ϕ̃

∗
kl j (x),ϕ̃(x,λ)〉

+2ϕ′
kl j (x)α′

kl j ϕ̃
∗
kl j (x)ϕ̃(x,λ)+ϕkl j (x)α′

kl j (ϕ̃∗
kl j (x)ϕ̃(x,λ))′].

Cancelling terms with ϕ̃′(x,λ) we arrive at Q(x) = Q̃(x)+ε(x).

Further,

ϕ̃′(0,λ)− (h +ε0(0))ϕ̃(0) =U (ϕ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j U (ϕkl j )α′
kl j D(0,λ,λkl j ) = 0m .

Since ϕ̃(0,λ) = Im, ϕ̃′(0,λ) = h̃, we obtain h = h̃ −ε0(0).

Similarly, using (31) one can get

Φ̃
′(π,λ)+ (H −ε0(π))Φ(π,λ) =V (Φ)+

∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j V (ϕkl j )α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉|x=π
λ−λkl j

.

For j = 0 we have V (ϕkl0)α′
kl0

= 0m . For j = 1

〈ϕ̃∗
kl1(x),Φ̃(x,λ)〉|x=π = Ṽ ∗(ϕ̃∗

kl1)Φ̃(π,λ)− ϕ̃∗
kl1(π)Ṽ (Φ̃).

Recall that V (Φ) = 0m , Ṽ (Φ̃) = 0m andα′
kl1

Ṽ ∗(ϕ̃∗
kl1

)= 0m . Consequently, we arrive at Φ̃′(π,λ)+
(H −ε0(π))Φ(π,λ) = 0m . Together with Ṽ (Φ̃) = 0m this yields H = H̃ +ε(π). ���

Thus, we obtain the following algorithm for the solution of Inverse Problem 1.

Algorithm 1. Given the data Λ.
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1. Choose L̃ ∈ A(ω), and calculate ψ̃(x) and R̃(x).

2. Find ψ(x) by solving equation (34), and calculate ϕnqi (x).

3. Construct Q(x), h and H by (47).

5. Conditions (M), (E), (C) and (PW)

In this section, we establish the connection between the solvability of the main equation

(M), the condition (E) and the completeness of some system of functions (C). The condition

(C) and its equivalent reformulation (PW) will be given further in this section.

Let ω ∈ D and data Λ ∈ Sp satisfy conditions (A) and (R) of Theorem 1. Let L̃ be an arbi-

trary problem from the class A1,2(ω).

Lemma 16. (E) follows from (M).

Proof. Let γ(λ) be a row vector, entire in λ and satisfying the relations γ(λ) = O(exp(|τ|π)),

γ(λnq0)αnq0 = 0 for all n ≥ 0, q = 1,m.

Schwarz’s lemma together with asymptotics (3) yields

‖γ(λnqi )−γ(λnl j )‖ ≤C |ρnqi −ρnl j |, n ≥ 0, q, l = 1,m, i , j = 0,1. (48)

Consider the function

γ̃(λ) := γ(λ)+
∞
∑

k=0

∞
∑

l=1

[

γ(λkl0)α′
kl0D̃(π,λ,λkl0)−γ(λkl1)α′

kl1D̃(π,λ,λkl1)
]

(49)

In order to prove the convergence of the series in (49), we apply the following formal transfor-

mation

γ̃(λ) = γ(λ)+
∞
∑

k=0

[ m
∑

l=1

(γ(λkl0)−γ(λkl1))α′
kl0D̃(π,λ,λkl0)

+
m
∑

l=1

γ(λkl1)α′
kl0(D̃(π,λ,λkl0)− D̃(π,λ,λkl1))

+
p
∑

s=1

∑

l∈Js

(γ(λkl1)−γ(λkms 1))(α′
kl0 −α′

kl1)D̃(π,λ,λkl1)

+
p
∑

s=1

∑

l∈Js

γ(λkms 1)(α′
kl0 −α′

kl1)(D̃(π,λ,λkl1)− D̃(π,λ,λkms 1))

+
p
∑

s=1

(γ(λkms 1)−γ(λk11))(α(s)
k

− α̃(s)
k

)D̃(π,λ,λkms 1)

+
p
∑

s=1

γ(λk11)(α(s)
k

− α̃(s)
k

)(D̃(π,λ,λkms 1)− D̃(π,λ,λk11))
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+γ(λk11)(αk − α̃k )D̃(π,λ,λk11)

]

. (50)

By virtue of (28), (48) and the estimates

‖D̃(π,λ,λkl j )‖ ≤ C exp(|τ|π), ‖D̃(π,λ,λkl j )− D̃(x,λ,λkqi ‖≤C |ρkl j −ρkqi |exp(|τ|π),

Reρ ≥ 0, k ≥ 0, l , q = 1,m, i , j = 0,1,

we get

‖γ̃(λ)‖ ≤ ‖γ(λ)‖+C exp(|τ|π)
∞
∑

k=0

ξk .

