THE DUAL SPACES OF THE SETS OF Λ-STRONGLY
CONVERGENT AND BOUNDED SEQUENCES

A. M. JARRAH AND E. MALKOWSKY

Abstract. In this paper we shall give the α–, β–, γ– and f–duals of the sets \(w^p_0(\Lambda) \), \(w^p_\infty(\Lambda) \), \(c^p_0(\Lambda) \), \(c^p(\Lambda) \) and \(c^p_\infty(\Lambda) \). Furthermore, we shall determine the continuous dual spaces of the sets \(w^p_0(\Lambda) \), \(c^p_0(\Lambda) \) and \(c^p(\Lambda) \).

1. Introduction

We write \(\omega \) for the set of all complex sequences \(x = (x_k)_{k=0}^{\infty} \), \(\phi \), \(l_\infty \), \(c \) and \(c_0 \) for the sets of all finite, bounded, convergent sequences and sequences convergent to naught, respectively, further \(cs \), \(bs \) and \(l_1 \) for the sets of all convergent, bounded and absolutely convergent series.

By \(e \) and \(e^{(n)} \) \((n \in \mathbb{N}_0) \), we denote the sequences such that \(e_k = 1 \) for \(k = 0, 1, \ldots \), and \(e^{(n)}_n = 1 \) and \(e^{(n)}_k = 0 \) for \(k \neq n \). For any sequence \(x = (x_k)_{k=0}^{\infty} \), let \(x^{[n]} = \sum_{k=0}^{n} x_ke^{(k)} \) be its \(n \)–section.

Let \(X, Y \subset \omega \) and \(z \in \omega \). Then we write

\[
 z^{-1} \ast X = \{ x \in \omega : xz = (x_kz_k)_{k=0}^{\infty} \in X \}
\]

and

\[
 M(X, Y) = \bigcap_{x \in X} x^{-1} \ast Y = \{ a \in \omega : ax \in Y \text{ for all } x \in X \}
\]

for the multiplier space of \(X \) and \(Y \). The sets \(M(X, l_1) \), \(M(X, cs) \) and \(M(X, bs) \) are called the α–, β– and γ–duals of \(X \), respectively.

A Fréchet subspace \(X \) of \(\omega \) is called an FK space if it has continuous coordinates, that is if convergence in \(X \) implies coordinatewise convergence. An FK space \(X \supset \phi \) is said to have \(AK \) if, for every sequence \(x = (x_k)_{k=0}^{\infty} \in X \), \(x^{[n]} \rightarrow x \) \((n \rightarrow \infty)\); it is said to have \(AD \) if \(\phi \) is dense in \(X \). A BK space is an FK space which is a Banach space.

Received February 2, 1999.
2000 Mathematics Subject Classification. Primary 40H05, 46A45; secondary 47B07.
Key words and phrases. BK, AK, AD spaces, dual spaces.
This joint research paper was written when the second author visited Yarmouk University for the academic year 1997/1998. He expresses his sincere gratitude to Yarmouk University for their generous hospitality during his Visiting Professorship.
If X is a p-normed space then we write X^* for the set of all continuous linear functionals on X, the so-called *continuous dual* of X, with its norm $\| \cdot \|$ given by

$$\|f\| = \sup\{|f(x)| : \|x\| = 1\} \text{ for all } f \in X^*.$$

Let $X \supset \phi$ be an FK space. Then the set $X' = \{(f(e(n)))_{n=0}^\infty : f \in X^*\}$ is called the f–*dual* of X.

The sets $c_0(\Lambda)$, $c(\Lambda)$ and $c_{\infty}(\Lambda)$ of sequences that are Λ–strongly convergent to naught, Λ–strongly convergent and Λ–strongly bounded were introduced and studied by Móricz [12]. Their β– and continuous duals were determined in [10] and [11]. In this paper, we shall extend these results to $0 < p \leq 1$ where p is an index. Furthermore, we shall give the α–, γ– and f–duals of the spaces $w_0^p(\Lambda)$, $w_{\infty}^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_{\infty}^p(\Lambda)$.

2. Some Notations and Preliminary Results

We shall frequently apply the following inequality (cf. [8, p. 22])

$$(a + b)^p \leq a^p + b^p \ (0 < p \leq 1) \text{ for all } a, b \geq 0. \quad (2.1)$$

Given any infinite matrix $A = (a_{nk})_{n,k=0}^\infty$ of complex numbers and any sequence $x \in \omega$, we shall write $A_n(x) = \sum_{k=0}^\infty a_{nk}x_k \ (n = 0, 1, \ldots)$, $A(x) = (A_n(x))_{n=0}^\infty$, provided the series converge, and $X_A = \{x \in \omega : A(x) \in X\}$.

We define the matrix Δ by $\Delta_{nk} = 1$ for $k = n$, $\Delta_{nk} = -1$ for $k = n-1$ and $\Delta_{nk} = 0$ otherwise $(n = 0, 1, \ldots)$, and use the convention that any symbol with a negative subscript has the value 0.

Given any real $p > 0$ and any sequence x, we write $|x|^p = (|x_k|^p)_{k=0}^\infty$ and

$$M_n^p(x) = \frac{1}{\mu_n} \sum_{k=0}^n |(\Delta(\mu x))_k|^p \text{ for } n = 0, 1, \ldots.$$

Let $0 < p < \infty$ and $\mu = (\mu_n)_{n=0}^\infty$ be a nondecreasing sequence of positive reals tending to infinity throughout. We shall consider the sets

$$w_0^p(\mu) = \left\{ x \in \omega : \lim_{n \to \infty} \left(\frac{1}{\mu_n} \sum_{k=0}^n |x_k|^p \right) = 0 \right\}, \quad c_0^p(\mu) = (\mu)^{-1} * (w_0^p(\mu))_\Delta,$$

$$w_{\infty}^p(\mu) = \left\{ x \in \omega : \sup_n \left(\frac{1}{\mu_n} \sum_{k=0}^n |x_k|^p \right) < \infty \right\}, \quad c_{\infty}^p(\mu) = (\mu)^{-1} * (w_{\infty}^p(\mu))_\Delta,$$

$$c^p(\mu) = \{ x \in \omega : x - le \in c_0^p(\mu) \text{ for some } l \in \mathbb{C} \}.$$

If $p = 1$ then we omit the index p, that is we write $w_0(\mu) = w_0^1(\mu)$ etc.

