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λ(P )-NUCLEARITY OF LOCALLY CONVEX SPACES HAVING

GENERALIZED BASES

G. M. DEHERI

Abstract. It has been established that a DF -space having a fully-λ(P )-basis is λ(P )-nuclear

wherein P is a stable nuclear power set of infinite type. It is shown that a barrelled G1-space

λ(Q) is uniformly λ(P )-nuclear iff {ei, ei} is a fully-λ(P )-basis for λ(Q). Suppose λ is a µ-perfect

sequence space for a perfect sequence space µ such that there exist u ∈ λµ and v ∈ µx with

ui ≥ ε > 0 and vi ≥ ι > 0 for some ε and ι and for all i. Then the following results are found

to be true.

(i) A sequentially complete space having a fully-(λ, σµ)-basis is λ(P )-nuclear, provided µ is

a DF -space in which {ei, ei} is a semi-λ(P )-basis.

(ii) Suppose {ei, ei} is a fully-(λ, σµ)-basis for a barrelled Gi-space λ(Q). If µ is barrelled

and {ei, ei} is a semi-λ(P )-basis for µ then λ(Q) is uniformly λ(P )-nuclear.

(iii) A DF -space with a fully-(λ, σµ)-basis is λ(P )-nuclear wherein (λ, σµ) is barrelled in

which {ei, ei} is a semi-λ(P )-basis.

Notations and Preliminary Results

Through this Section not only it has been sought to familiarize the reader with the
concepts used here but also we recall a few basic results from various investigations,
which are to be used in the present discussions.

This article expects rudimentary familiarity with classical theory of locally convex
spaces in general, (cf. [9], [13]) and nuclear spaces in particular (cf. [16], [24]). For
various terms, definitions and notions concerning sequence space theory it is requested
to have a glance at [10] and [21].

Towards the generalization of the normal topology (cf. [10], [13]) Ruckle [20] intro-
duced the concept of σµ-topology associated with a sequence space µ on an arbitrary
sequence space λ. Indeed, the µ-dual of λ is the subspace of ω, the vector space of all
scalar valued sequences; defined by

λµ = {y ∈ ω : xy ∈ µ, ∀x ∈ λ}.

In a similar way we can define another subspace of ω, namely; the µ-dual λµµ of λµ,
where

λµµ = (λµ)µ = {z ∈ ω : yz ∈ µ, ∀y ∈ λµ}.
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λ is said to be µ-perfect if λ = λµµ. In order to topologize the spaces λ and λµ let us

assume that Dµ is the family of semi-norms, generating the topology on µ. For y ∈ λµ

and p ∈ Dµ, we define

py(x) = p({xnyn}), x ∈ λ.

Then the topology generated by the family {py : p ∈ Dµ, y ∈ λµ} of semi-norms on λ

is called the σµ-topology. Similarly, the σµ-topology on λµ is generated by the collection

{px : p ∈ Dµ, x ∈ λ} of semi-norms where

px(y) = p({xnyn}), y ∈ λµ.

Notice that this µ-dual λµ includes in particular, the well known duals namely; α-dual

(or cross dual), β-dual and γ-dual (cf. [20], [21]) which are obtained from λµ by taking

respectively µ = ι1, µ = cs (convergent series) and µ = bs (bounded partial sum) (cf.

[8]).

When the sequence space µ is equipped with the normal topology η(µ, µx) (cf. [10],

[13]), the σµ-topology on λ is given by the family {py,z : y ∈ λµ, z ∈ µx) of semi-norms,

where

py,z(x) =
∑

n≥1

|xnynzn| (x ∈ λ)

Similarly, the σµ-topology on λµ is defined by the family {px,z : x ∈ λ, z ∈ µx} of

semi-norms where

px,z(y) =
∑

n≥1

|xnynzn| (y ∈ λµ)

Concerning the various aspects of µ-perfectness and the impact of the sequence space µ

on λ and λµ one is requested to refer [1], [2] and [8].