Taking (29) into account, we conclude that the series in (49) converges to an entire function,

satisfying the estimate γ̃(λ) =O(exp(|τ|π)).

Substituteλ=λnq1 into (49) and multiply the result byαnq1 . Definition (27) and Lemma 7

yield

α′
kl1D̃(π,λnq1,λkl1)αnq1 =







αnq1, ifαnq1 =αkl1 andα′
kl1

6= 0m ,

0m , otherwise.
(51)

Therefore, we obtain γ̃(λnq1)αnq1 = 0 for all n ≥ 0, q = 1,m. Thus, we have got the entire

function γ̃(λ), satisfying the presupposition of (E) for the spectral data Λ̃ of the model problem

L̃. But (E) holds for Λ̃ by Lemma 8. Hence γ̃(λ) ≡ 0, and by (49)

γ(λnqi )+
∞
∑

k=0

m
∑

l=1

(

γ(λkl0)α′
kl0D̃(π,λnqi ,λkl0)−γ(λkl1)α′

kl1D̃(π,λnqi ,λkl1)
)

= 0.

We see that the vector ψ= [γ(λnqi )] ∈ B satisfy the homogeneous main equation ψ(I +R̃(π)) =
0. It follows from (M), that γ(λnqi ) = 0 for all n ≥ 0, q = 1,m, i = 0,1. Using (49) once again, we

arrive at γ(λ) ≡ 0. Thus, we have proved (E). ���

Introduce the subspaces Enq = Ranα′
nq = {E = α′

nq h, h ∈ C
m}. Note that we intendently

use α′
nq instead of αnq in this definition, in order not to include the same subspaces multi-

ple times. Let
{

E
(i )
nq

}mnq

i=1
be an ortonormal basis of Enq . The number mnq coincide with the

multiplicity of the corresponding eigenvalue λnq , if α′
nq 6= 0m , and Enq =∅ otherwise.

Lemma 17. Let ϕ(x,λ) be an arbitrary matrix-function, continuous with respect to x ∈ [0,π]

and entire in λ, satisfying the asymptotic relation (21). Suppose that (E) holds. Then the system

ϕ(x,λnq )E (i )
nq , n ≥ 0, q = 1,m, i = 1,mnq , (52)

is complete in L2((0,π),Cm).
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Proof. Consider a vector-function f (x) ∈ L2((0,π),Cm), such that

∫π

0
f †(x)ϕ(x,λnq )E (i )

nq d x = 0

for all n ≥ 0, q = 1,m, i = 1,mnq . It is easy to check that the function

γ(λ) =
∫π

0
f †(x)ϕ(x,λ)d x

satisfy all the properties in (E) and, consequently, equals zero. Therefore f (x) = 0 and the

system (52) is complete. ���

Lemma 18. Let ϕ(x,λ) satisfy conditions of Lemma 17, and the system (52) is complete. Then

the system (52) is a basis in L2((0,π),Cm).

Proof. The basis property of the system (52) follows from its completeness and l2-closeness

to the ortonormal basis

cos nxE
(i )
nq , n ≥ 0, q = 1,m, i = 1,mnq , (53)

According to asymptotics (3) and (21),

cos nxIm −ϕ(x,λnq )=O(n−1),
{

‖(cos nxIm −ϕ(x,λnq ))E (i )
nq‖

}

∈ l2.

In order to prove the basis property for the system (53), it is sufficient to show, that the system
{

E
(i )
nq

}

is a basis in C
m for a fixed n, for all sufficiently large values of n ≥ N . If the elements

of (53) for n < N are linearly dependent, one can change them to cos nxeq , q = 1,m, where

{eq }m
q=1 is the standard coordinate basis. Since (R) holds, i.e. ranks of the weight matrices

equal multiplicities of the corresponding eigenvalues, the total number of the vectors
{

E
(i )
nq

}

for a fixed n is m. Suppose there exists a vector h ortogonal to all E
(i )
nq . Then h†αnq = 0 for all

q = 1,m, and h†αn = 0. But in view of (9), detαn 6= 0 for sufficiently large values of n. Thus,

the considered system of vectors is a basis. ���

Similar facts can be obtained for the problem L∗. Let E
∗
nq = {E ∗ = hα′

nq , h ∈ C
m,T }.