The sets $w_0^p(\mu)$ and $w_{\infty}^p(\mu)$ are special cases of mixed normed spaces studied for instance in [1,2,5,6,9]. If $\frac{1}{\mu_n} = \frac{1}{n+1}$ for $n = 0, 1, \ldots$, then the sets $w_0^p(\mu)$ and $w_{\infty}^p(\mu)$ reduce to the sets w_0^p and w_{∞}^p introduced and studied by Maddox [7], and the sets $c_0^p(\mu),$
$c^p(\mu)$ and $c^p_{\infty}(\mu)$ reduce to the sets $[c_0]_p$, $[c]_p$ and $[c_{\infty}]_p$ introduced and studied by Hyslop, Kuttner and Thorpe [3, 4]. For $p = 1$ the sets $c^p_0(\mu)$, $c^p(\mu)$ and $c^p_{\infty}(\mu)$ reduce to the sets $c_0(\mu)$, $c(\mu)$ and $c_{\infty}(\mu)$ introduced and studied by Móricz [12] and Malkowsky [10].

Obviously the sets $w^p_0(\mu)$, $w^p_{\infty}(\mu)$, $c^p_0(\mu)$, $c^p(\mu)$ and $c^p_{\infty}(\mu)$ are linear spaces and $w^p_0(\mu) \subset w^p_{\infty}(\mu)$, $c^p_0(\mu) \subset c^p(\mu)$ and $c^p_0(\mu) \subset c^p_{\infty}(\mu)$. Furthermore, we have

Lemma 1. (a) Let $0 < p < 1$. Then $c^p(\mu) \subset c^p_{\infty}(\mu)$ if and only if

$$\sup_n \frac{1}{\mu_n} \sum_{k=0}^n |(\Delta \mu)_k|^p < \infty \text{ or equivalently } e \in c^p_{\infty}(\mu). \quad (2.2)$$

(b) Let $1 \leq p < \infty$. Then $e \in c^p_{\infty}(\mu)$ and $c^p(\mu) \subset c^p_{\infty}(\mu)$.

(c) Let $0 < p < \infty$. If $x \in c^p(\mu)$, then $l \in C$ with $x - le \in c^p_0(\mu)$ is unique.

(d) Let $X^p(\mu)$ denote any of the spaces $w^p_0(\mu)$, $w^p_{\infty}(\mu)$, $c^p_0(\mu)$, $c^p(\mu)$ and $c^p_{\infty}(\mu)$. Then $X^p(\mu) \subset X^p(\mu)$ for $0 < p \leq \bar{p}$.

(e) If $0 < p \leq 1$, then $c^p_{\infty}(\mu) \subset c^p_{\infty}(\mu)$.

Proof. (a) First we assume that condition (2.2) holds. Let $x \in c^p(\mu)$ be given. Then there is $l \in C$ such that $x - le \in c^p_0(\mu)$, and so $x = x - le + le \in c^p_{\infty}(\mu)$, since $c^p_{\infty}(\mu)$ is a linear space.

Conversely, if condition (2.2) is not satisfied, then we can determine an increasing sequence $(n_m)_{m=0}^{\infty}$ of integers such that $M^p_{n_m}(e) > m$ $(m = 0, 1, \ldots)$. Then $x = e \in c^p(\mu) \setminus c^p_{\infty}(\mu)$, since

$$M_n(x - e) = 0 \quad (n = 0, 1, \ldots) \quad \text{and} \quad M^p_{n_m}(x) = M^p_{n_m}(e) > m \quad (m = 0, 1, \ldots).$$

(b) Now let $p \geq 1$. Since $1/p \leq 1$ and $\mu_n \geq \mu_{n-1}$ for all n, we have by (2.1)

$$(M^p_{n}(e))^{1/p} \leq M^1_{n}(e) = \frac{1}{\mu_n} \sum_{k=0}^n (\mu_k - \mu_{k-1}) = 1 \quad \text{for all } n = 0, 1, \ldots,$$

hence $e \in c^p_{\infty}(\mu)$. The inclusion $c^p(\mu) \subset c^p_{\infty}(\mu)$ now follows as in the first part of the proof of part (a).

(c) Let $x \in c^p(\mu)$ and $l, l' \in C$ such that $x - le \in c^p_0(\mu)$ and $x - l'e \in c^p_0(\mu)$. Given $\varepsilon > 0$, there is $n = n(\varepsilon) \in N_0$ such that $M^p_n(x - le), M^p_n(x - l'e) < \varepsilon$. Then, for $0 < p < 1$ by inequality (2.1)

$$|l - l'|^p \leq M^p_n((x - le) - (x - l'e)) \leq M^p_n(x - le) + M^p_n(x - l'e) < 2\varepsilon$$

and, for $p \geq 1$ by Minkowski’s inequality

$$|l - l'| \leq (M^p_n((x - le) - (x - l'e)))^{1/p} \leq (M^p_n(x - le))^{1/p} + (M^p_n(x - l'e))^{1/p} < 2\varepsilon^{1/p}.$$

Since $\varepsilon > 0$ was arbitrary, we have $l = l'$ in both cases.
(d) Since $p/\bar{p} \leq 1$, we have

$$\left(\frac{1}{\mu_n} \sum_{k=0}^{n} |x_k|^p \right)^{p/\bar{p}} \leq \frac{1}{\mu_n} \sum_{k=0}^{n} |x_k|^p \quad (n = 0, 1, \ldots).$$

From this, we obtain the inclusions $X^p(\mu) \subset X^{\bar{p}}(\mu)$ for $X^p(\mu) = w_0^p(\mu)$ and $X^{\bar{p}}(\mu) = w_0^{\bar{p}}(\mu)$.

