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A LINK BETWEEN HARMONICITY OF 2-DISTANCE FUNCTIONS

AND INCOMPRESSIBILITY OF CANONICAL VECTOR FIELDS

BANG-YEN CHEN

Abstract. Let M be a Riemannian submanifold of a Riemannian manifold M̃ equipped

with a concurrent vector field Z̃ . Let Z denote the restriction of Z̃ along M and let Z T

be the tangential component of Z on M , called the canonical vector field of M . The 2-

distance function δ2
Z

of M (associated with Z ) is defined by δ2
Z
= 〈Z , Z 〉.

In this article, we initiate the study of submanifolds M of M̃ with incompressible

canonical vector field Z T arisen from a concurrent vector field Z̃ on the ambient space

M̃ . First, we derive some necessary and sufficient conditions for such canonical vector

fields to be incompressible. In particular, we prove that the 2-distance function δ2
Z is har-

monic if and only if the canonical vector field Z T on M is an incompressible vector field.

Then we provide some applications of our main results.

1. Incompressible vector fields

In fluid mechanics, many liquids are hard to compress (i.e., their volumes or densities

don’t change much when you squeeze them), so that the density ρ is essentially a constant.

For such an incompressible fluid the equation of continuity simplifies to the divergence of the

flow velocity v is zero, i.e.,

div(v) = 0 (incompressible), (1.1)

so that the velocity field1 v is an incompressible vector field (also known as a solenoidal vector

field or a divergence-free vector field). This condition is analogous to the condition div(B ) = 0

in electromagnetism that the magnetic field B has zero divergence.

It is well-known that incompressible vector fields are important in magnetohydrodynam-

ics. Moreover, magnetic fields are widely used throughout modern technology, particularly in

electrical engineering and electromechanics (cf. e.g., [1, 15, 16]).

Based on the reasons mentioned above, one has the following.
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Definition 1.1. A vector field X on a Riemannian manifold M is called incompressible if the

divergence of X is zero, i.e., div(X ) = 0.

Let φ : M → M̃ be an isometric immersion of a Riemannian manifold M into another

Riemannian manifold M̃ . Denote by 〈 , 〉 the inner product of M as well as of M̃ . Assume

that Ỹ is a vector field of M̃ . Denote by Y the restriction of Ỹ along M . Then Y admits an

orthogonal decomposition:

Y = Y T +Y ⊥, (1.2)

where Y T and Y ⊥ are the tangential and the normal components of Y , respectively. The

tangent vector field Y T of M is called the canonical vector field of M associated with Y .

For a submanifold M of a Euclidean space E
m , the most elementary and natural vector

field on M is the position vector field x. The tangential component xT of x is simply called the

canonical vector field of M [11, 12]. It is well-known that the position vector field of Em is a

concurrent vector field (see Definition 2.2 and Example 2.1).

In earlier articles, we have investigated Euclidean submanifolds whose canonical vector

fields are concurrent [6, 8], concircular [14], torse-forming [13], conformal [12], or incom-

pressible [11]. (See also recent surveys [9, 10] for several topics on position vector fields on

Euclidean submanifolds.)

In this article, we initiate the investigation of submanifolds M of M̃ with incompressible

canonical vector field Z T arisen from a concurrent vector field Z̃ on the ambient space M̃ .

First, we derive some necessary and sufficient conditions for such canonical vector fields to

be incompressible. In particular, we prove that the 2-distance function δ2
Z is harmonic if and

only if the canonical vector field Z T on M is an incompressible vector field. Then we provide

some applications of our main results.

2. Preliminaries

Let φ : M → M̃ be an isometric immersion of a connected Riemannian n-manifold M

into a Riemannian m-manifold M̃ . For each point p ∈ M , we denote by Tp M and T ⊥
p M the

tangent space and the normal space of M at p , respectively. Let ∇ and ∇̃ denote the Levi–

Civita connections of M and E
m , respectively.

The formula of Gauss and the formula of Weingarten are then given respectively by (cf. [3,

4, 7])

∇̃X Y =∇X Y +h(X ,Y ), (2.1)

∇̃X ξ=−AξX +DX ξ, (2.2)
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for vector fields X , Y tangent to M and ξ normal to M , where h denotes the second funda-

mental form, D is the normal connection and A is the shape operator of M .