Denote by
{

E
∗,(i )
nq

}mnq

i=1
an ortonormal basis of E

∗
nq , consisting of row vectors. The following

lemma summarizes results, similar to Lemmas 16-18. In fact, the solvability of the main equa-

tion (41) for L∗, instead of (34), can be used to prove the lemma.

Lemma 19. Assume that ϕ(x,λ) is an arbitrary matrix-function, continuous with respect to

x ∈ [0,π] and entire in λ, satisfying the asymptotic relation (21), and (M) holds. Then the system

E
(i ),∗
nq ϕ(x,λnq ), n ≥ 0, q = 1,m, i = 1,mnq ,

is a basis in L2((0,π),Cm,T ).
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By virtue of Lemma 17, the following condition:

(C) The system of functions

cosρnq xE
(i )
nq , n ≥ 0, q = 1,m, i = 1,mnq ,

is complete in L2((0,π),Cm).

Follows from (E). The converse is not true.

Indeed, there is the one-to-one correspondence between vector-functions

f (x) ∈ L2((0,π),Cm) and row vectors γ(λ) =
∫π

0 f †(x)cosρx d x of an even Paley-Wiener class

PW, defined by the following conditions:

1. γ(λ) is entire,

2. γ(λ) =O(exp(|τ|π)),

3.
∫∞

0 |γ(ρ2)|2 dρ <∞.

Therefore, condition (C) is equivalent to the following condition:

(PW) For any row vector γ(λ) ∈ PW, if γ(λnq )αnq = 0 for all n ≥ 0, q = 1,m, then γ(λ) ≡ 0.

6. Proof of Theorem 1

The necessity in Theorem 1 is contained in Lemmas 1, 2, 3, 6 and Theorem 4.

Turn to the proof of the sufficiency. Let data {λnq ,αnq }n≥0,q=1,m ∈ Sp be given. Choose L̃ ∈
A1,2(ω) and construct ψ̃(x), R̃(x). Assume that the conditions of Theorem 1 hold. Let ψ(x) =
{ψn (x)}n≥0 ∈ B be the unique solution of the main equation (34). The proofs of Lemmas 20-22

are analogous to ones described in [4, Sec. 1.6.2].

Lemma 20. For n ≥ 0, the functions ψn(x) are continuously differentiable with respect to x on

[0,π], and the following relations hold

‖ψ(ν)
n (x)‖B (Gn ) ≤C (n +1)ν, ν= 0,1, x ∈ [0,π],

‖ψn(x)− ψ̃n (x)‖B (Gn ) ≤CΩηn , ‖ψ′
n(x)− ψ̃′

n (x)‖B (Gn ) ≤CΩ, x ∈ [0,π].

where

ηn :=
(

∞
∑

k=0

1

(k +1)2(|n −k |+1)2

)1/2

.

By virtue of Lemma 20, the matrix-functions ϕnqi (x) :=ψn(x,ρnqi ) satisfy the following

estimates

‖ϕ(ν)
nqi

(x)‖ ≤C (n +1)ν, ν= 0,1,

‖ϕnqi (x)− ϕ̃nqi (x)‖ ≤CΩηn , ‖ϕ′
nqi

(x)− ϕ̃′
nqi

(x)‖ ≤CΩ, q = 1,m,

‖ϕnqi (x)−ϕnl j (x)‖ ≤C |ρnqi −ρnl j |, q, l = 1,m, i , j = 0,1.

(54)
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Further, we construct the matrix-functions ϕ(x,λ) and Φ(x,λ) by the formulas

ϕ(x,λ) = ϕ̃(x,λ)−
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) jϕkl j (x)α′
kl j

〈ϕ̃∗
kl j

(x),ϕ̃(x,λ)〉

λ−λkl j

, (55)

Φ(x,λ) = Φ̃(x,λ)−
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) jϕkl j (x)α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉

λ−λkl j
, (56)

(see (30), (31)) and the boundary value problem L(Q(x),h, H ) via (47). Clearly, ϕ(x,λnqi ) =
ϕnqi (x).