Passing onto bases theory, we begin with the following definitions. Let E be an

1.c.TVS and λ be a locally convex sequence space. A Schauder base {xi, fi} for E is said

to be a semi-λ-base, if for each p ∈ DE , the mapping ψ : E → λ is well defined where

ψp(x) = {fi(x)p(xi)} (x ∈ E)

(or equivalently, {fi(x)p(xi)} ∈ λ, ∀p ∈ DE) and it is called a Q-fully-λ-base if there

exists a permutation π such that for each p ∈ DE the map ψπ
p : E → λ is continuous

where

ψπ
p (x) = {fπ(i)(x)p(xπ(i))} (x ∈ E)

When π is the identity permutation, one gets what is called a fully-λ-base. Thus, a fully-

λ-base is a Q-fully-λ-base. However, the converse remains untrue (cf. (22], [12]). For the

details of various types of bases and their applications related aspects we turn to [1], [2],

[12] and [14].

The following result which is to be found in [1], identifies topologically a sequentially

complete space having a fully-λ-basis (λ being equipped with σµ-topology), with a Köthe

space.
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Proposition 0.1. Suppose E is a sequentially complete space having a fully-λ-base

{xi, fi}. Let y ∈ λµ and z ∈ µx be such that yi ≥ ε > 0 and zi ≥ ι > 0, ∀i, for some ε

and ι. Then E can be topologically identified with a Köthe space λ(P ) where

P = {p(xi)aibi : p ∈ DE , a ∈ λµ
+, b ∈ µx

+}

Also, contained in [1] is the following wherein the µ-dual λµ, takes the place of λ.

Proposition 0.2. Let y ∈ λ and z ∈ µx be such that yi ≥ ε > 0 and zi ≥ ι > 0

for all i, for some ε and l. If a sequentially complete space E possesses a fully-λµ-base

{xi, fi} then it can be identified topologically with a Köthe space λ(P0) where

P0 = {p(xi)aibi : p ∈ DE , a ∈ λ+, b ∈ µx
+}.

For more details one can go through [1] and [2] in order to appreciate the subject matter

of this article. Investigations regarding the structure of nuclear Frechet spaces (cf. [5])

has given us the generalized nuclearity.

Let λ(P ) be a fixed nuclear G∞-space. A linear mapping T of a normed space

E into another normed space F is called λ(P )-nuclear (cf. [12], [17], [24]) if it has a

representation in the form

Tx =

∞
∑

i=0

αifi(x)yi

where {αi} ∈ λ(P ) and {fi}, {yi} are bounded sequences in E∗ and F respectively.

A locally convex space E is called λ(P )-nuclear (cf. [12], [23], [24]) if for every

absolutely convex and closed neighbourhood u there is another such neighbourhood v

contained in u such that the canonical mapping of the associated Banach space EΛ
v into

the associated Banach space EΛ
u is λ(P )-nuclear.

Suppose now P = {(ak
i ) : k ≥ 1} is a stable nuclear power set of infinite type (cf. [5],

[7]). Then for k ≥ 1 we have the associated sequence space

λ(P ; k) = {x ∈ ω :
∑

i≥1

|xi|a
k
i <∞}.

Following [22] (cf. [5] also) we say that an 1.c.TVS E is λ(P ; N)-nuclear (or ΛN(P )-

nuclear) if it is a λ(P ; k)-nuclear for each k ≥ 1. Equivalently, E is λ(P ; N)-nuclear iff

for each k ≥ 1, u ∈
⋃

E , there exists v ∈
⋃

E , v < u with {δi(v, u)a
k
i } ∈ ι∞ (cf. [5]). Well

known example of a λ(P ; N)-nuclear space is provided by λ(P ) itself, while λ(P ) is never

λ(P )-nuclear space is provided by λ(P ) itself, while λ(P ) is never λ(P )-nuclear (cf. [5],

[7], [12]). This establishes that, in general λ(P ; N)-nuclearity is a weaker property than

λ(P )-nuclearity. The facts and results with respect to λ(P ; N)-nuclearity are to be found

in [5], [6] and [22] while for the stronger notion λ(P )-nuclearity we turn to [6], [15] and

[23].
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Taking λ(P ) to be a stable nuclear power series space of infinite type Λ(α) (cf. [16],
[17]) we have Λ(α)-nuclearity and ΛN(α)-nuclearity which have been discussed promi-
nently in [6], [17] and [18].

Then there is this Λ1(α)-nuclearity (cf. [19]) which is a study in contrast vis-a-vis
Λ(α)-nuclearity.

Pertaining to generalized bases theory in which the associated sequence space λ carries
the usual normal topology, the reader is requested to refer [11], [12] and [14]. The deep
rooted relation between λ-base and λ-nuclearity presents a pleasant scenario which can
be viewed through [11], [12] and [14].