For each normal vector ξ at p , the shape operator Aξ is a self-adjoint endomorphism of

Tp M . The second fundamental form h and the shape operator A are related by

〈AξX ,Y 〉 = 〈h(X ,Y ),ξ〉 . (2.3)

The mean curvature vector field H of an n-dimensional submanifold M is defined by

H =
(

1

n

)

trace h. (2.4)

Let {e1, . . . ,en} be an orthonormal frame on M , then the divergence of a vector field X on

M , denoted by div(X ), is defined by

div(X ) =
n
∑

j=1

〈∇ei
X ,ei 〉 . (2.5)

The gradient ∇ f of a function f on M is defined by

〈∇ f ,Y 〉 = Y f

for any vector Y tangent to M . Hence, in terms of an orthonormal frame {e1, . . . ,en} on M , we

have

∇ f =
n
∑

i=1

(ei f )ei . (2.6)

And the Laplacian∆ of M acting on a function f on M is given by

∆ f =−
n
∑

i=1

{

ei ei ( f )−∇ei
ei ( f )

}

. (2.7)

Now, we present some basic definitions for later use.

Definition 2.2. A vector field Z̃ on a Riemannian manifold M̃ is called a concurrent vector

field if it satisfies

∇̃X Z̃ = X (2.8)

for all vectors X tangent to M̃ , where ∇̃ denotes the Levi-Civita connection of M̃ (cf. [19, 20])

Concurrent vector fields play some important roles in differential geometry and mathe-

matical physics. For instance, it was proved in [19] that if the holonomy group of a Rieman-

nian manifold M̃ leaves a point invariant, then M̃ admits a concurrent vector field. Concur-

rent vector fields have also been studied in Finsler geometry since the beginning of 1950s

(cf. [17, 18]).

The simplest example of Riemannian manifold with a concurrent vector field is a Eu-

clidean space.
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Example 2.1. The position vector field x of the Euclidean m-space E
m is a concurrent vector

field.

Definition 2.3. Let B and F be two Riemannian manifolds of positive dimensions equipped

with metrics gB and gF , respectively, and let f be a positive smooth function on B .

The warped product M = B × f F is the product manifold B ×F equipped with the warped

product metric

g = gB + f 2gF . (2.9)

The function f is called the warping function of the warped product (cf. [2, 11]).

For a warped product B × f F , B is called the base and F the fiber. The leaves B × {q} =
η−1(q), q ∈ F, and the fibers {b}×F =π−1(p), b ∈ B are Riemannian submanifolds of B × f F .

Example 2.2. It is direct to verify that Em
∗ = E

m − {0} ⊂ E
m can be regarded as the warped

product R+×s Sm−1 equipped with the warped product metric

g = d s2 + s2gS ,

where gS is the metric tensor of the unit (m−1)-sphere Sm−1. In this case, the position vector

field x of Em
∗ is given by s ∂

∂s .

The distance function δ from the origin o ∈ Em to a point of Em is given by

δ=
√

〈x,x〉.

Example 2.3. Let F be any Riemannian manifold and let I = (a,b) be an open interval with

0 ∉ I . Consider the warped product I ×s F equipped with the warped product metric

g̃ = d s2 + s2gF , (2.10)

where gF denotes the Riemannian metric of F . Then the vector field Z̃ = s ∂
∂s is a concurrent

vector field on I ×s F (cf. Example 3.1 of [5]). Moreover, in this case the vector field Z̃ = s ∂
∂s

can be considered as the radial vector field of I ×s F .

3. Theorems

Now, we define the notion of r -distance function on a submanifold M of a Riemannian

manifold M̃ equipped with a concurrent vector field as follows.
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Definition 3.4. Let M be a submanifold of a Riemannian manifold M̃ equipped with a con-

current vector field Z̃ . Denote by Z the restriction of Z̃ on M . Then the function

δr
Z (p)= |Zp |r = 〈Zp , Zp〉r /2

is called the r -distance function (associated with Z ) (or simply the r-distance function if there

is no confusion arisen).