Using estimates (54), one can show that the entries of ε0(x) are absolutely continuous

and the entries of ε(x) belong to L2(0,π). Consequently, we get

Lemma 21. Q(x) ∈ L2((0,π),Cm×m).

Lemma 22. The following relations hold

ℓϕnqi (x) =λnqiϕnqi (x), ℓϕ(x,λ) =λϕ(x,λ), ℓΦ(x,λ) =λΦ(x,λ),

ϕ(0,λ) = Im, ϕ′(0,λ) = h, U (Φ) = Im, V (Φ) = 0m .

Proof. Let us prove only the relation V (Φ) = 0m , since other ones can be obtained similarly to

the scalar case [4]. It follows from (47) and (55), that

Ṽ (ϕ̃) = V (ϕ)+
∞
∑

k=0

m
∑

l=1

(

V (ϕkl0)α′
kl0D̃(π,λ,λkl0)−V (ϕkl1)α′

kl1D̃(π,λ,λkl1)
)

,

Ṽ (ϕ̃nq1)αnq1 = V (ϕnq1)αnq1 +
∞
∑

k=0

m
∑

l=1

(

V (ϕkl0)α′
kl0D̃(π,λnq1,λkl0)αnq1

−V (ϕkl1)α′
kl1D̃(π,λnq1,λkl1)αnq1

)

.

Using (18) and (51), we derive

∞
∑

k=0

m
∑

l=1

V (ϕkl0)α′
kl0D̃(π,λnq1,λkl0)αnq1 = 0.

Taking (27) into account, we obtain
∫π

0
f (x)ϕ̃nq1(x)αnq1 d x = 0m , n ≥ 0, q = 1,m, (57)

f (x) :=
∞
∑

k=0

m
∑

l=1

V (ϕkl0)α′
kl0ϕ̃

∗
kl0(x), (58)

Let us prove that f ∈ L2((0,π),Cm×m). Indeed, ϕ(x,λ) is a solution of equation (1), there-

fore the relation (19) holds and

V (ϕkl0) = (−1)k (ω−ωl Im)+Kk .
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By virtue of (8),
{

‖V (ϕkl0)α′
kl0

‖
}

∈ l2. Similarly to asymptotic relation (21), we get ϕ̃∗
kl0

(x) =
cos k xIm +O(k−1), and the series in (57) converges in L2. Hence f (x) belongs to L2.

The system of linearly independent columns of the matrices ϕkl1(x)αkl1 is complete in

L2((0,π),Cm) by Lemma 17. Hence, it follows from (57), that f (x) ≡ 0,

By Lemma 19, linearly independent rows of the matrices α′
kl0

ϕ∗
kl0

(x) form a basis in

L2((0,π),Cm,T ). Therefore, the terms in (58) can not differ from zero. Hence

V (ϕkl0)α′
kl0 = 0m , k ≥ 0, l = 1,m. (59)

Using (47) and (56), we obtain

Ṽ (Φ̃) =V (Φ)+
∞
∑

k=0

m
∑

l=1

(

V (ϕkl0)α′
kl0

〈ϕ̃∗
kl0

(x),Φ̃(x,λ)〉x=π

λ−λkl0
−V (ϕkl1)α′

kl1

〈ϕ̃∗
kl1

(x),Φ̃(x,λ)〉x=π

λ−λkl1

)

Applying (59) and the following relations:

Ṽ (Φ̃) = 0m , αkl1

〈ϕ̃∗
kl1

(x),Φ̃(x,λ)〉x=π

λ−λkl1
=αkl1

Ṽ ∗(ϕ̃∗
kl1

)Φ̃(π,λ)− ϕ̃∗
kl1

(π)Ṽ (Φ̃)

λ−λkl1
= 0m ,

we conclude that V (Φ) = 0m . ���

In order to finish the proof of Theorem 1, it remains to show that the constructed bound-

ary value problem L(Q ,h, H ) belongs to A1,2(ω) and the given data {λnq ,αnq } coincide with

the spectral data of L. In view of Lemma 22, the matrix-function Φ(x,λ) is the Weyl solution

of L. Let us get the representation for the Weyl matrix:

M (λ) =Φ(0,λ) = M̃ (λ)−
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) jϕkl j (0)α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉x=0

λ−λkl j

M̃ (λ)

+
∞
∑

k=0

m
∑

l=1

(

α′
kl0

λ−λkl1
−

α′
kl1

λ−λkl1

)

.