Since $x \in c_0^p(\mu)$ or $x \in c_0^{\bar{p}}(\mu)$ if and only if $\Delta(\mu x) \in w_0^p(\mu)$ or $\Delta(\mu x) \in w_0^{\bar{p}}(\mu)$, respectively, it follows that the inclusions also hold for $X^p(\mu) = c_0^p(\mu)$ or $X^{\bar{p}}(\mu) = c_0^{\bar{p}}(\mu)$.

Finally, the inclusion $c^p(\mu) \subset c^{\bar{p}}(\mu)$ holds, since $x \in c^p(\mu)$ if and only if $x - le \in c_0^p(\mu)$ for some $l \in C$.

(e) First

$$|x_n| = \frac{1}{\mu_n} \sum_{k=0}^{\infty} (\Delta(\mu x))_k \leq M_n^1(x) \quad (n = 0, 1, \ldots)$$

implies $c_\infty(\mu) \subset l_\infty$, and so $c_\infty^p(\mu) \subset l_\infty$ for $0 < p \leq 1$ by part (d).

Following the notations introduced in [10], we say that a nondecreasing sequence $\Lambda = (\lambda_n)_{n=0}^{\infty}$ of positive reals tending to infinity is \textit{exponentially bounded} if there are reals s and t with $0 < s \leq t < 1$ such that for some subsequence $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ of Λ, we have

$$s \leq \frac{\lambda_{n(\nu)}}{\lambda_{n(\nu)+1}} \leq t \quad \text{for all } \nu = 0, 1, \ldots; \quad (2.3)$$

such a subsequence $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ will be called an \textit{associated subsequence}.

If $(n(\nu))_{\nu=0}^{\infty}$ is a strictly increasing sequence of nonnegative integers then we shall write $K^{<\nu'}$ for the set of all integers k with $n(\nu) \leq k \leq n(\nu' + 1) - 1$, and \sum_ν and \max_ν for the sum and maximum taken over all k in $K^{<\nu'}$.

If X is a p–normed sequence space and $a \in \omega$, then we write

$$\|a\|_X = \sup \left\{ \sum_{k=0}^{\infty} a_k x_k : \|x\| = 1 \right\}$$

provided the term on the right exists and is finite. This is the case whenever $X \supset \phi$ is a p–normed FK space and $a \in X^\beta$ by [13, Theorem 7.2.9, p. 107].

Let $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals and $(\lambda_{n(\nu)})_{\nu=0}^{\infty}$ an associated subsequence throughout.

If $X^p(\Lambda)$ denotes any of the sets $w_0^p(\Lambda)$, $w_\infty^p(\Lambda)$, $c_0^p(\Lambda)$, $c^p(\Lambda)$ or $c_\infty^p(\Lambda)$ then we shall write $X^p(\Lambda)$ for the respective space with the sections $1/\lambda_n \sum_{k=0}^{n} \ldots$ replaced by the blocks $1/\lambda_n^{p} \sum_{k=0}^{n} \ldots$. Further, we define

$$\|x\|_{w_\infty^p(\Lambda)} = \begin{cases} \sup_n \left(\frac{1}{\lambda_n} \sum_{k=0}^{n} |x_k|^p \right)^{1/p} & (0 < p \leq 1) \\ \sup_n \left(\frac{1}{\lambda_n} \sum_{k=0}^{n} |x_k|^p \right)^{1/p} & (1 \leq p < \infty) \end{cases}$$
To show that c and 4.3.14, pp 63 and 46, except for the one that From this, all the assertions concerning holds for equivalent on and (sequence 1 space for < p < w ∥ · ∥ x W e have to show c sequence in w 0 (c) is a closed subspace of w p (c), c 0 (c) is a closed subspace of c p (c), w p (c) has AK for all p and c 0 (c) has AK for 0 < p ≤ 1. (b) We assume that condition (2.2) holds for 0 < p < 1. Then c p (µ) with ∥ · ∥ c p (µ) is a p–normed FK space for 0 < p < 1 and a BK space for 1 ≤ p < ∞, c p (µ) is a closed subspace of c p (µ), and if 0 < p ≤ 1, then every sequence x = (x k) k=0 ∞ ∈ c p (µ) has a unique representation

\[
x = le + \sum_{k=0}^{∞} (x_k - l)e^{(k)} \text{ where } l \in C \text{ is such that } x - le \in c_p^L(Λ).
\]

(c) If X p (Λ) and X̃p(Λ) denote any of the sets w p (Λ), w p (c 0 (Λ)), c p (Λ), e p (Λ) and c p (Λ), w 0 (Λ), w 0 (c 0 (Λ)), c 0 (Λ), e 0 (Λ) and c 0 (Λ), respectively, then X p (Λ) = X̃p(Λ), ∥ · ∥ w p (Λ), and ∥ · ∥ c p (Λ) are equivalent on w p (Λ) and on w p (c 0 (Λ)), ∥ · ∥ w p (c 0 (Λ)), and ∥ · ∥ c p (Λ), in the case of c p (Λ) whenever condition (2.2) holds for 0 < p < 1.

Proof. (a) The assertions concerning the sets w p (µ) and w p (c 0 (µ)) were proved in [9]. From this, all the assertions concerning c p (µ) and c p (c 0 (µ)) follow from [13, Theorems 4.3.13 and 4.3.14, pp 63 and 46], except for the one that c p (µ) has AK for 0 < p ≤ 1.

