RINGS WITH GENERALIZED COMMUTATORS IN THE NUCLEI

Dedicated to my father on his 85th birthday

CHEN-TE YEN

Abstract. Let \(R \) be a prime weakly Novikov ring and \(T_k = \left[[\ldots[[R, R], R], \ldots, R], R\right] \) where \(k \) is a positive integer. We prove that if \(T_k \subseteq N_l \cap N_r \) or \(T_k \subseteq N_m \cap N_r \), then \(R \) is associative or \(T_k = 0 \). Moreover, if \(T_k \) is contained in two of the three nuclei, and \(k = 2 \) or \(k = 3 \) then the same conclusions hold. We also consider such rings with derivations. Some similar results of weakly M-rings are obtained.

1. Introduction

Let \(R \) be a nonassociative ring. We shall denote the associator and commutator by \((x, y, z) = (xy)z - x(yz) \) and \([x, y] = xy - yx \) for all \(x, y, z \) in \(R \) respectively. In any ring \(R \), one has the following nuclei:

\[
N_l = \{ n \in R | (n, R, R) = 0 \} \text{ - left nucleus,} \\
N_m = \{ n \in R | (R, n, R) = 0 \} \text{ - middle nucleus,} \\
N_r = \{ n \in R | (R, R, n) = 0 \} \text{ - right nucleus.}
\]

A ring \(R \) is called simple if \(R \) is the only nonzero ideal of \(R \). Thus, \(R^2 = R \). A ring \(R \) is called semiprime if the only ideal of \(R \) which squares to zero is the zero ideal. A ring \(R \) is called prime if the product of any two nonzero ideals of \(R \) is nonzero. Note that each associator and commutator are linear in each argument. Thus \(N_l, N_m \) and \(N_r \) are additive subgroups of \((R, +) \). If \(S \) is a nonempty subset of a ring \(R \), then the ideal of \(R \) generated by \(S \) is \(\langle S \rangle \). A ring \(R \) is called weakly Novikov [4] if \(R \) satisfies the following identity.

\[
(w, x, yz) = y(w, x, z) \quad \text{for all } w, x, y, z \text{ in } R. \quad (1)
\]

Received December 25, 2001.

2000 Mathematics Subject Classification. Primary 17A30, 17A36.

Key words and phrases. Nucleus, simple ring, semiprime ring, prime ring, weakly Novikov ring, derivation, associator ideal, weakly M-ring.
An additive mapping d on a ring R is called a derivation if $d(xy) = d(x)y + xd(y)$ holds for all x, y in R. For any ring R, let $T_k = [[[[R, R], R], \ldots], R, R]$ where k is a positive integer. Note that $T_2 = [R, R]$ and $T_3 = [[R, R], R]$. We also note that $[R, T_k] = [T_k, R] \subseteq T_k$, where k is a positive integer. Obviously, we have the following identities.

$$T_k + T_k R = T_k + RT_k$$ for all positive integers k. \hfill (2)

$$d(R) + d(R)R = d(R) + Rd(R).$$ \hfill (3)

$$d((x, y, z)) = (d(x), y, z) + (x, d(y), z) + (x, y, d(z))$$ for all x, y, z in R. \hfill (4)

$$S(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y) = [xy, z] + [yz, x] + [zx, y]$$ for all x, y, z in R. \hfill (5)

We shall use the Teichmüller identity

$$(wx, y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z$$ for all w, x, y, z in R, \hfill (6)

which is valid in every ring.

As a consequence of (6), we have that N_l, N_m and N_r are associative subrings of R. Suppose that $n \in N_l$. Then with $w = n$ in (6) we obtain

$$(nx, y, z) = n(x, y, z)$$ for all x, y, z in R and n in N_l. \hfill (7)

Suppose that $m \in N_r$. Then with $z = m$ in (6) we get

$$(w, x, zm) = (w, x, y)m$$ for all w, x, y in R and m in N_r. \hfill (8)

Suppose that $j \in N_l \cap N_m$. Then with $x = j$ in (6) we have

$$(wj, y, z) = (w, jy, z)$$ for all w, y, z in R and j in $N_l \cap N_m$. \hfill (9)

Definition 1. Let A be the associator ideal of a ring R.

