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NEW f -DIVERGNCE AND JENSEN-OSTROWSKI’S TYPE

INEQUALITIES

RAM NARESH SARASWAT AND AJAY TAK

Abstract. In this paper we derive new information inequalities of Jensen-Ostrowski type,

by considering two Jensen-Ostrowski type inequalities, new f -divergence and

Chi-divergences. The special cases of these information inequalities are established as

applications of new f -divergence and its particular instances.

1. Introduction

In this paper we apply inequalities of [3] to obtain information inequalities for new f -

divergence measure. Let suppose that a set Ω and the σ-finite measure µ are given. Take the

set of all probability densities on µ to be

P =

(

p | p :Ω→R, p(t )≥ 0,

∫

Ω

p(t )dµ(t )= 1
)

. (1.1)

In this text we use the following definitions of divergence measures which are the particular

instances of new f -divergence:

• Kullback-Leibler divergence measure [12]:

SK L(µ1,µ2) =

∫

Ω

p(t ) ln

[

p(t )

q(t )

]

dµ(t ), (1.2)

SK L(µ2,µ1) =

∫

Ω

q(t ) ln

[

q(t )

p(t )

]

dµ(t ). (1.3)

• Relative Jensen-Shannon divergence measure [13]:

SF (µ2,µ1) =

∫

Ω

q(t ) log

(

2q(t )

p(t )+q(t )

)

dµ(t ). (1.4)
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• Relative arithmetic-geometric divergence measure [14]:

SG(µ2,µ1) =

∫

Ω

(

p(t )+q(t )

2

)

log

(

p(t )+q(t )

2q(t )

)

dµ(t ). (1.5)

• Triangular discrimination [6]:

S f (µ1,µ2) =

∫

Ω

(p(t )−q(t ))2

2(p(t )+q(t )
dµ(t )=

1

2
S∆(µ1,µ2). (1.6)

• Chi-divergences [13] and [14]:

S f (µ1,µ2) =
1

4

∫

Ω

(

p(t )−q(t )

q(t )

)2

q(t )dµ(t )=
1

4
Sχ2(µ1,µ2), (1.7)

S f (µ1,µ2) =
1

2k

∫

Ω

(

p(t )−q(t )(2λ−1)

q(t )

)k

q(t )dµ(t )=
1

2k
Sχ2,2λ−1(µ1,µ2). (1.8)

The New f -divergence of the probability distributions µ1 and µ2 is defined as follows

S f (µ1,µ2) =

∫

q(t ) f

(

p(t )+q(t )

2q(t )

)

dµ(t ). (1.9)

Where denote the density (Radon-Nikodym-derivative) of µi (i = 1,2) with respect to µ by

p(t ) =
dµ1(t )
dµ(t ) and q(t ) =

dµ2(t )
dµ(t ) . Define the convex functions f : (0,∞) → R+, f (1) = 0, ap-

propriately for obtaining various divergences. The basic properties of New f -divergence are

available in [10] and [11].

2. Generalized Jensen-Ostrowski type inequalities

The following Jensen-Ostrowski inequality is considered from [3] for functions with bounded

second derivatives.

Theorem 2.1. Let f : I → C be a differentiable function on İ , f ′ : [a,b] ⊂ İ → C is absolutely

continuous on [a,b] and ζ ∈ [a,b] For some γ,Γ ∈ C , γ 6= Γ, assume that f ′′ ∈ Ū[a,b](γ,Γ) =

∆̄[a,b](γ,Γ). If g : Ω→ [a,b] is Lebesgue µ-measurable on Ω such that f og , g , (g −ζ)2 ∈ L(Ω,µ),

with
∫

Ω
dµ= 1 then

∣

∣

∣

∣

∫

Ω

( f og )dµ− f (ζ)−
(

∫

Ω

g dµ−ζ
)

− f ′(ζ)−
γ+Γ

4

∫

Ω

(g −ζ)2dµ

∣

∣

∣

∣

≤
1

4
|Γ−γ|

[

σ2(g )+
(

∫

Ω

g dµ−ζ
)2]

. (2.1)

A generalized version of the Ostrowski inequality [5] is considered form [3]. It is inequality

as well as bounds for the discrepancy in Jensens integral inequality. The theorem is following:
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Theorem 2.2. Let f : I → C be a differentiable function on I , f ′ : [a,b] ⊂ İ → C is absolutely

continuous on [a,b] and ζ ∈ [a,b] If g : Ω → [a,b] is Lebesgue µ-measurable on Ω such that

f og , g , (g −ζ)2 ∈ L(Ω,µ), with
∫

Ω
dµ= 1 then we have the following Ostrowski type inequality:

