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S-CLUSTER SETS IN FUZZY TOPOLOGICAL SPACES

A. A. NOUH AND M. E. EL-SHAFEI

Abstract. In this paper the concept of S-cluster fuzzy sets, of fuzzy functions and fuzzy mul-

tifunctions between fuzzy topological spaces is introduced. As an application, characterizations

of fuzzy Hausdor� and SQ�-closed fuzzy topological spaces are achieved via such cluster fuzzy

sets.

1. Introduction

The theory of cluster sets was developed long ago, and was initially aimed at the

investigations of real and complex function theory. A comprehensive collection of works in

this direction can be found in the classical book of Collingwood and Lohwater [4]. Weston

[14] was the �rst to initiate the corresponding theory for functions between topological

spaces basically for studyng compactness. The present paper is intended for to introduce

the concept of S-cluster fuzzy sets of fuzzy functions and fuzzy multifunctions, which

provides a new technique for studying SQ�-closedness of fuzzy topological spaces. It

is shown that such cluster fuzzy sets of suitable fuzzy function can characterize fuzzy

Hausdor�ness. Finally, we achieve, as our prime motivation, certain characterizations of

SQ�-closed space.

Let X be a set of points and I be the unit interval [0,1]. A fuzzy set � in X is a

mapping from X into I . The class of all fuzzy sets on X denoted by IX . For x 2 X and

� 2 (0; 1], a fuzzy set x� de�ned by

x�(y) =

�
� : y = x

0 : y 6= x

is called a fuzzy point in X . The class of all fuzzy points of X denoted by FP (X). Let

0X and 1X be, respectively, the constant fuzzy sets taking 0 and 1 on X . For A � X; 1A
denotes the characteristic mapping of A. For every x� 2 FP (X) and � 2 IX , we write

X� 2 � i� � � �(x). For every � 2 LX , denote supp(�) = fx 2 X : �(x) > 0g, called it

the support of �. For any set A � X , we denote the cardinality of A by jAj. If jAj = 1,
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say A = fxg, then A is called degenerate. A fuzzy set � is called �nite (resp. degenerate)

if jsupp(�)j is �nite (resp. jsupp(�) = 1). A fuzzy set � is called quasi-coincident with a

fuzzy set �,denoted by �q� [12], i� there exists x 2 X such that �(x) + �(x) > 1. If � is

not quasi-coincident with �, then we write ��q�.

In what follows, we use the concept of a fuzzy topological space (fts, for short) as

introduced by Chang [3]. A fuzzy set � 2 IX is called semi-open [9] if for some open

fuzzy set �; � � � � c`(�), where c`(�) denotes the fuzzy closure of � in X . The

complements of semi-open fuzzy sets are called semi-closed. Let x� 2 FP (X) and

� 2 IX , by N�; NQ
x�
; SONQ

x�
and 1X n � = �0, we mean, the open neighbourhood

system of �, open Q-neighbourhood (Q-nbd, for short) system of x�, the semi-open

Q-neighbourhood (S:Q-nbd, for short) system of x� and the pseudo-complement of �.

For any fuzzy set � 2 IX , the �-closure [9] (�-semiclosure [9]) of �, denoted by �:c`(�)

(resp. �S:c`(�)), is de�ned by x� 2 �:c`(�) (resp. x� 2 �S:cl(�)) i� for every � 2 NQ
x�

(resp. � 2 SONQ
x�
); c`(�)q�. The fuzzy set � is called �-closed [9] (�-semiclosed [9]) if

� = �:c`(�) (resp. � = �S:c`(�)). It is known [9] that �:c`(�) need not be �-closed, but

it is so if � is open.

Theorem 1.1.([12]) Let f�j : j 2 Jg � IX and x� 2 FP (X). Then:

(i) x�q
W
j2J

�j i� (9j0 2 J)(x�q�j0):

(ii) If x�q
V
j2J

�j , then (8j 2 J)(x�q�j). The converse is true if J is �nite.

De�nition 1.2.([2]) A fuzzy grill onX is a nonempty subset 
 � IX such that:

(i) � 2 
 and � � � implies � 2 
.

(ii) � _ � 2 
 implies � 2 
 or � 2 
.