Ordinary by (6) A can be characterized as all finite sums of associators and left multiples of associators. In view of (1) it suffices to take all finite sums of associators if R is a weakly Novikov ring. Hence, in this case $A = (R, R, R)$. In the paper, we consider rings with generalized commutators in the nuclei. There had been other results concerning rings in which $[R, R] \subseteq N_l$. For example Thedy [5], Kleinfeld [1], Kleinfeld and Kleinfeld [2] as well as Kleinfeld and Smith [3].

Definition 2. For any ring R, let $V_k = T_k + RT_k$ for all positive integers k.

2. Results of Weakly Novikov Rings

Lemma 1. If R is a weakly Novikov ring, then $RN_r \subseteq N_r$ and $A \cdot N_r = (R, R, R) \cdot N_r = 0$.

Proof. Let $z \in N_r$ and $w, x, y \in R$. Then by (8) and (1), we have $(w, x, y)z = (w, x, y) = y(w, x, z) = 0$. Thus, we get $A \cdot N_r = (R, R, R) \cdot N_r = 0$ and $RN_r \subseteq N_r$, as desired.

By (2) and the result of [8], we have the

Lemma 2. If R is a ring such that T_k is contained in two of the three nuclei, then V_k is an ideal of R for every positive integer k.

In the sequel, for the convenience we denote T_k and V_k by T and V respectively.

Theorem 1. If R is a prime weakly Novikov ring such that $T \subseteq N_1 \cap N_r$ or $T \subseteq N_m \cap N_r$, then R is associative or $T = 0$.

Proof. Using $T \subseteq N_r$ and Lemma 1, we get

$$A \cdot V = A \cdot (T + RT) = 0.$$

(10)

By Lemma 2 and the primeness of R, (10) implies $A = 0$ or $V = 0$. Thus, R is associative or $T = 0$.

Lemma 3. If R is a weakly Novikov ring such that $T \subseteq N_1 \cap N_m$, then

$$(R, R, T)R = 0$$

(11)

Proof. Note that $[R, T] = [T, R] \subseteq T$. Using this, the hypotheses, (6),(1),(9) and (7), for all $y \in T$, and $w, x, z \in R$ we have $(w, x, y)z = w(x, y, z) + (w, x, y)z = (wx, y, z) - (wx, y, z) + (w, x, yz) = -(w, x, y)z - (w, yx, z) + y(w, x, z) = -(yw, x, z) + y(w, x, z) = 0$. Hence, we get $(R, R, T)R = 0$, as desired.

Theorem 2. Let R be a prime weakly Novikov ring such that $T \subseteq N_1 \cap N_m$. If $S(x, y, z) \in N_m$ for all x, y, z in R, or $[T, (R, R, R)] = 0$, then R is associative or $T = 0$.

Proof. Assume that $S(x, y, z) \in N_m$ for all x, y, z in R. Using this, (5) and the hypotheses, for all $x \in T$ and $y, z \in R$ we get $(y, z, x) = (x, y, z) + (y, z, x) + (z, x, y) = S(x, y, z) \in N_m$. Thus, $(R, R, T) \subseteq N_m$. Applying this, (1) and (11), we have $(R, R, RT)R = R(R, R, T) \cdot R = R \cdot (R, R, T)R = 0$. Combining this with (11) results in

$$(R, R, V)R = 0.$$

(12)

Assume that $[T, (R, R, R)] = 0$. Using this, (1), (11) and (6), and noting that $[T, R] \subseteq T$, for all $w, x, y, t \in R$, and $z \in T$ we have $(w, x, y)t = z(w, x, y) \cdot t = (w, x, y)zt =
(w, x, [z, y])t + (w, x, yz)t = w(x, y, z) + (w, x, y)t = w(x, y, z) + (w, x, y)z - (wx, y, z)t = w(x, y, z) + (w, x, y)z - t. Combining this with (11), we also obtain (12).