To show that c p (µ) has AK for 0 < p ≤ 1, let x ∈ c p (µ) and ε > 0 be given. Then there is an integer m 0 ∈ N 0 such that M 0 (x) < ε/2 for all n ≥ m 0. Let m ≥ m 0. Then, since 0 < p ≤ 1, we conclude

\[
\|x^{[m]} - x\|_{c_p(µ)} = M_{p}(x^{[m]} - x) = \sup_{n \geq m+1} \frac{1}{µ^n} \left(|µ^{m+1}|p |x_{m+1}|^p + \sum_{k=m+2}^{n} |(∆(µx))_{k}|^p \right) < M_{p}(x) + ε/2 < ε/2 + ε/2 = ε.
\]

(b) First we show that c p (µ) is complete with ∥ · ∥ c p (µ).

By Lemma 1 (a) and (b), ∥ · ∥ c p (µ) is defined on c p (µ).

Let (x(m)) m=0 ∞ be a Cauchy sequence in c p (µ). For each m ∈ N 0, let l(m) ∈ C denote the number for which x(m) − l(m)e ∈ c p (µ). First we observe that (x(m)) m=0 ∞ is a Cauchy sequence in c p (µ), and so convergent by the completeness of c p (µ),

\[
\|x^{[m]} - x\|_{c_p(µ)} \rightarrow 0 \quad (m \rightarrow ∞), \text{ say.}
\]

We have to show x ∈ c p (µ).
First we show that the sequence \((l^{(m)})_{m=0}^{\infty} \) converges.

Let \(\varepsilon > 0 \) be given. Since \((x^{(m)})_{m=0}^{\infty} \) is a Cauchy sequence, we may choose \(M = M(\varepsilon) \in \mathbb{N}_0 \) such that \(\|x^{(m)} - x^{(j)}\|_{c^p(\mu)} < \varepsilon/3 \) for all \(m, j \geq M \). Let \(m, j \geq M \). Since \(x^{(m)} - l^{(m)} \in c^p(\mu), x^{(j)} - l^{(j)} \in c^p(\mu), \) there is \(n = n(m, j, \varepsilon) \in \mathbb{N}_0 \) such that \(M_n^{(p)}(x^{(m)} - l^{(m)})e, M_n^{(p)}(x^{(j)} - l^{(j)})e < \varepsilon/3 \). Then, for \(0 < p < 1 \) by inequality (2.1)

\[
\|l^{(m)} - l^{(j)}\|^p \leq M_n^{(p)}(l^{(m)} - l^{(j)})e \leq M_n^{(p)}(x^{(m)} - l^{(m)})e + \|x^{(m)} - x^{(j)}\|_{c^p(\mu)}M_n^{(p)}(x^{(j)} - l^{(j)})e < \varepsilon/3 + \varepsilon/3 = \varepsilon,
\]

and, for \(1 \leq p < \infty \) by Minkowski’s inequality

\[
\|l^{(m)} - l^{(j)}\| \leq \left(M_n^{(p)}(l^{(m)} - l^{(j)})e \right)^{1/p} \leq \left(M_n^{(p)}(x^{(m)} - l^{(m)})e \right)^{1/p} + \|x^{(m)} - x^{(j)}\|_{c^p(\mu)} + \left(M_n^{(p)}(x^{(j)} - l^{(j)})e \right)^{1/p} < 2(\varepsilon/3)^{1/p} + \varepsilon/3.
\]

Thus \((l^{(m)})_{m=0}^{\infty} \) is a Cauchy sequence in \(C \), hence convergent,

\[
l = \lim_{m \to \infty} l^{(m)}, \quad \text{say.} \tag{2.6}
\]

Now we show \(x - le \in c^p(\mu) \).

Let \(\varepsilon > 0 \) be given. By (2.5) and (2.6), there is \(M \in \mathbb{N}_0 \) such that \(\|x^{(M)} - x\|_{c^p(\mu)} < \varepsilon/3 \), and, with \(C = \sup_n M_n^{(p)}(e) < \infty \) (for \(0 < p < 1 \) by condition (2.2)),

\[
\|l - l^{(M)}\| < \left(\frac{\varepsilon}{3(C + 1)} \right)^{1/p}.
\]

Further, since \(x^{(M)} - l^{(M)} \in c^p(\mu) \), there is \(N \in \mathbb{N}_0 \) such that \(M_n^{(p)}(x^{(M)} - l^{(M)})e < \varepsilon/3 \). Let \(n \geq N \). Then, for \(0 < p < 1 \) by inequality (2.1)

\[
M_n^{(p)}(x - le) \leq M_n^{(p)}(x^{(M)} - l^{(M)})e + \|x^{(m)} - x\|_{c^p(\mu)} + M_n^{(p)}(||l - l^{(M)}||e) < 2\varepsilon/3 + \|l - l^{(M)}\|^pM_n^{(p)}(e) < \frac{2\varepsilon}{3} + \frac{\varepsilon C}{3(C + 1)} \leq \varepsilon,
\]

and, for \(1 \leq p < \infty \) by Minkowski’s inequality

\[
(M_n^{(p)}(x - le))^{1/p} < (\varepsilon/3)^{1/p} + \varepsilon/3 + \left(M_n^{(p)}(||l - l^{(M)}||e) \right)^{1/p} < (\varepsilon/3)^{1/p} + \varepsilon/3 + |l - l^{(M)}| (M_n^{(p)}(e))^{1/p} < 2(\varepsilon/3)^{1/p} + \varepsilon/3.
\]

This shows that \(c^p(\mu) \) is complete. Consequently \(c^p(\mu) \) is a \(p \)-normed FK space for \(0 < p < 1 \) and a BK space for \(1 \leq p < \infty \) by [13, Corollary 4.2.2, p. 56].

Finally, let \(0 < p \leq 1 \) and \(x = (x_k)_{k=0}^{\infty} \in c^p(\mu) \). Then, by Lemma 1 (c) there is a uniquely determined \(l \in C \) such that \(x - le \in c^p(\mu) \). We put \(y = x - le \). Since \(c^p_0(\mu) \) has AK, \(y = \sum_{k=0}^{\infty} y_ke^{(k)} = \sum_{k=0}^{\infty} (x_k - le^{(k)}) \), and so the representation in (2.4) follows.
(c) Let $0 < p < \infty$.