De�nition 1.3.([11]) A fuzzy �lterbase on X is a nonempty subset � � IX such

that:

(i) 0X 62 �.

(ii) If �1; �2 2 �, then 9�3 2 � such that �3 � �1 ^ �2.

The fuzzy �lter F generated by � is di�ned by F = f� 2 IX : � � � for some � 2 �g.

A fuzzy �lterbase F on a fts (X; �) is said to �S-adhere at a fuzzy point x� 2 FP (X),

denoted as x� 2 �S:adh(F) if (8� 2 SONQ
x�)(8� 2 F)(c`(�)q�). A fuzzy grill 
 on

X is said to �S-converge to a fuzzy point x� 2 FP (X), if for each � 2 SONQ
x�
, there

corresponds some � 2 
 with � � c`(�).

Each mapping f : IX ! IY considered in this paper is induced from a crisp mapping

f : X ! Y as usual, i.e. for � 2 IX ; � 2 IY ; x 2 X and y 2 Y , we de�ne f(�)(y) =W
f�(x) : x 2 X; f(x) = yg and f�1(�)(x) = �(f(x)).

2. S-cluster Fuzzy Set of Fuzzy Functions

De�nition 2.1. Let f : IX ! IY be a function and x� 2 FP (X). The S-cluster

fuzzy set of f at x�, denoted by S(f; x�) is given by ^f�:c`(f(c`(�))) : � 2 SONQ
x�
g.
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In the next theorem, we characterize the S-cluster fuzzy set of a function at some

fuzzy point between fuzzy topological spaces.

Theorem 2.2. For any function f : IX ! IY and yv 2 FP (Y ), the following

statements are equivalent:

(i) yv 2 S(f; x�).

(ii) The fuzzy �lterbase f�1(c`(NQ
yv
)) �S-adheres at x�.

(iii) There is a fuzzy grill 
 on X such that 
 �S-converges to x� and yv 2 ^f�:c`(f(�))

: � 2 
g.

Proof. (i) =) (ii): Let yv 2 S(f; x�). Then for each � 2 SONQ
x�

and each � 2

NQ
yv
, c`(�)qf(c`(�)). So, for each � 2 SONQ

x�
and each � 2 NQ

yv
, f�1(c`(�))q� and so

f�1(c`(�)) ^ � 6= ;. It is easy to verify that the family ff�1(c`(�)) : � 2 NQ
yv
g is a fuzzy

�lterbase on X �S-adheres at x�.

(ii) =) (iii): Let F be the fuzzy �lter on X generated by the fuzzy �lterbase

f�1(c`(NQ
yv
)). Then 
 = f� 2 IX : �q� for each � 2 Fg is a fuzzy grill on X . By

(ii), for each � 2 SONQ
x�

and each � 2 NQ
yv
, c`(�)qf�1(c`(�)). Hence �qc`(�) for each

� 2 F and each � 2 SONQ
x�
. Consequently, c`(�) 2 
 for all � 2 SONQ

x�
, which proves

that 
 �S-converges to x�. Now, the de�nition of 
 yields that f(�)qc`(�) for all � 2 NQ
yv

and all � 2 
. Then yv 2 �:c`(f(�)) for all � 2 
. Hence yv 2 ^f�:c`(f(�)) : � 2 
g.

(iii) =) (i): Let 
 be a fuzzy grill on X such that 
 �S-converges to x�, and

yv 2 ^f�:c`(f(�)) : � 2 
g. Then fc`(�) : � 2 SONQ
x�
g � 
 and yv 2 �:c`(f(�))

for each � 2 
. Hence, in particular, yv 2 �:c`(f(c`(�))) for all � 2 SONQ
x�
. So

yv 2 ^f�:c`(f(c`(�))) : � 2 SONQ
x�
g = S(f; x�).

De�nition 2.3. A fts (X; �) is called fuzzy Hausdor� space (FT2, for short) i�

(8x�; yv 2 FP (X); x 6= y)(9� 2 NQ
x�
)(9� 2 NQ

yv
)(��q�).

In what follows, we show that S-cluster fuzzy sets of a function at some fuzzy point

between fuzzy topological spaces may be used to assertain the fuzzy Hausdor�ness of the

codomain space.