Using (1) and (12), we see that < (R, R, T) >= (R, R, V). By the semiprimeness of R, (12), implies (R, R, V) = 0. Hence, V ⊆ N_r.

Consequently, T ⊆ N. By Theorem 1, R is associative or T = 0.

In [3], Kleinfeld and Smith had proved that if R is a prime left alternative ring with [R, R] ⊆ N_l and characteristic # 2, 3 then R is associative. A linearization of the left alternative identity shows that N_l = N_m. We have the similar result for the weakly Novikov ring case.

Theorem 3. If R is a prime weakly Novikov ring such that [R, R] is contained in two of the three nuclei, then R is associative or commutative.

In the latter case, N_r = 0 or R is associative.

Proof. In view of Theorem 1, we may assume [R, R] ⊆ N_l ∩ N_m. Let B = [R, R] + R[R, R]. By Lemma 2, B is an ideal of R. Using Lemma 3, we get

\[(R, R, [R, R])R = 0.\]

(13)

Applying (5) and [R, R] ⊆ N_l ∩ N_m, for all x, y, z ∈ R we have S(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y) ∈ N_l ∩ N_m. Let x ∈ [R, R]. Then we get (y, z, x) ∈ N_l ∩ N_m. Thus, we obtain (R, R, [R, R]) ⊆ N_l ∩ N_m. Using this and (13), we have R(R, [R, R])R = R · (R, R, [R, R])R = 0.

Hence, applying this, (1) and (13), and noting that B is an ideal of R, we obtain that (R, R, B) · R = 0 and < (R, R, [R, R]) >= (R, R, B). Thus, by the semiprimeness of R we get < (R, R, B) > = 0 and so [R, R] ⊆ N_r. By Theorem 1, R is associative or commutative.

Assume that R is commutative. Thus we have N_r R = RN_r ⊆ N_r and A · N_r = 0 by Lemma 1. Hence N_r is an ideal of R. By the primeness of R, A · N_r = 0 implies A = 0 or N_r = 0.

By Theorem 3, we obtain the

Corollary 1. If R is a prime weakly Novikov ring such that [R, R] is contained in two of the three nuclei with N_r ≠ 0 or [R, R] ≠ 0, then R is associative, that is N_r = R.

In the sequel, for the convenience we denote V_5 by D.

Lemma 4. If R is a weakly Novikov ring such that [R, R], R] ⊆ N_l ∩ N_m then < (R, R, D) > · (R, R, R) = 0, where < (R, R, D) > = (R, R, D) + (R, R, D)R + R · (R, R, D)R.

Proof. Let D = [[R, R], R] + R[[R, R], R] and [[R, R], R] ⊆ N_l ∩ N_m. By Lemma 3, we obtain

\[(R, R, [[R, R], R])R = 0.\]

(14)

Thus (14) implies

\[(R, R, [[R, R], R]) ⊆ N_l.\]

(15)
Assume that \(y \in [[R, R], R] \) and \(w, x, z, u, v, t \in R \). Using (14), the hypotheses and (5) we have \(z(w, x, y) = [z, (w, x, y)] = [z, S(w, x, y)] \in [[R, R], R] \subseteq N_r \cap N_m \) and so by (1) twice we get (\(w, x, [z, y] + y(w, x, z) = (w, x, [z, y]) + (w, x, y) = (w, x, z) = z(w, x, y) \in N_r \cap N_m \). Applying these, (1) and (15) we obtain the following two inclusions.

\[
(R, R, R[[R, R], R]) = R(R, R, [[R, R], R]) \subseteq N_r \cap N_m. \tag{16}
\]

\[
[[R, R], R]A = [[R, R], R](R, R, R) \subseteq N_r. \tag{17}
\]