From
$$\frac{1}{\lambda_n^{(\nu+1)}} \sum_{k=0}^{n} |x_k|^p \leq \frac{1}{\lambda_n^{(\nu+1)}} \sum_{k=0}^{n} |x_k|^p \quad (\nu = 0, 1, \ldots),$$
we conclude $\mathcal{X}^p(\Lambda) \subset \tilde{\mathcal{X}}^p(\Lambda)$.

Conversely, let $x \in \tilde{w}^p_0(\Lambda)$ and $\varepsilon > 0$ be given. Then there is an integer $\nu_0 \in \mathbb{N}_0$ such that
$$\frac{1}{\lambda_n^{(\nu+1)}} \sum_{k=0}^{\nu} |x_k|^p < \varepsilon \quad \text{for all } \nu \geq \nu_0.$$

Since $\lambda_n^{(\nu)} \to \infty \quad (\nu \to \infty)$, we can choose an integer $\nu_1 > \nu_0$ such that
$$\frac{1}{\lambda_n^{(\nu_1)}} \sum_{k=0}^{\nu_0} |x_k|^p \quad \text{for all } \nu \geq \nu_1.$$

Let $m \geq n(\nu_1)$. Then there is an integer $\nu(m) \geq \nu_1$ such that $m \in K^{<\nu(m)>}$ and, using (2.3), we obtain
$$\frac{1}{\lambda_m^{(\nu)}} \sum_{k=0}^{m} |x_k|^p \leq \frac{1}{\lambda_n^{(\nu(m))}} \left(\sum_{k=0}^{n(\nu_0)-1} |x_k|^p + \sum_{\nu=\nu_0}^{\nu(m)} \sum_{k=0}^{\nu} |x_k|^p \right)
< \varepsilon + \left(\frac{\lambda_n^{(\nu(m)+1)}}{\lambda_n^{(\nu(m))}} \right)^p \frac{1}{\lambda_n^{(\nu(m)+1)}} \sum_{\nu=\nu_0}^{\nu(m)} \frac{1}{\lambda_n^{(\nu+1)}} \sum_{k=0}^{\nu} |x_k|^p
< \varepsilon + \left(1 + \frac{1}{s^p \frac{1}{1-t^p}} \right).$$

This shows $w^p_0(\Lambda) \subset w^p_0(\Lambda)$. The inclusion $\tilde{w}^p_0(\Lambda) \subset w^p_\infty(\Lambda)$ is shown in exactly the same way. Now the identities $c_0^p(\Lambda) = \tilde{c}_0^p(\Lambda)$, $c^p(\Lambda) = \tilde{c}^p(\Lambda)$ and $c^p_\infty(\Lambda) = \tilde{c}^p_\infty(\Lambda)$ are obvious.

3. The Duals of The Sets $w^p_0(\Lambda)$ and $w^p_\infty(\Lambda)$

In this section, we shall give the duals of the sets $w^p_0(\Lambda)$ and $w^p_\infty(\Lambda)$ for $0 < p < \infty$.

Let $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals throughout and $(\lambda_n(\nu))_{\nu=0}^{\infty}$ an associated subsequence. We put
$$\mathcal{W}^p(\Lambda) = \begin{cases} \{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_n(\nu+1) \max_{\nu} |a_k| < \infty \} & (0 < p \leq 1) \\
\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_n(\nu+1) (\sum_{\nu} |a_k|^p)^{1/p} < \infty \} & (1 < p < \infty, q = \frac{p}{p-1}) \end{cases}$$
and on $W^p(\Lambda)$

$$
\|a\|_{W^p(\Lambda)} = \begin{cases}
\sum_{\nu=0}^{\infty} \lambda_{\nu+1} \max_{\nu} |a_k| & (0 < p \leq 1) \\
\sum_{\nu=0}^{\infty} \lambda_{\nu+1} (\sum_{\nu} |a_k|^p)^{1/p} & (1 < p < \infty, q = \frac{p}{p-1}).
\end{cases}
$$

Theorem 2. Let $X^p(\Lambda) = w_0^p(\Lambda)$ or $X^\gamma(\Lambda) = w_\infty^p(\Lambda)$ and \dagger stand for α, β, γ or f.

Then $(X^p(\Lambda))^\dagger = W^p(\Lambda)$. The continuous dual $(w_0^p(\Lambda))^* \subset W^p(\Lambda)$ is norm isomorphic to $W^p(\Lambda)$ when $w_0^p(\Lambda)$ has the norm $\| \cdot \|_{w_\infty^p(\Lambda)}$. This means, $g \in (w_0^p(\Lambda))^*$ if and only if there is a sequence $b = (b_n)_{n=0}^{\infty} \in W^p(\Lambda)$ such that

$$
g(y) = \sum_{n=0}^{\infty} b_n y_n \quad \text{for all } y \in w_0^p(\Lambda) \quad \text{and} \quad \|g\| = \|b\|_{W^p(\Lambda)}.
$$

Furthermore, $\|a\|_{w_\infty^p(\Lambda)} = \|a\|_{W^p(\Lambda)}$ on $(w_\infty^p(\Lambda))^\beta$.

Proof. The statements of the theorem with the exception of those concerning the γ and f–duals are well known [9, Theorems 2.4,5 and 6].

(a) Since $w_0^p(\Lambda)$ has AK, we have $(w_0^p(\Lambda))^\beta = (w_0^p(\Lambda))^f$ by [13, Theorem 7.2.7 (ii), p. 106], and so $(w_0^p(\Lambda))^f = W^p(\Lambda)$. Further, since an AK space obviously has AD, we also have $(w_0^p(\Lambda))^\gamma = (w_0^p(\Lambda))^f$ by [13, Theorem 7.2.7 (iii), p. 106], and so $(w_0^p(\Lambda))^\gamma = W^p(\Lambda)$. Since $w_0^p(\Lambda)$ is a closed subspace of $w_\infty^p(\Lambda)$, it follows that $(w_\infty^p(\Lambda))^f = (w_0^p(\Lambda))^f$ by [13, Theorem 7.2.6, p.106], and so

$$(w_\infty^p(\Lambda))^f = W^p(\Lambda).$$

Finally, by [13, Theorem 7.2.7 (i), p. 106], $(w_\infty^p(\Lambda))^\gamma \subset (w_\infty^p(\Lambda))^f$, and so by (3.1)

$$W^p(\Lambda) \subset (w_\infty^p(\Lambda))^\gamma \subset (w_\infty^p(\Lambda))^f = W^p(\Lambda),$$

hence $(w_\infty^p(\Lambda))^\gamma = W^p(\Lambda)$.