∣

∣

∣

∣

∫

Ω

( f og )dµ− f (ζ)−
(

∫

Ω

g dµ−ζ
)

− f ′(ζ)

∣

∣

∣

∣

≤
1

2
|| f ′′

||[a,b],∞

[

σ2(g )+
(

∫

Ω

g dµ−ζ
)2]

. (2.2)

We also have the following Jensen type inequality:

∣

∣

∣

∣

∫

Ω

( f og )dµ− f
(

∫

Ω

g dµ
)

∣

∣

∣

∣

≤
1

2
|| f ′′

||[a,b],∞σ2(g ) (2.3)

which is the best inequality one can get from (2.2).

3. Main results

In this section, we present our main results on the Jensen-Ostrowski type inequalities by

using chi- divergences (1.7)-(1.8) and new f -divergence (1.9).

Proposition 3.1. Let f : (0,∞) →R be a differentiable convex function with the property that

f (1) = 0. Assume that µ1,µ2 ∈Ω and there exists constants 0 < r < 1 <R <∞ such that

r ≤
p(t )+q(t )

2q(t )
≤ R (3.1)

for µ−a.e.t ∈Ω. If ζ ∈ [r,R] and f ′ is absolutely continuous on [r,R], then we have the inequal-

ities
∣

∣S f (µ1,µ2)− f (ζ)− (1−ζ) f ′(ζ)
∣

∣≤
1

2
|| f ′′

||[r,R],∞

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]

. (3.2)

In particular, by choosing ζ= (r +R)/2, we have

∣

∣

∣

∣

S f (µ1,µ2)− f
(r +R

2

)

−

(

1−
r +R

2

)

f ′
(r +R

2

)

∣

∣

∣

∣

≤
1

2
|| f ′′

||[r,R],∞

[

1

4
Sχ2(µ1,µ2)+

( r +R

2
−1

)2
]

(3.3)

and when ζ= 1, we have

|S f (µ1,µ2)| ≤
1

2
|| f ′′

||[r,R],∞
1

4
Sχ2 (µ1,µ2). (3.4)

Proof. We choose g (t )=
p(t )+q(t )

2q(t ) , noting that
∫

Ω
g dµ(t )= 1, in inequality (2.2), we have

∣

∣

∣

∣

∫

Ω

f
( p(t )+q(t )

2q(t )

)

q(t )dµ(t )− f (ζ)−
(

∫

Ω

g (t )dµ−ζ
)

f ′(ζ)

∣

∣

∣

∣
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= |S f (µ1,µ2)− f (ζ)− (1−ζ) f ′(ζ)|

=
1

2
|| f ′′

||[r,R],∞

[
∫

Ω

(p(t )+q(t )

2q(t )
−

∫

Ω

g (t )dµ
)2

q(t )dµ(t )+
(

∫

Ω

g (t )dµ−ζ
)2

]

=
1

2
|| f ′′

||[r,R],∞

[
∫

Ω

(p(t )+q(t )

2q(t )
−1

)2
q(t )dµ(t )+ (ζ−1)2

]

=
1

2
|| f ′′

||[r,R],∞

[
∫

Ω

(p(t )−q(t )

2q(t )

)2
q(t )dµ(t )+ (ζ−1)2

]

=
1

2
|| f ′′

||[r,R],∞

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

and this completes the proof. ���

Proposition 3.2. Under the assumptions of Proposition 3.1, if f ′ is convex or f ′′
± exists, then we

have

∣

∣

∣

∣

S f (µ1,µ2)− f (ζ)− (1−ζ) f ′(ζ)+
f ′′
+ (r )+ f ′′

− (R)

4

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]∣

∣

∣

∣

≤
1

4
| f ′′
− (R)− f ′′

+ (r )|

[

1

4
Sχ2,2ζ−1(µ1,µ2)

]

(3.5)

for ζ ∈ [r,R]. Some particular cases of interest are obtained by setting ζ= (r +R)/2 and ζ= 1.

Proof. When f ′ is convex, we set γ = f ′′
+ (r ) and Γ = f ′′

− (R) (cf. Remark 2 in [3]). For the case

where f ′′
± exists, we set γ and Γ appropriately to the values of f ′′

+ (r ) and f ′′
− (R), with γ ≤ Γ.