Then (17) implies

\[
[[R, R], R]A \cdot R = [[R, R], R] \cdot AR \subseteq [[R, R], R]A \subseteq N_r. \tag{18}
\]

Combined (15) with (16) results in

\[
(R, R, D) \subseteq N_r. \tag{19}
\]

Using (1), (17), (7) and (18), we have (\(w, x, y z)(u, v, t) = y(w, x, z) \cdot (u, v, t) = (y(w, x, z) \cdot u, v, t) = 0 \). Hence applying this, (2) and (14) we obtain

\[
(R, R, D)A = (R, R, D)(R, R, R) = 0. \tag{20}
\]

Then by (20), (19), (7) and (1) we get \(0 = (R, R, D)(R, R, R) = (R, R, D)R, R, R) \) and \(0 = (R, R, D)(R, R, R) = (R, R, D)R, R, R) \). Thus, by these, (14) and (1) we have

\[
R(R, R, [[R, R], R]) \cdot R = (R, R, D)R \subseteq N_r \cap N_m. \tag{21}
\]

Let \(x \in R(R, R, [[R, R], R]) \) and \(w, y, z \in R \). Then by (16) and (1) we get \(x \in N_r \cap N_m \) and \(wx \in (R, R, D) \). Hence by (9) and (19), we obtain (\(w, x, y, z = (w, x, y, z) = 0 \). Combined this, (1), (14) and (21) results in

\[
(R, R, D)R \subseteq N. \tag{22}
\]

Using (1), (19) and (22) we see that \(<(R, R, D) >= (R, R, D) + (R, R, D)R + R \cdot (R, R, D)R \).

Combined (19) with (20) results in

\[
(R, R, D)R \cdot A = (R, R, D) \cdot RA \subseteq (R, R, D)A = 0. \tag{23}
\]

Applying (22) and (23), we get \(\{R \cdot (R, R, D)R\} \cdot A = R \cdot \{R, R, D)R \cdot A \} = 0 \). Thus using this, (20) and (23), we have \(<(R, R, D) > \cdot A = 0 \), as desired.

\textbf{Theorem 4.} If \(R \) is a prime weakly Novikov ring such that \([[R, R], R] \) is contained in two of the three nuclei, then \(R \) is associative of \([[R, R], R] = 0 \).

\textbf{Proof.} In view of Theorem 1, we may assume \([[R, R], R] \subseteq N_r \cap N_m \).

Let \(D = [[R, R], R] + R[[R, R], R] \). Then by Lemma 4 we obtain \(<(R, R, D) > \cdot A = 0 \), where \(<(R, R, D) >= (R, R, D) + (R, R, D)R + R \cdot (R, R, D)R \). By the semiprimeness
of R, this implies $< (R,R,D) > = 0$. Hence $[[R,R],R] \subseteq N_r$. Thus by Theorem 1, R is associative or $[[R,R],R] = 0$.

By Theorem 4, we have the

Corollary 2. If R is a prime weakly Novikov ring such that $[[R,R],R]$ is contained in two of the three nuclei with $[[R,R],R] \neq 0$, then R is associative.

The following is very easy.

Remark 1. If R is a simple weakly Novikov ring such that $T \subseteq N_r$, then R is associative or $T = 0$.

Proof. Assume that $A = (R,R,R)$. By Lemma 1, we have $RT = AT = 0$. Thus, we get $TR = [T,R] \subseteq T$. Hence, we see that $< T > = T$. By the simplicity of R, we obtain $T = 0$, as desired.

Remark 2. If R is a semiprime weakly Novikov ring such that $(R,R,R) \subseteq N_l$ or $(R,R,R) \subseteq N_r$ then R is associative.

Proof. We see that the associator ideal A of R is all finite sums of associators. Assume that $(R,R,R) \subseteq N_l$. Then by this and (7), for all $w \in (R,R,R)$ and $x,y,z \in R$ we get $w(x,y,z) = (wx,y,z) \in (A,R,R) = 0$.

Thus, we have $(R,R,R)(R,R,R) = 0$ and so $A^2 = 0$.