4. The Duals of The Sets $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_\infty^p(\Lambda)$

In this section, we shall determine the α, β, γ– and f–duals of the sets $c_0^p(\Lambda)$, $c^p(\Lambda)$ and $c_\infty^p(\Lambda)$ and the continuous duals of $c_0^p(\Lambda)$ and $c^p(\Lambda)$ for $0 < p \leq 1$.

Let $\Lambda = (\lambda_n)_{n=0}^{\infty}$ be a nondecreasing exponentially bounded sequence of positive reals throughout.

We need the following lemma for the determination of the α–duals of $c_0^{\infty}(\Lambda)$, $c^p(\Lambda)$ and $c_\infty^p(\Lambda)$.

Lemma 2. Let $X \subset l_\infty$ be a BK space such that $\sup_n \|e^{[n]}\|_{c_\infty^p(\Lambda)} < \infty$. Then $X^\alpha = l_1$.

116 A. M. JARRAH AND E. MALKOWSKY
Proof. First we observe that \(X \subset l_\infty \) implies \(l_\infty^o = l_1 \subset X^o \).

Conversely, let \(a \in X^o \). For each \(m \in \mathbb{N}_0 \), we define the map \(f_a^{(m)} : X \to \mathbb{R} \) by \(f_a^{(m)}(x) = \sum_{k=0}^m |a_k x_k| \) \((x \in X)\). Then \((f_a^{(m)})_{m=0}^\infty \) is a sequence of seminorms on \(X \) which are continuous, since \(X \) is a BK space. Further \(f_a^{(m)}(x) \leq \sum_{k=0}^\infty |a_k x_k| = |M| < \infty \) for all \(m \in \mathbb{N}_0 \) and all \(x \in X \). By the uniform boundedness principle, there is a constant \(M_1 \) such that \(\|f^{(m)}\| \leq M_1 \) for all \(m \in \mathbb{N}_0 \). From this and \(\sup_m \|e^{[n]}\|_{c_0^\infty(\Lambda)} < \infty \), we conclude \(a \in l_1 \).

Theorem 3. Let \(X^p(\Lambda) \) denote any of the sets \(c_0^p(\Lambda) \), \(c^p(\Lambda) \) or \(c_\infty^p(\Lambda) \), then \((X^p(\Lambda))^o \) \(= l_1 \) for \(0 < p \leq 1 \).

Proof. Since obviously \(\sup_n \|e^{[n]}\|_{c_0^\infty(\Lambda)} \leq 2 \), and \(c_0(\Lambda) \subset c(\Lambda) \subset c_\infty(\Lambda) \subset l_\infty \) by Lemma 1 (b) and (e), we conclude from Lemma 2

\[
c_0^p(\Lambda) = c^p(\Lambda) = c_\infty^p(\Lambda) = l_1. \tag{4.1}
\]

Now we assume \(a \in (c_0^p(\Lambda))^o \). For each \(m \in \mathbb{N}_0 \), we define the map \(f^{(m)} : c_0^p(\Lambda) \to \mathbb{R} \) as in the proof of Lemma 2, and again there is a constant \(M > 0 \) such that

\[
\sum_{k=0}^\infty |a_k x_k| \leq M \quad \text{for all } x \in c_0^p(\Lambda) \text{ with } \|x\|_{c_\infty^p(\Lambda)} = 1. \tag{4.2}
\]

Since \(1/\Lambda = (1/\lambda_n)_{n=0}^\infty \in c_0^p(\Lambda) \), we have

\[
R_n = R_n(|a|/\lambda) = \sum_{k=n}^\infty |a_k|/\lambda_k < \infty \quad \text{for all } n = 0, 1, \ldots
\]

Let \(\nu(m) \in \mathbb{N}_0 \) be given. We define the sequence \(x^{(\nu(m))} \) by

\[
x^{(\nu(m))}_n = \begin{cases}
\frac{1}{\lambda_n} \sum_{\nu(m)}^{n} \lambda_{n(\nu+1)} & (n \in N^{<\nu}; \nu = 0, 1, \ldots, \nu(m)) \\
\frac{1}{\lambda_n} \sum_{\nu(m)}^{\infty} \lambda_{n(\nu+1)} & (n \geq n(\nu(m) + 1)).
\end{cases}
\]

Then

\[
\left(\Delta(Ax^{(\nu(m))}) \right)_n = \begin{cases}
0 & (n \geq n(\nu(m) + 1) \text{ or } n \neq n(\nu); \nu = 0, 1, \ldots, \nu(m)) \\
\lambda_{n(\nu+1)} & (n = n(\nu); \nu = 0, 1, \ldots, \nu(m)).
\end{cases} \tag{4.3}
\]

and

\[
\sum_\nu \left| \Delta(Ax^{(\nu(m))}) \right|_n = \begin{cases}
\lambda_{n(\nu+1)} & (0 \leq \nu \leq \nu(m)) \\
0 & (\nu \geq \nu(m)).
\end{cases} \tag{4.4}
\]
Therefore \(x^{(\nu(m))} \in c_0^p(\Lambda)\) and \(\|x^{(\nu(m))}\|_{c_0^p(\Lambda)} = 1\). Further, by (4.3), (4.4) and (4.2), and since \(x_k^{(\nu(m))} \geq 0\) for all \(k\),

\[
\sum_{\nu=0}^{\nu(m)} \lambda_{n(\nu+1)} R_n(\nu) = \sum_{n=0}^{\infty} \left(\Delta (\Lambda x^{(\nu(m))}) \right) _n \sum_{k=n}^{\infty} \frac{|a_k|}{\lambda_k} = \sum_{k=0}^{\infty} \frac{|a_k|}{\lambda_k} \sum_{n=0}^{k} \left(\Delta (\Lambda x^{(\nu(m))}) \right) _n = \sum_{k=0}^{\infty} |a_k||x_k^{(\nu(m))}| \leq M.
\]