Utilizing (2.1) for g (t ) =
p(t )+q(t )

2q(t )
, and the measure

∫

Ω
q(t )dµ= 1, we have

∣

∣

∣

∣

∫

Ω

f
(p(t )+q(t )

2q(t )

)

q(t )dµ− f (ζ)−
(

∫

Ω

q(t )dµ−ζ
)

f ′(ζ)

+
f ′′
+ (r )+ f ′′

− (R)

4

∫

Ω

(p(t )+q(t )

2q(t )
−ζ

)2
q(t )dµ

∣

∣

∣

∣

∣

∣

∣

∣

S f (µ1,µ2)− f (ζ)− (1−ζ) f ′(ζ)+
f ′′
+ (r )+ f ′′

− (R)

4

[1

4
Sχ2,2ζ−1(µ1,µ2)

]

∣

∣

∣

∣

≤
1

4
| f ′′
− (R)− f ′′

+ (r )|

[
∫

Ω

( p(t )+q(t )

2q(t )
−1

)2
q(t )dµ+ (ζ−1)2

]

=
1

4
| f ′′
− (R)− f ′′

+ (r )|

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]

and this completes the proof. ���

4. Special cases:

Example 4.1. If we consider the convex function f : (0,∞) →R, f (t ) = t log(t ), then we get

(1.5).
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We have f ′(t ) = log(t )+ 1, and f ′′(t ) = 1/t . By Proposition 3.1, we have the following

inequalities:

|SG (µ2,µ1)−ζ log(ζ)− (1−ζ)(log(ζ)+1) = |SG (µ2,µ1)−1+ζ− log(ζ)|

≤
1

2

[

sup
t∈[r,R]

1

t

]

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]

=
1

2r

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]

for all ζ ∈ [r,R], and when ζ= 1,

0 ≤ SG(µ2,µ1) ≤
1

2r

1

4
Sχ2(µ1,µ2). (4.1)

Furthermore, by Proposition 3.2, we have the inequalities:
∣

∣

∣

∣

SG(µ2,µ1)− log(ζ)−1+ζ+
r +R

4r R

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]
∣

∣

∣

∣

≤
R − r

4r R

[

1

4
Sχ2(µ1,µ2)

]

for ζ ∈ [r,R], and when ζ= 1,
∣

∣

∣

∣

SG(µ2,µ1)+
R + r

4r R
Sχ2 (µ1,µ2)

∣

∣

∣

∣

≤
R − r

4r R

1

4
Sχ2 (µ1,µ2). (4.2)

Example 4.2. If we consider the convex function f : (0,∞) →R, f (t ) = − log(t ), then we get

(1.4).

We have f ′(t )= 1/t , and f ′′(t )=−1/t 2, and we note that

1

4

∫

Ω

q(t )
(( p(t )

q(t )

)2
−1

)

dµ(t )=
1

4
Sχ2 (µ1,µ2).

By Proposition 3.1, we have the following inequalities:

|SF (µ2,µ1)+ log(ζ)+
1

ζ
−1| ≤

1

2

[

sup
t∈[r,R]

1

t 2

]

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]

=
1

2r 2

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

for all ζ ∈ [r,R], and when ζ= 1,

0 ≤ SF (µ2,µ1) ≤
1

2r 2

1

4
Sχ2(µ1,µ2). (4.3)

Furthermore, by Proposition 3.2, we have the inequalities:

∣

∣

∣

∣

SF (µ2,µ1)+ log(ζ)+
1

ζ
−1+

r 2 +R2

4r 2R2

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]∣

∣

∣

∣

≤
R2 − r 2

4r 2R2

[

1

4
Sχ2(µ1,µ2)

]

for ζ ∈ [r,R], and when ζ= 1,

∣

∣

∣

∣

SF (µ2,µ1)+
R2 + r 2

4r 2R2

1

4
Sχ2(µ1,µ2)

∣

∣

∣

∣

≤
R2 − r 2

4r R

1

4
Sχ2 (µ1,µ2). (4.4)
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Example 4.3. If we consider the convex function f : (0,∞) →R, f (t ) = −
(t−1)2

t , then we get

(1.6).