Theorem 2.4. Let f : IX ! IY be a function on a fts (X; �) onto a fts (Y;�). Then

(Y;�) is FT2 if S(f; x�) is degenerate for each x� 2 FP (X).

Proof. Let y1�; y
2
v 2 FP (X) such that y1 6= y2. As f is a surjection, there are x1�,

x2v 2 FP (X) such that x1 6= x2 and f(xi) = yi for i = 1; 2. Now, since S(f; x�) is

degenerate for each x� 2 FP (X); y2v = f(x2v) 62 S(f; x1�). Thus, there are � 2 N
Q

y2
v

and � 2 SON
Q

x1
�

such that c`(�)�qf(c`(�)) and so f(c`(�)) � 1Y n c`(�). Then � 2

N
Q

y2
�

; 1Y n c`(�) 2 N
Q

y1
v

and ��q(1Y n c`(�)) which proves that (Y;�) is FT2.

De�nition 2.5.([7]) A function f : IX ! IY is called a fuzzy �S-irresolute i� for

each x� 2 FP (X) and each � 2 SON
Q

f(x�)
, there is � 2 SONQ

x�
such that f(c`(�)) � �.
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Theorem 2.6. Let f : IX ! IY be a fuzzy �S-irresolute function with (Y;�) a

FT2-space. Then S(f; x�) is degenerate for each x� 2 FP (X).

Proof. Let x� 2 FP (X). As f is fuzzy �S-irresolute, for any � 2 SON
Q

f(x�)
, there is

� 2 SONQ
x�

such that f(c`(�)) � �. Then S(f; x�) = ^f�:c`(f(c`(�))) : � 2 SONQ
x�
g �

^f�:c`(�) : � 2 SON
Q

f(x�)
g. Let y� 2 FP (Y ) with y 6= f(x). As (Y;�) is FT2, then

there are �1 2 NQ
y�

and �2 2 N
Q

f(x�)
such that �1�q�2. Obviously, as �1�qc`(�2); y� 62

c`(�2) = �:c`(�2). As �2 2 N
Q

f(x�)
� SON

Q

f(x�)
; y� 62 ^f�:c`(�) : � 2 SON

Q

f(x�)
g and

hence y� 62 S(f; x�). Thus S(f; x�) = ff(x�)g.

Combining the lase two results, we get the following characterization for the fuzzy

Hausdor�ness of the codomain space of a kind of function in terms of the degeneracy of

its S-cluster fuzzy set.

Theorem 2.7. f : IX ! IY be a fuzzy �S-irresolute function on a fts (X; �) onto a

fts (Y;�). Then (Y;�) is FT2 i� S(f; x�) is degenerate for each x� 2 FP (X).

We have just seen that degeneracy of the S-cluster fuzzy set of an arbitrary fuzzy

function is a su�cient condition for the fuzzy Hausdor�ness of the codomain space. We

thus like to examine some other situations when the S-cluster fuzzy sets are degenerate,

thereby ensuring the fuzzy Hausdor�ness of the codomain space of the fuzzy function

concerned. To this end, we recall the following de�nition.

De�nition 2.8.([9]) A fts (X; �) is called fuzzy almost regular (FAR2, for short)

i� (8x� 2 FP (X))(8� 2 RCF (X; �))(x" 62 �)(9� 2 NQ
x�
)(9� 2 N�)(��q�), where

RCF (X; �) denotes the class of all regular closed fuzzy sets in (X; �).

Theorem 2.9.([9]) In any FAR2-space (X; �); �:c`(�) is �-closed fuzzy set for each

� 2 IX .

De�nition 2.10.([7]) A funciton f : IX ! IY is called fuzzy �-closed if the image of

each �-closed fuzzy set of a fts (X; �) is a �-closed fuzzy set of a fts (Y;�).

Theorem 2.11. Let f : IX ! IY be a fuzzy �-closed function from a FAR2-space

(X; �) into a fts (Y;�). If f�1(yv) is �-closed in (X; �) for all yv 2 FP (Y ), then S(f; x�)

is degenerate for each x� 2 FP (X).