Lemma 3.1. Let M be a submanifold of a Riemannian manifold M̃ equipped with a concurrent

vector field Z̃ on M̃. Then the corresponding canonical vector field Z T and the gradient of the

2-distance function δ2
Z of M are related by

Z T =
1

2
∇δ2

Z . (3.1)

Proof. Let M be a submanifold of a Riemannian manifold M̃ equipped with a concurrent

vector field Z̃ on M̃ . Then the 2-distance function δ2
Z of M is given by

δ2
Z = 〈Z , Z 〉, (3.2)

where Z is the restriction of Z̃ on M .

Let {e1, . . . ,en} be an orthonormal local frame on M . Then it follows from (2.6), (2.8) and

(3.2) that

∇δ2
Z =

n
∑

i=1

(ei 〈Z , Z 〉)ei = 2
n
∑

i=1

〈∇̃ei
Z , Z 〉ei

= 2n
n
∑

i=1

〈ei , Z 〉ei = 2Z T ,

which proves (3.1). ���

The next result provides a simple characterization of an incompressible canonical vector

field on a submanifold arisen from a concurrent vector field on its ambient space.

Theorem 3.1. Let M be a submanifold of a Riemannian manifold M̃ with a concurrent vector

field Z̃ on M̃. Then the canonical vector field Z T on M is incompressible if and only if the mean

curvature vector field H of M in M̃ satisfies

〈H , Z 〉 =−1 (3.3)

identically.

Proof. Let M be a submanifold of a Riemannian manifold M̃ equipped with a concurrent

vector field Z̃ on M̃ . Then, according to Definition 3.4, the canonical vector field Z T is the

tangential component of the restriction Z of the concurrent vector field Z̃ along M .
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Now, let us compute the divergence div(Z T ). It follows from (2.1), (2.4), (2.5) and Lemma

3.1 that

div(Z T ) =
1

2

n
∑

i=1

〈∇ei
∇δ2

Z ,ei 〉 =
n
∑

i , j=1

〈∇ei
(〈e j , Z 〉e j ),ei 〉

=
n
∑

i , j=1

(

〈∇̃ei
e j , Z 〉〈e j ,ei 〉+〈e j ,ei 〉2 +〈e j , Z 〉〈∇ei

e j ,ei 〉
)

= n(1+〈H , Z 〉)+
n
∑

i , j=1

(

〈∇ei
e j , Z 〉〈e j ,ei 〉+〈e j , Z 〉〈∇ei

e j ,ei 〉
)

. (3.4)

Let us put

∇X ei =
n
∑

k=1

ωk
i (X )ek (3.5)

for tangent vectors X of M . Then we find from the fact that ∇ is a metric connection that

ωk
i =−ωi

k (3.6)

for 1≤ i ,k ≤ n.

From (3.5) and (3.6) we obtain

n
∑

i , j=1

(

〈∇ei
e j , Z 〉〈e j ,ei 〉+〈e j , Z 〉〈∇ei

e j ,ei 〉
)

=
n
∑

i ,k=1

ωk
i (ei )〈ek ,x〉+

n
∑

i , j=1

ωi
j (ei )〈e j , Z 〉

= 0. (3.7)

Therefore, after combining (3.4) and (3.7) we have

div(Z T ) = n{1+〈H , Z 〉}.

Consequently, the canonical vector field Z T is incompressible if and only if 〈H , Z 〉=−1 holds

identically. ���

Remark 3.1. Lemma 3.1 and Theorem (3.1) generalize statement (a) and statement (b) The-

orem 3.1 of [11], respectively.

The next result is the main theorem of this article. This main theorem provides a very

simple link between harmonicity of the 2-distance function δ2
Z and the incompressibility of

the canonical vector field Z T .
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Theorem 3.2. Let M be a submanifold of a Riemannian manifold M̃ with a concurrent vector

field Z̃ . Then the 2-distance function δ2
Z is harmonic if and only if the canonical vector field

Z T is incompressible.

Proof. Let M be a submanifold of a Riemannian manifold M̃ . Assume that M̃ admits a con-

current vector field Z̃ . Let us compute the Laplacian of the 2-distance function δ2
Z of M as

follows.