Since \(\nu(m) \in \mathbb{N}_0\) was arbitrary, we conclude \(\sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} R_n(\nu) < \infty\). Now

\[
\sum_{k=0}^{\infty} |a_k| = \sum_{\nu=0}^{\infty} \sum_{\nu=0}^{\infty} |a_k| \leq \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \sum_{\nu=0}^{\infty} \frac{|a_k|}{\lambda_k} \leq \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} R_n(\nu) < \infty.
\]

Thus \((c_0^p(\Lambda))^\alpha \subset l_1\), and consequently, by (4.1)

\[(c_{\infty}^p(\Lambda))^\alpha \subset (c_0^p(\Lambda))^\alpha \subset l_1 = c_{\infty}^p(\Lambda) \subset (c_0^p(\Lambda))^\alpha \subset (c_0^p(\Lambda))^\alpha,
\]

hence \((c_{\infty}^p(\Lambda))^\alpha = (c_0^p(\Lambda))^\alpha = l_1\) for \(0 < p \leq 1\).

Finally \(c_0^p(\Lambda) \subset c^p(\Lambda)\) implies \((c^p(\Lambda))^\alpha \subset l_1\), and \(c(\Lambda) \subset c_{\infty}(\Lambda)\) implies \(l_1 = c_{\infty}(\Lambda) \subset c^p(\Lambda) \subset (c^p(\Lambda))^\alpha\), so \((c^p(\Lambda))^\alpha = l_1\).

Now we give the \(\beta\)-, \(\gamma\)- and \(f\)-duals of the sets \(c_0^p(\Lambda)\), \(c^p(\Lambda)\) and \(c_{\infty}^p(\Lambda)\) for \(0 < p \leq 1\), and the continuous duals of \(c_0^p(\Lambda)\) and \(c^p(\Lambda)\) in some cases.

If \(a \in cs\) then we shall write \(R(a)\) for the sequence with \(R_n(a) = \sum_{k=n}^{\infty} a_k\) \((n = 0, 1, \ldots)\). We shall frequently apply Abel’s summation by parts

\[
\sum_{n=0}^{m-1} a_n y_n = \sum_{n=0}^{m} R_n(a)(\Delta y)_n - R_m(a)y_m \text{ for all } m = 0, 1, \ldots \quad (4.5)
\]

If \(u\) is a sequence with \(u_k \neq 0\) for all \(k = 0, 1, \ldots\) then we shall write \(1/u\) for the sequence with \((1/u)_k = 1/u_k\) for all \(k\).

Theorem 4. Let \(0 < p \leq 1\). We put

\[
C_\beta(\Lambda) = \left\{ a \in \omega : \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right| < \infty \right\}
\]

and

\[
\|a\|_{C_\beta(\Lambda)} = \sum_{\nu=0}^{\infty} \lambda_{n(\nu+1)} \max_{\nu} \left| \sum_{k=n}^{\infty} \frac{a_k}{\lambda_k} \right|.
\]

(a) If \(X^p(\Lambda)\) is any of the sets \(c_0^p(\Lambda)\) or \(c_{\infty}^p(\Lambda)\) and \(\dagger\) stands for any of the symbols \(\beta\), \(\gamma\) or \(f\), then

\[
X^p(\Lambda)\dagger = C_\beta(\Lambda).
\]
This also holds when $X^p(\Lambda) = c(\Lambda)$ or $X^p(\Lambda) = c^p(\Lambda)$ for $0 < p < 1$ whenever condition (2.2) is satisfied. Otherwise

$$(c^p(\Lambda))^{\beta} = C^\beta(\Lambda) \cap cs$$ and $$(c^p(\Lambda))^\gamma = C^\gamma(\Lambda) \cap bs.$$

(b) The continuous dual $(c^0_\infty(\Lambda))^*$ of $c^0_\infty(\Lambda)$ is norm isomorphic to $C^\beta(\Lambda)$ when $c^0_\infty(\Lambda)$ has the p–norm $\| \cdot \|$ of $c^\infty_\infty(\Lambda)$. Further

$$\|a\|_{c^\infty_\infty(\Lambda)} = \|a\|_{C^\beta(\Lambda)} \text{ on } c^\infty_\infty(\Lambda).$$

(4.6)

(c) We have $f \in c^*(\Lambda)$ if and only if

$$f(x) = l \chi_f + \sum_{n=0}^{\infty} a_n x_n \text{ for all } x \in c(\Lambda)$$

where $a \in C^\beta(\Lambda), l \in \mathbb{C}$ with $x - le \in c_0(\Lambda)$ and

$$\chi_f = f(e) - \sum_{n=0}^{\infty} a_n.$$

Further, $\|f\|$ is equivalent to

$$|\chi_f| + \|a\|_{C^\beta(\Lambda)}.$$

(4.8)

If condition (2.2) is satisfied, then this also holds for $c^p(\Lambda)$ ($0 < p < 1$).

Proof. In the case $p = 1$, the statements of the theorem concerning the β– and continuous duals can be found in [10, 11].