Proof. Since, c`(�) � �:c`(�) for each � 2 IX , then S(f; x�) = ^f�:c`(f(c`(�))) :

� 2 SONQ
x�
g � ^f�:c`(f(�:c`(�))) : � 2 SONQ

x�
g. As (X; �) is FAR2; �:c`(�) is �-closed

for all � 2 SONQ
x�
. Since f is a fuzzy �-closed function, �:c`(f(�:c`(�))) = f(�:c`(�)) for

each � 2 SONQ
x�
. Thus S(f; x�) � ^ff(�:c`(�)) : � 2 SONQ

x�
g. Now, let yv 2 FP (Y )

such that y 6= f(x). Then since f�1(yv) is �-closed and x� 62 f�1(yv), there is some

� 2 NQ
x�

such that c`(�)�qf�1(yv). So, yv 62 f(c`(�)) = f(�:c`(�)) (as � is an open fuzzy

set) and hence yv 62 ^ff(�:c`(�)) : � 2 SONQ
x�
g. Thus, we conclude that yv 62 S(f; x�),

which proves that S(f; x�) is degenerate.
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Theorem 2.12. Let f : IX ! IY be a fuzzy �-closed injection funciton, where (X; �)

is a FAR2 and FT2-space. Then S(f; x�) is degenerate for each x� 2 FP (X).

Proof. Since the fts (X; �) is FAR2 and the mapping f is a fuzzy �-closed, we have

�:c`(f(�:c`(�))) = f(�:c`(�)) for any � 2 SONQ
x�

and, hence

S(f; x�) = ^f�:c`(f(c`(�))) : � 2 SONQ
x�
g

� ^f�:c`(f(�:c`(�))) : � 2 SONQ
x�
g

= ^ff(�:c`(�)) : � 2 SONQ
x�
g: (�)

For each x1� 2 FP (X) with x 6= x1; f(x�) 6= f(x1�) as f is injective. By the fuzzy

Hausdor�ness of (X; �), there are � 2 NQ
x�

and � 2 N
Q

x1
�

such that ��q�. Obviously,

��qc`(�). So x1� 62 �:c`(�) and hence f(x1�) 62 f(�:c`(�)). Since NQ
x�

� SONQ
x�
, then

� 2 SONQ
x�

and hence by equation (�), we have f(x1�) 62 S(f; x�). Thus, S(f; x�) is

degenerate for each x� 2 FP (X).

De�nition 2.13.([9]) A fts (X; �) is called fuzzy regular (FR2, for short) i� (8x� 2

FP (X))(8� 2 � 0)(x� 62 �)(9� 2 NQ
x�
)(9� 2 N�)(��q�), where �

0 represents the class of all

closed fuzzy sets in (X; �).

Now, Theorem 2.12., is equivalent to the following apparently weaker result when

(X; �) is FR2.

Theorem 2.14. If f : IX ! IY is a fuzzy �-closed injection, where (X; �) is a

FR2-space, then S(f; x�) is degenerate for each x� 2 FP (X).

Proof. It is known that in a FR2-space (X; �); �:c`(�) = c`(�) for any � 2 IX . Since

(X; �) is FT3 and f is a fuzzy �-colsed injection, ff(x�)g � S(f; x�) = ^ff(c`(�)) : � 2

SONQ
x�
g � ^ff(c`(�)) : � 2 NQ

x�
g = ff(x�)g. Thus S(f; x�) = ff(x�)g.

Note that the above result is indeed equivalent to that of Theorem 2.9 follows from the

following considerations: For any fuzzy set � 2 IX in a fts (X; �); �-closure of � in (X; �)

is the same as that in (X; �S), where (X; �S) denotes the fuzzy semiregularization space [9]

of (X; �). Moreover, it is known [9] that (X; �) is FT2 (FAR2) i� (X; �S) is FT2 (FR2).

Now, since SO(X; �S) � SO(X; �), it follows that S(f; x�) = S(f : (X; �) ! Y; x�) �

S(f : (X; �S) ! Y; x�). So, S(f; x�) is degenerate for each x� 2 FP (X) if (X; �) is an

FAR2 and FT2 space and f : IX ! IY is a nonempty fuzzy �-closed injection.