Assume that $(R,R,R) \subseteq N_r$. Then by Lemma 1, we obtain

In either case, we have $A^2 = 0$. By the semiprimeness of R, this implies $A = 0$. Thus, R is associative.

In view of Theorem 1 of [6], we have the

Remark 3. If R is a semiprime weakly Novikov ring with a derivation d such that $d(R) \subseteq N_r$, then $d(A) = 0$. Moreover, if R is prime such that $d(R) \subseteq N_l \cap N_r$ or $d(R) \subseteq N_m \cap N_r$, then R is associative or $d = 0$.

Proof. By the definition of d, $d(R) \subseteq N_r$, (8), (1) and $A = (R,R,R)$, for all $w,x,y,z,t \in R$ we get $(w,x,y)z(\delta(z)) = (w,x,yd(z)) = y(w,x,dz) = 0$, $(w,x,y)zd(\delta(z)) = 0$ and so $d(y)(w,x,z) = (w,x,dz) = (w,x,d\delta(z)) = (w,x,\delta y(\delta)) = 0$.

Let $E = d(R) + Rd(R)$. Then the above three equalities imply

$$A \cdot E = 0 \text{ and } d(R) \cdot A = 0.$$

Using (24), we have that $d(A)R \subseteq d(A)$ and $Rd(A) \subseteq d(A)$. Hence $< d(A) > = d(A)$. Applying (4), we see that $d(A) \subseteq A$. Thus by (24), $d(A) \cdot A = 0$ and so by the semiprimeness of R, this implies $d(A) = 0$.

Using
Assume that R is prime such that $d(R) \subseteq N_l \cap N_r$ or $d(R) \subseteq N_m \cap N_r$. Then by (3) and the result of [8], E is an ideal of R. By the primeness of R, (24) implies $A = 0$ or $E = 0$. Hence, R is associative or $d = 0$.

In Remark 3, if R is a semiprime weakly Novikov ring with a derivation d such that $d(R) \subseteq N_r$, then $d(A) = 0$. Hence, the results of [?] can be applied.

3. Results of weakly M-rings

In the sequel, we denote T_k and V_k by T and V respectively.

A ring R is called a weakly M-ring if R satisfies the following identity.

\[(w,xy,z) = x(w,y,z) \text{ for all } w,x,y,z \text{ in } R. \quad (25)\]

Note that if R is a weakly M-ring then by (6) and (25) we obtain $A = (R,R,R)$.

Theorem 5. If R is a prime weakly M-ring such that $T \subseteq N_l \cap N_m$ or $T \subseteq N_m \cap N_r$, then R is associative or $T = 0$.

Proof. Note that $[T,R] \subseteq T$. Using this, $T \subseteq N_m$ and (25), for all $x \in T$ and $w,y,z,t \in R$ we have $x(w,y,z) = x(w,y,z) - y(w,x,z) = (w,xy,z) - (w,tx,\cdot z) = (w,[x,y],z) = 0$, and so $tx \cdot (w,y,z) = t \cdot x(w,y,z) = 0$. These two identities yield

\[V \cdot A = 0 \quad (26)\]

Since V is an ideal of R, by the primeness of R, (26) implies $A = 0$ or $V = 0$. Hence, R is associative or $T = 0$.

The following three remarks are similar to those in section 2. The proofs are also similar, so we omit it.

Remark 4. If R is a simple weakly M-ring such that $T \subseteq N_m$, then R is associative or $T = 0$.

Remark 5. If R is a semiprime weakly M-ring such that $(R,R,R) \subseteq N_m$, then R is associative.

Remark 6. If R is a prime weakly M-ring with a derivation d such that $d(R) \subseteq N_l \cap N_m$ or $d(R) \subseteq N_m \cap N_r$, then R is associative or $d = 0$.

Finally, we ask if the theorem or the remark is valid for the other cases.

References

Department of Mathematics, Chung Yuan Christian University, Chung Li, Taiwan, 320, Republic of China.