We have f ′(t ) = 1−1/t 2, and f ′′(t ) = 2/t 2, and f ′′(t ) = 2/t 3. By Proposition 3.1, we have

the following inequalities:

∣

∣

∣

∣

1

2
S∆(µ1,µ2)−

(ζ−1)2

ζ
− (1−ζ)

(

1−
1

ζ2

)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
S∆(µ1,µ2)−

(ζ−1)2

ζ
− (1−ζ)

(ζ2 −1)

ζ2

∣

∣

∣

∣

=
1

2

[

sup
t∈[r,R]

2

t 3

]

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

=
1

r 3

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

for all ζ ∈ [r,R], and when ζ= 1,

0 ≤
1

2
S∆(µ1,µ2) ≤

1

r 3

1

4
Sχ2(µ1,µ2). (4.5)

Furthermore, by Proposition 3.2, we have the inequalities:

∣

∣

∣

∣

1

2
S∆(µ1,µ2)−

(ζ−1)2

ζ
− (1−ζ)

(

1−
1

ζ2

)

+
r 3 +R3

4r 3R3

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]∣

∣

∣

∣

≤
r 3 −R3

2r 3R3

[

1

4
Sχ2(µ1,µ2)

]

for ζ ∈ [r,R], and when ζ= 1,

∣

∣

∣

∣

1

2
S∆(µ1,µ2)+

R3 + r 3

2r 3R3

1

4
Sχ2(µ1,µ2)

∣

∣

∣

∣

≤
r 3 −R3

2r 3R3

1

4
Sχ2(µ1,µ2). (4.6)

Example 4.4. If we consider the convex function f : (0.5,∞) →R, f (t )=− log(2t −1), then we

get (1.3). We have f ′(t ) = −2
2t−1

, and f ′′(t ) = 4
(2t−1)2 , By Proposition 3.1, we have the following

inequalities:

∣

∣

∣

∣

SK L(µ2,µ1)− log(2ζ−1)− (1−ζ)
2

(2t −1)

∣

∣

∣

∣

≤
1

2

[

sup
t∈[r,R]

4

(2t −1)2

]

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

=
2

(2r −1)2

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

for all ζ ∈ [r,R], and when ζ= 1,

0 ≤ SK L(µ2,µ1) ≤
2

(2r −1)2

1

4
Sχ2(µ1,µ2). (4.7)

Furthermore, by Proposition 3.2, we have the inequalities:

∣

∣

∣

∣

SF (µ2,µ1)+ log(2ζ−1)+
2(1−ζ)

(2ζ−1)
+

4(r 2 +R2)−4(r +R)+2

(2r −1)2(2R −1)2

[

1

4
Sχ2 (µ1,µ2)+ (ζ−1)2

]∣

∣

∣

∣
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≤
4(R2 − r 2)−4(R − r )

(2r −1)2(2R −1)2

[

1

4
Sχ2,2ζ−1(µ1,µ2)

]

for ζ ∈ [r,R], and when ζ= 1,

∣

∣

∣

∣

SF (µ1,µ2)+
4(r 2 +R2)−4(r +R)+2

(2r −1)2(2R −1)2

1

4
Sχ2(µ1,µ2)

∣

∣

∣

∣

≤
4(R2 − r 2)−4(R − r )

(2r −1)2(2R −1)2

1

4
Sχ2 (µ1,µ2). (4.8)

Example 4.5. If we consider the convex function f : (0.5,∞) →R, f (t ) = (2t −1)log(2t −1),

then we get (1.2). We have f ′(t ) = 2log(2t −1)+2 and f ′′(t ) = 4
(2t−1) , By Proposition 3.1, we

have the following inequalities:

∣

∣SK L(µ1,µ2)− (2ζ−1)log(2ζ−1)−2(1−ζ)(log(2ζ−1)+1)
∣

∣

=
∣

∣SK L(µ1,µ2)− log(2ζ−1)+2(ζ−1)
∣

∣

≤
1

2

[

sup
t∈[r,R]

4

(2t −1)

]

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

=
2

(2r −1)

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]

for all ζ ∈ [r,R], and when ζ= 1,

0 ≤ SK L(µ1,µ2) ≤
2

(2r −1)

1

4
Sχ2 (µ1,µ2). (4.9)

Furthermore, by Proposition 3.2, we have the inequalities:
∣

∣

∣

∣

SK L(µ1,µ2)− log(2ζ−1)+ (2ζ−1)+
2(r +R −1)

(2r −1)(2R −1)

[

1

4
Sχ2(µ1,µ2)+ (ζ−1)2

]∣

∣

∣

∣

≤
2(R − r )

(2r −1)(2R −1)

[

1

4
Sχ2,2ζ−1(µ1,µ2)

]

for ζ ∈ [r,R], and when ζ= 1,
∣

∣

∣

∣

SK L(µ1,µ2)+
2(r +R −1)

(2r −1)(2R −1)

1

4
Sχ2 (µ1,µ2)

∣

∣

∣

∣

≤
2(R − r )

(2r −1)(2R −1)

1

4
Sχ2(µ1,µ2). (4.10)

5. Conclusions

In this paper, we have been derived new information inequalities of Jensen-Ostrowski

type, by considering two above inequalities of Section 2, new f -divergence and

Chi-divergences. Particular cases of these inequalities have been also established in terms of

divergences like as Kullback-Leibler divergence, Relative Jensen-Shannon divergence, Rela-

tive arithmetic-geometric divergence and Triangular discrimination.