∆δ2
Z = −

n
∑

i=1

ei ei (δ2
Z )+

n
∑

i=1

∇ei
ei (δ2

Z )

= −2
n
∑

i=1

ei 〈ei , Z 〉+2
n
∑

i=1

〈∇ei
ei Z , Z 〉

= −2
n
∑

i=1

〈∇̃ei
ei , Z 〉−2n +2

n
∑

i=1

〈∇ei
ei Z , Z 〉

= −2
n
∑

i=1

〈h(ei ,ei ), Z 〉−2n

= −2n{〈H , Z 〉+1}. (3.8)

Now, by combining (3.8) and Theorem 3.1 we obtain the theorem. ���

For a Euclidean submanifold M , if we denote the tangential component of the position

vector field x of M by xT , then xT is the canonical vector field of the Euclidean submanifold

M .

For Euclidean submanifolds, Theorem 3.2 yields the following.

Theorem 3.3. Let M be an arbitrary Euclidean submanifold M of Em . Then the canonical

vector field xT of M is incompressible if and only if the 2-distance function δ2 = 〈x,x〉 of M is a

harmonic function.

Proof. This is an immediate consequence of Theorem 3.2 since the position vector field x is a

concurrent vector field on E
m . ���

4. Some applications

In this section we make the following.

Assumption. Let M be a submanifold of the warped product M̃ = I ×s F . We consider the

canonical concurrent vector field Z̃ = s ∂
∂s on I ×s F .

Now, we provide the following applications of Theorems 3.1–3.3.
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Corollary 4.1. Let M̃ = I ×s F be a warped product with warped product metric g̃ = d s2+s2gF .

Then, for every submanifold B of F , the canonical vector field Z T of I ×s B is never incompress-

ible.

Proof. Under the hypothesis, the restriction Z of Z̃ on I ×s B is always tangent to I ×s B , i.e.,

Z⊥ = 0. Therefore, condition (2.1) never holds at each point. Consequently, the canonical

vector field Z T of I ×s B is never incompressible according to Theorem 3.1. ���

Corollary 4.2. Let M̃ = I ×s F be a warped product with warped product metric g̃ = d s2+s2gF .

Then the canonical vector field Z T of every fiber {so}×s F in I ×s F is always incompressible.

Proof. Let M be a submanifold of the warped product M̃ = I ×s F endowed with a concurrent

vector field Z̃ = s ∂
∂s . Then the 2-distance function of M is given by δ2

Z = s2.

Suppose that M is a fiber of I ×s F defined by {so}×F . Then the 2-distance function δ2
Z is

the constant s2
o . Hence it is a harmonic function trivially. Consequently, Theorem 3.2 implies

that the canonical vector field Z T is always incompressible. ���

Corollary 4.3. Let M̃ = I ×s Sm−1 be the warped product of I = (0,∞) and the unit (m − 1)-

sphere Sm−1 equipped with the warped product metric g̃ = d s2 + s2gS . Consider the canonical

concurrent vector field Z̃ = s ∂
∂s

on I ×s Sm−1. Then, for any map γ : I → Sm−1, the curve defined

by

ψ : I → I ×s Sm−1; I ∋ s 7→ (
p

1+2s,γ(s)) ∈ I ×s Sm−1 (4.1)

has incompressible canonical vector field Z T .

Proof. Under the hypothesis, the 2-distance function δ2
Z of the curve ψ given by (4.1) is

δ2
Z = 1+ 2s, which is a harmonic function. Consequently, the canonical vector field Z T is

incompressible according to Theorem 3.3. ���

Example 4.1. Consider the map γ : I → S1, I = (0,∞), defined by

γ(s) =
(

cos
p

2s +
p

2s sin
p

2s
p

1+2s
,

sin
p

2s −
p

2s cos
p

2s
p

1+2s

)

. (4.2)

Then the curve ψ in (4.1) of Corollary 4.3 is given by

ψ(s) =
(p

1+2s,γ(s)
)

∈ I ×s S1. (4.3)

Therefore, according to Corollary 4.3, the canonical vector field xT = Z T is an incompressible

vector field.
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