Using the equality (see [9])

M̃(λ) =
∞
∑

k=0

m
∑

l=1

α′
kl1

λ−λkl1
,

we arrive at

M (λ)=
∞
∑

k=0

m
∑

l=1

α′
kl0

λ−λkl0
.

Consequently, {λkl0} are simple poles of the Weyl matrix M (λ), and {αkl0} are residues at the

poles. So L ∈ A1,2(ω), and Λ is the spectral data of L. Theorem 1 is proved.
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7. The self-adjoint case

Suppose Q(x) =Q†(x) a.e. on [0,π], h = h†, H = H †. In this case, the matrix ω= h +H +
1
2

∫π
0 Q(x)d x is Hermitian. Therefore, one can diagonalize it, applying a unitary transform.

Without loss of generality, we consider L ∈ A(ω), ω=ω† ∈D.

The eigenvalues λnq are real, and the poles of the matrix function (V (ϕ(x,λ))−1 are sim-

ple [11]. Furthermore, it is easy to check that ϕ∗(x,λ) = ϕ†(x, λ̄), S∗(x,λ) = S†(x, λ̄). Conse-

quently, M∗(λ) = M †(λ̄)= M (λ) and αnq =α†
nq , for all n ≥ 0, q = 1,m. By Lemma 7,

αnq =α†
nq

∫π

0
ϕ†(x,λnq )ϕ(x,λnq )d xαnq ≥ 0.

Taking the last fact together with asymptotics (7), we conclude, that ‖αnq‖≤C , n ≥ 0, q = 1,m.

Thus, we have shown that Assumptions 1 and 2 hold automatically in the self-adjoint

case. Moreover, we have proved (S) in Theorem 2. Note that (E) by necessity was proved in

Lemma 8. So we have finished the proof of the necessity.

In order to prove the sufficiency in Theorem 2, it remains to show that the solvability of

the main equation (34) follows from (E) together with other conditions.

Let data {λnq ,αnq }n≥0,q=1,m ∈ Sp, satisfying the conditions of Theorem 2, be given. Choose

a model problem L̃ ∈ A(ω), construct ψ̃(x), R̃(x), and consider the main equation (34).

Lemma 23. For each fixed x ∈ [0,π], the operator I + R̃(x), acting from B to B, has a bounded

inverse operator, and the main equation (34) has a unique solution ψ(x) ∈ B.

Proof. By Lemma 12 the operator R̃(x) is compact. Therefore it is sufficient to prove that the

homogeneous equation

γ(x)(I + R̃(x)) = 0, (60)

where γ(x) ∈ B , has only the zero solution. Let γ(x) = {γn(x)}n≥0 ∈ B be a solution of (60).

Denote γnqi (x) = γn(x,ρnqi ). Then

γnqi (x)+
∞
∑

k=0

m
∑

l=1

(

γkl0(x)α′
kl0D̃(x,λnqi ,λkl0)−γkl1(x)α′

kl1D̃(x,λnqi ,λkl1)
)

= 0m , (61)

and the following estimates are valid

‖γnqi (x)‖ ≤C , ‖γnqi (x)−γnl j (x)‖ ≤C |ρnqi −ρnl j |, n ≥ 0, q, l = 1,m, i , j = 0,1. (62)

Construct the matrix-functions γ(x,λ), Γ(x,λ) and B(x,λ) by the formulas

γ(x,λ) = −
∞
∑

k=0

m
∑

l=1

(

γkl0(x)α′
kl0D̃(x,λ,λkl0)−γkl1(x)α′

kl1D̃(x,λ,λkl1)
)

, (63)
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Γ(x,λ) = −
∞
∑

k=0

m
∑

l=1

[

γkl0(x)α′
kl0

〈ϕ̃∗
kl0

(x),Φ̃(x,λ)〉
λ−λkl0

−γkl1(x)α′
kl1

〈ϕ̃∗
kl1

(x),Φ̃(x,λ)〉
λ−λkl1

]

, (64)

B(x,λ)= Γ(x,λ)γ†(x, λ̄).