(a) Let $0 < p < 1$. First $c^\infty(\Lambda) \subset c_\infty(\Lambda)$ implies

$$(c_\infty(\Lambda))^{\beta} = C^\beta(\Lambda) \subset (c^\infty(\Lambda))^{\beta}.$$ Conversely, let $a \in (c^0_\infty(\Lambda))^{\beta}$. Since $c^0_\infty(\Lambda)$ is a p–normed FK space, the map $f_a : c^0_\infty(\Lambda) \to \mathbb{C}$ defined by $f_a(x) = \sum_{k=0}^{\infty} a_k x_k \ (x \in c^0_\infty(\Lambda))$ is an element of $(c^0_\infty(\Lambda))^*$. We define the matrix $\Delta(\Lambda)$ by

$$\Delta_{nk}(\Lambda) = \begin{cases} -\lambda_{n-1} & (k = n - 1) \\ \lambda_n & (k = n) \\ 0 & (\text{otherwise}) \end{cases} \ (n = 0, 1, \ldots).$$

By [13, Theorem 4.4.2, p. 66], there is $g \in (c^0_\infty(\Lambda))^*$ with

$$f = g \circ \Lambda(\Delta)$$

(4.9)

Since $w^p_0(\Lambda)$ is an FK space with AK, we have

$$b = (g(e^{\infty}_n))_{n=0}^{\infty} \in (w^p_0(\Lambda))^{\beta}$$

(4.10)
Let \(m \in \mathbb{N}_0 \) be given. Then, for the sequence \(x^{(m)} \) defined by
\[
x^{(m)}_n = \begin{cases} 0 & (n < m) \\ \frac{1}{\lambda_n} & (n \geq m), \end{cases}
\]
we have \(x^{(m)} \in c_0^p(\Lambda) \) and
\[
(\Delta_n(\Lambda))(x^{(m)}) = \begin{cases} 1 & (n = m) \\ 0 & (n \neq m) \end{cases} = e^{(m)} \in w_0^p(\Lambda),
\]
and so \(x^{(m)} \in c_0^p(\Lambda) \). From (4.9) and (4.10), we obtain
\[
b_m = g(e^{(m)}) = g\left((\Delta(\Lambda))(x^{(m)})\right) = f(x^{(m)}) = \sum_{n=0}^{\infty} a_n x^{(m)}_n = \sum_{n=m}^{\infty} a_n \frac{\lambda_n}{x^{(m)}_n} (m = 0, 1, \ldots),
\]
hence \(a \in C_0^p(\Lambda) \), since \((w_0^p(\Lambda))^\beta = W^p(\Lambda)\) by Theorem 2 (a). Therefore \((c_0^p(\Lambda))^\beta \subset C_0^p(\Lambda)\). Thus we have shown \((c_0^p(\Lambda))^\beta = (c_0^\infty(\Lambda))^\beta = C_0^\beta(\Lambda)\) for \(0 < p < 1\).

If condition (2.2) holds, then \(c_0^p(\Lambda) \subset c^p(\Lambda) \subset c^{\infty}(\Lambda)\), and so \((c^p(\Lambda))^\beta = C_0^\beta(\Lambda)\).

The assertions concerning the \(\gamma\)– and \(f\)–duals are proved in the same way as in Theorem 2 (a).

Now we consider the case where condition (2.2) does not hold. We assume \(a \in C_0^\beta(\Lambda) \cap cs \).

Let \(x \in c^p(\Lambda) \) be given. Then there is \(l \in \mathbb{C} \) such that \(x - le \in c^p(\Lambda) \), and so \(ax = a(x - le) + lae \in cs \), hence \(a \in (c^p(\Lambda))^\beta \). Conversely, let \(a \in (c^p(\Lambda))^\beta \). Then \(a \in (c_0^p(\Lambda))^\beta = C_0^\beta(\Lambda) \), since \(c_0^p(\Lambda) \subset c^p(\Lambda) \) implies \((c^p(\Lambda))^\beta \subset (c_0^p(\Lambda))^\beta \). Since \(e \in c^p(\Lambda) \), we also have \(a = ae \in cs \).

The identity \((c^p(\Lambda))^\gamma = C_0^\beta(\Lambda) \cap bs\) is proved in exactly the same way.

(b) Since \(c_0^p(\Lambda) \) is an FK space with AK, the representation of \((c_0^p(\Lambda))^\ast \) follows from [13, Theorem 7.2.9, p. 107].

(c) Let \(0 < p < 1 \) and condition (2.2) hold.

We assume \(f \in (c^p(\Lambda))^\ast \). Then \(f_1 = f \big|_{c_0^p(\Lambda)} \in (c_0^p(\Lambda))^\ast \). Given \(x \in c^p(\Lambda) \), there is a sequence \(a \in C_0^\beta(\Lambda) \) such that \(f_1(x - le) = \sum_{k=0}^{\infty} a_k(x_k - l) \). Since \(a \in C_0^\beta(\Lambda) \), we have \(a \in cs \) for all \(x \in c^p(\Lambda) \), in particular, for \(x = e \in c^p(\Lambda) \), this implies \(ae = a \in cs \), and we may write
\[
f(x) = l \left(f(e) - \sum_{k=0}^{\infty} a_k \right) + \sum_{k=0}^{\infty} a_k x_k.
\]

Putting \(\chi f = f(e) - \sum_{k=0}^{\infty} a_k x_k \), we obtain the given representation.

Conversely, if \(f \) has the given representation, then \(f \in c^*(\Lambda) \), and so \(f \in (c^p(\Lambda))^\ast \).

References

SETS OF Λ-STRONGLY CONVERGENT AND BOUNDED SEQUENCES

—, The blocking technique, weighted mean operators and Hardy’s inequality, to appear.

10. ——, The continuous duals of the spaces $c_0(\Lambda)$ and $c_\infty(\Lambda)$ for exponentially bounded sequences Λ, Acta Sci. Math. Szeged, 61(1995), 241-250.

Department of Mathematics, Faculty of Science, Yarmouk University, Irbid, Jordan.
E-mail: ajjarrah@yu.edu.jo

Department of Mathematics, University of Giessen, Arndtstrasse 2, D–35392 Giessen, Germany.
E-mail: Malkowsky@math.uni-giessen.de