3. S-cluster Sets of Fuzzy Multifunctions and SQ�-closedness

De�nition 3.1.([10]) Let (X;T ) be a topological space in the classical sense and

(Y;�) be a fts. A map F : X ! IY is called a fuzzy multifunction i� for each x 2 X; F (x)

is a nonempty fuzzy set in Y .

In the following, unless otherewise is stated, by F : X ! IY we will mean that F

is a fuzzy multifunction from a classical topological space (X;T ) to a fts (Y;�). Let
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(X;T ) be a classical topological space, x 2 X and A � X , by Nx (resp. NA) and SONx

(resp. SONA), we mean, the open neighbourhood system of x (resp. of A) and the

semi-open neighbourhood system of x (resp. of A).

De�nition 3.2.([10]) For a fuzzy multifunction F : X ! IY , the lower inverse F�(�)

of a fuzzy set � in Y is de�ned as: F�(�) = fx 2 X : F (x)q�g.

De�nition 3.3. Let F : X ! IY be a fuzzy multifunction and x 2 X . Then the S-

cluster fuzzy set of F at x, denoted by S(F; x) is de�ned to be the set ^f�:c`(F (c`(U))) :

U 2 SONxg.

De�nition 3.4.([8]) Let (X; �) be a fts, � 2 (0; 1] and � 2 IX . Then

(i) The familly U = f�j : j 2 Jg � SO(X; �) is called a semi-open Q�-cover of � i�

(8x 2 X with �(x) � �)(9j 2 J)(x�q�j).

(ii) A subfamilly U0 of an Q�-cover U of �, which is also a Q�-cover of �, is called an

Q�-subcover of �.

(iii) A fuzzy set � is called SQ�-closed if each semi-open Q�-cover U of � there exists a

�nite subfamily U0 of U such that fc`(�) : � 2 U0g is an Q�-cover of �.

(iv) A fts (X; �) is called SQ�-closed i� 1X is SQ�-closed.

We now turn our attention to the characterizations of SQ�-closedness via S-cluster

fuzzy sets. We need the following two lemmas for this purpose.

Lemma 3.5. A fuzzy set � in a fts (X; �) is an SQ�-closed i� for every fuzzy

�lterbase F on X such that � ^ �(x) � � for all � 2 F and for all � 2 SONQ�
� , then

� ^ �S:adh(F)(x) � � for some x 2 X.

Proof. Let � 2 IX be an SQ�-closed and F be a fuzzy �lterbase on X and assume

that �^�S:adh(F)(x) < � for each x 2 X . Then, for all x� 2 �, we have x� 62 �S:adh(F)

and so (9�x� 2 SONQ
x�
)(9�x� 2 F)(c`(�x�)�q�x�). The family U = f�x� : x� 2 �g is a

semi-open Q�-cover of �. By the SQ�-closedness of �, there exists a �nite subset �� of

� such that the family U0 = fc`(�x�) : X� 2 ��g is an Q�-cover of �. Choose � 2 F with

� � ^f�x� 2 F : x� 2 ��g. Put � =
W
f�x� 2 SONQ

x�
: x� 2 ��g. Then � 2 SONQ

x�
and

c`(�)�q�. Since x� 2 �; x�q� and c`(�)�q�, then �(x) � 1X n c`(�)(x) < � � �(x) for each

x 2 X . Hence (� ^ �)(x) < � for each x 2 X , a contradiction. Conversely, suppose that

� is not SQ�-closed. Then there exists a semi-open Q�-cover U = f�j : j 2 Jg of � such

that for every �nite subset J0 of J , the family U0 = fc`(�j) : j 2 J0g is not Q�-cover

of �. Then, there exists x� 2 � such that for all c`(�j) 2 U0g we have x��qc`(�j) and

so x��q
W
j2J0

c`(�j). Hence x� 2
V
j2J0

(1X n c`(�j)) and so
V
j2J0

((1X n c`(�j)) ^ �)(x) � �

for some x 2 X . So, F = f� ^ (1X n c`(�j)) : j 2 J0g is a fuzzy �lterbase on �. By

hypothesis, we have x� 2 � ^ �S:adh(F). Assume, �j 2 SONQ
x�

and let J0 = fjg.