In view of (27), the matrix-function γ(x,λ) is entire in λ for each fixed x. The functions Γ(x,λ)

and B(x,λ) are meromorphic in λ with simple poles λnqi . According to (61), γ(x,λnqi ) =
γnqi (x). We calculate residues of B(x,λ) (for simplicity we assume that {λnq0}∩ {λnq1} =;):

Res
λ=λnq0

B(x,λ)= γ(x,λnq0)αnq0γ
†(x,λnq0), Res

λ=λnq1

B(x,λ)= 0m .

Consider the integral

IN (x) =
1

2πi

∫

ΓN

B(x,λ)dλ,

where ΓN = {λ : |λ| = (N +1/2)2}. Let us show that for each fixed x ∈ [0,π]

lim
N→∞

IN (x) = 0m .

Indeed, transforming (63) similarly to (50), and using (28), (62) and the estimates

‖D̃(x,λ,λkl j )‖≤
C exp(|τ|x)

|ρ−k |+1
, ‖D̃(x,λ,λkl j )− D̃(x,λ,λkqi‖ ≤

C |ρkl j −ρkqi |exp(|τ|x)

|ρ−k |+1
,

k ≥ 0, l , q = 1,m, i , j = 0,1,

we get

‖γ(x,λ)‖≤C (x)exp(|τ|x)
∞
∑

k=0

ξk

|ρ−k |+1
, Reρ ≥ 0.

Similarly, using (64) we obtain for sufficiently large ρ∗ > 0:

‖Γ(x,λ)‖ ≤
C (x)

|p|
exp(−|τ|x)

∞
∑

k=0

ξk

|ρ−k |+1
,Reρ ≥ 0, |ρ| ≥ ρ∗, |ρ−k | >δ> 0.

Then

‖B(x,λ)‖≤
C (x)

|ρ|

(

∞
∑

k=0

ξk

|ρ−k |+1

)2

≤
C (x)

|ρ|3
, λ ∈ΓN .

This estimate yields lim
N→∞

IN (x) = 0m .

On the other hand, calculating the integral IN (x) by the residue theorem, we arrive at

∞
∑

k=0

m
∑

l=1

γkl0(x)α′
kl0γ

†
kl0

(x) = 0m .

Since αkl0 =α†
kl0

≥ 0, we get

γkl0(x)αkl0γ
†
kl0

(x) = 0m ,
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γ(x,λkl0)αkl0 = 0m , k ≥ 0, l = 1,m.

Since γ(x,λ) is entire in λ, and

γ(x,λ) =O(exp(|τ|x))

for each fixed x ∈ [0,π], according (E), we get γ(x,λ) ≡ 0m . Therefore γnqi (x) = 0m for all n ≥ 0,

q = 1,m, i = 0,1, i. e. the homogeneous equation (60) has only the zero solution. ���

Thus, the proof of Theorem 2 is finished. Some discussion on condition (E) with exam-

ples is provided in [11]. We can also give an alternative formulation of necessary and sufficient

conditions with condition (C) instead of (E).

Theorem 5. Let ω = ω† ∈ D. For data {λnq ,αnq }n≥0,q=1,m ∈ Sp to be the spectral data for a

certain self-adjoint problem L ∈ A(ω) it is necessary and sufficient to satisfy the following con-

ditions.

(A) The asymptotics (3), (7), (8) (9) are valid.

(R) The ranks of the matrices αnq coincide with the multiplicities of the corresponding values

λnq .

(S) All λnq are real, αnq = (αnq )†, αnq ≥ 0 for all n ≥ 0, q = 1,m.

(C) The system of functions

cosρnq xE
(i )
nq , n ≥ 0, q = 1,m, i = 1,mnq ,

is complete in L2((0,π),Cm).

Condition (C) was used by Ya.V. Mykytyuk and N.S. Trush [12] in the characterization of

the spectral data for the self-adjoint matrix Sturm-Liouville operator with the potential from

W −1
2 . In spite of the fact, that this class is wider than our class L2, these are two parallel results

for different classes. Moreover, for W −1
2 the asymptotics of eigenvalues and weight matrices

are more rough, that makes the class W −1
2 easier for investigation. It does not require our

technique with complicated division of eigenvalues into groups. Now we have shown, that

condition (C) can be used in our case with our method, so there is no principal difference

with the work [12] in this particular point.

It was established in Section 5, that (C) is weaker than (E), but (C) is equivalent to (PW).

One can easily show that everywhere in our proofs (namely, in Lemmas 17 and 23), we apply

this type of conditions to functions γ(λ) ∈ PW. Thus, both Theorems 2 and 5 are valid.
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