118 RAM NARESH SARASWAT AND AJAY TAK

References

[1] G. Anastassiou, Fractional and other approximation of Csiszars f -divergence, Rend. Circ. Mat. Palermo, Serie

II, Suppl., 99 (2005), 5–20.

[2] P. Cerone, S. S. Dragomir and E. Kikianty, Jensen-Ostrowski type inequalities and applications for f -divergence

measures, Appl. Math. Comput, 266 (2015), 304–315.

[3] P. Cerone, S. S. Dragomir and E. Kikianty, On Inequalities of Jensen-Ostrowski type, Journal of Inequalities and

Applications- Article, 328 (2015), 1–16.

[4] P. Cerone, S. S. Dragomir and E. Kikianty, Ostrowski and Jensen type inequalities for higher derivatives with

applications, Journal of Inequalities and Special Functions, 7 (1)(2016), 61–77.

[5] P. Cerone, S. S. Dragomir and J. Roumeliotis, An inequality of Ostrowski type for mappings whose second

derivatives are bounded an applications, East Asian Math. J., 15(1)(1999), 1–9.

[6] D. Dacunha-Castelle, Ecole d0ete de Probability de Saint-Flour, III-1977, Berlin, and Heidelberg: Springer

1978.

[7] S. S. Dragomir, Jensen and Ostrowski type inequalities for general Lebesgue integral with applications, Annales

UniversitatisMariae curie-SklodowskaLunbin- Polonia, LXX (2) (2016), 29–49.

[8] S. S. Dragomir, V. Gluscevic and C. E. M. Pearce, Approximation of Csiszrs f -divergence via mid-point in-

equalities, inequality theory and applications, Y. J. Cho, J. K. Kim and S. S. Dragomir (Eds), Nova Science

Publisher Inc., Hutington New York, 1 (2001), 139–154.

[9] S. S. Dragomir, General Lebesgue integral Inequalities of Jensen and Ostrowski type for differentiable func-

tions whose derivatives in absolute value are h-convex and applications, Annales Universitatis Mariae curie-

Sklodowska Lunbin-Polonia, LXIX(2) (2015), 17–45.

[10] K. C. Jain and R. N. Saraswat, A New Information Inequality and its Application in Establishing Relation

among various f -Divergence Measures, Journal of Applied Mathematics, Statistics and Informatics, 8 (1)

(2012), 17–32.

[11] K. C. Jain and R. N. Saraswat, Some Bounds of Information Divergence Measures in Terms of Relative-

Arithmetic-Geometric Divergence, International Journal of Applied Mathematics and Statistics, 32 (2) (2013),

48–58.

[12] S. Kullback and A. Leibler, On information and sufficiency, Ann. Math. Statist., 22 (1951) 79–86.

[13] F. Nilsen and N. Rock, On the chi square and higher-order chi distances for approximating f -divergences, IEEE

Signal Processing Letters, 21(1) (2014).

[14] K. Pearson, On the criterion that a give system of deviations from the probable in the case of correlated system

of variables in such that it can be reasonable supposed to have arisen from random sampling, Phil. Mag., 50

(1900), 157–172.

[15] R. Sibson, Information Radius, Z Wahrsundverw.geb, 14 (1969), 149–160.

[16] I. J. Taneja, New developments in generalized information measures, Chapter in Advances in Imaging and

Electron Physics, Ed. P. W. Hawkes, 91 (1995), 37–135.

Department of Mathematics and Statistics, School of Basic Science, Manipal University, Jaipur-303007, India.

E-mail: sarswatrn@gmail.com

Department of Mathematics and Statistics, School of Basic Science, Manipal University, Jaipur-303007, India.

E-mail: ajaytak86@gmail.com

mailto:sarswatrn@gmail.com
mailto:ajaytak86@gmail.com

	1. Introduction
	2. Generalized Jensen-Ostrowski type inequalities
	3. Main results
	4. Special cases:
	5. Conclusions
	References