Since, x� 2 �S:adh(F), then c`(�j)q(� ^ (1X n �j)) and so c`(�j)q(1X) n c`(�j)) which is

impossible.
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Lemma 3.6.([8]) For any fts (X; �) and � 2 (0; 1] we have:

(i) A fts (X; �) is SQ�-closed i� every fuzzy �lterbase �S-adheres in X.

(ii) Any �-semiclosed fuzzy set of an SQ�-closed space is SQ�-closed.

De�nition 3.7. For a fuzzy multifunction F : X ! IY and a subset A of X , the

notation S(F;A) stands for the set _fS(F; x) : x 2 Ag.

Theorem 3.8. For any topological space (X;T ) and � 2 (0; 1], the following state-

ments are equivalent:

(i) 1X is SQ�-closed.

(ii) S(F;A) � ^f�:c`(F (U)) : U 2 SONAg for each �-semiclosed subset A of X, for each

fts (Y;�) and each fuzzy multifunction F : X ! IY .

(iii) S(F;A) � ^f�S:c`(F (U)) : U 2 SONAg for each �-semiclosed subset A of X, for

each fts (Y;�) and each fuzzy multifunction F : X ! IY .

Proof. (i) =) (ii): Let A be any �-semiclosed subset of X . Since, 1X is SQ�-closed,

then by Lemma 3.6(ii), 1A is SQ�-closed. Now, let z� 2 ^f�:c`(F (W )) : W 2 SONAg.

Then for all � 2 NQ
z�

and for each U 2 SONA; c`(�)qF (U) and so F�(c`(�)) \ U 6= ;.

Thus F = fF�(c`(�)) : � 2 NQ
z�
g is clearly a fuzzy �lterbase on X , satisfying the

condition of Lemma 3.5. Hence (1A ^ �S:adh(F))(x) � �. Then x 2 A, and for all

U 2 SONx and each � 2 NQ
z�
; c`(1U)qF

�(c`(�)), i.e., F (c`(U))qc`(�) and so z� 2

S(F; x) � S(F;A).

(ii) =) (iii): Obvious.

(iii) =) (i): In order to show that 1X is SQ�-closed, it is enough to prove, by virtue

of Lemma 3.6(i), that every fuzzy �lterbase F on X �S-adheres at some x� 2 FP (X).

Let F be a fuzzy �lterbase on X . Take y0 62 X , and construct Y = X [ fy0g. De�ne

� = f� 2 IY : y0��q�g[ f� 2 IY : y0�q�, � � � for some � 2 Fg. By Theorem 1.1, it is easy

to verify that � is a fuzzy topoloty on Y . Consider the function 	 : X ! Y by 	(x) = x.

In order to avoid possible confusion, let us denote the closure and �S-closure of a fuzzy

set � in X(Y ), respectively, by X:c`(�)(Y:c`(�)) and X:�S:c`(�)(Y:�S:c`(�)). As X is

�-semiclosed in X , by the given codition, S(	; x) � ^fY:�S:c`(	(U)) : U 2 SONXg =

^fY:�S:c`(U) : U 2 SONXg = Y:�S:c`(X). We consider y0� 2 FP (Y ) and �0 2 SONQ
y�
.

There is some � 2 � such that � � �0 � Y:c`(�). If y0��q�, then � � 1X and hence

Y:c`(�)q1X . If on the other hand, y0�q�, then there is some � 2 F such that � � � and

hence Y:c`(�) � Y:c`(�). So 1XqY:c`(�). So, in any case, 1XqY:c`(�) and, consequently,

as Y:c`(�) = Y:c`(�0), 1XqY:c`(�0). Thus y0� 2 Y:�S:c`(X). So, y0� 2 S(	; x) for some

x 2 X . Consider any V 2 SONx and � 2 F. Then � _ fy0�g 2 � and y0�qY n (� ^ fy0�g).

Thus Y n (� _ fy0�g) 2 �, which proves that Y:c`(� _ fy0�g) = � _ fy0�g. Now, since

Y:c`(� _ y0�)q	(X:c`(V )), then X:c`(V )q� _ y0� which implies that X:c`(V )q�. Thus,

x� 2 �S:adh(F).
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