At this stage it will be befitting to recall the following important result from [2]
wherein the impact of the associated sequence space µ on a space having a fully-(λ, σµ)-
basis is displayed.

Proposition 0.3. Let E be sequentially complete space with a fully-λ-base {xi, fi}.
Suppose that there exist a ∈ λµ and b ∈ µx such that ai ≥ ε > 0, bi ≥ ι > 0 for all i for
some ε and ι. Then E is λ(P )-nuclear provided (µ, η(µ, µx)) is λ(P )-nuclear.

Lastly, we come down to λ(P ;φ)-nuclearity (cf. [3], [4] and [12]) and from [3] recall
the famous Grothendieck-Pietsch criterion for λ̂(P ;φ)-nuclearity of a sequence space
equipped with σµ-topology.

Theorem 0.4. Let µ be a perfect sequence space such that λ is µ-perfect. Then
(λ, σµ) is λ̂(P, φ)-nuclear iff to each a ∈ λµ, y ∈ µx; there correspond b ∈ λµ and z ∈ µx

such that the sequence {anyn/bnzn} can be rearranged into a sequence of λ(P ;φ).

A similar procedure adopted in the proof of the above result in[3] clearly says that
the following is also true;

Theorem 0.5. Let µ be a perfect sequence space. Then the µ-dual λµ is λ̂(P ;φ)-
nuclear iff for each a ∈ λ, y ∈ µx there exist b ∈ λ, z ∈ µx such that the sequence
{anyn/bnzn} can be rearranged into a sequence of λ(P ;φ).

Remarks 0.6. (i) The above two results yield the Grothendieck-Pietsch criterion for
λ̂(P, φ)-nuclearly of a Köthe space λ and its cross dual λx.

(ii) λ and λµ are always λ̂(P ;φ)-nuclear for a λ̂(P, φ)-nuclear space µ, no matter what
sequence space is choosen for λ.

Theorem 0.4 and Theorem 0.5 yield in particular the Grothendieck-Pietsch criterion
for λ(P )-nuclearity.

Corollary 0.7. Let λ be a µ-perfect space for a perfect sequence space µ. Then
λ[resp.λµ] is λ(P )-nuclear iff to each a ∈ λµ (resp. a ∈ λ), y ∈ µx there correspond a
b ∈ λµ (resp. b ∈ λ), z ∈ µx such that the sequence {anyn/bnzn} can be rearranged into
a sequence of λ(P ).

Throughout P = {(ak
i )k ≥ 1} will be taken as a stable nuclear power set of infinite

type (cf. [7], [22]).
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1. λ(P )-nuclearity of Locally Convex Spaces having a Fully-λ-basis; λ being

Equipped with the Normal Topology

This Section confirms that the ramifications of presence of a fully-λ(P )-basis in DF -

spaces is relatively wider as compared to Frechet spaces. It also sends a loud and clear

message that the presence of a fully-λ(P )-basis in G1-spaces is rather too strong a con-

dition vis-a-vis G∞-spaces.

The investigations carried out in [6] and [23] informs us about the rich and powerful

structures available in λ(P ) as well as its strong dual (λ(P ))∗β (cf. [6], [23]) which is the

foundation for the discussion to be held in this Section. For instance, consider the

Example 1.1. In [12] it has been affirmed that {ei, ei} is a fully-λ(P )-basis for λ(P )

as well as for (λ(P ))∗β while λ(P ) appears to be far away from being λ(P )-nuclear, in

contrast (λ(P ))∗β is always λ(P )-nuclear as elucidated in [14] and [23]. The last part can

also be derived by resorting to Proposition 5.1 [14].

Since (λ(P ))∗β is a DF -space, there lurks the suspicion that whether presence of a

fully-λ(P )-basis in a DF -space invariably adds up to the λ(P )-nuclearity. That this is

indeed true, as borne out by

Proposition 1.2. Let E be a DF -space with a fully-λ(P )-basis {xi, fi}. Then E is

λ(P )-nuclear.

Proof. Since bounded sets are simple in λ(P ), and E∗
β is a Freachet space, using

Corollary 4.2 [14] we find that E is semi-reflexive. But semi-reflexive DF -spaces are

complete. So in view of Proposition 2.5 [22] E can be topologically identified with the

Köthe space λ(Q), where

Q = {p(xi)a
k
i : p ∈ DE , k ≥ 1}

Since λ(P ) is λ(P ; N)-nuclear (cf. [22]) it follows that λ(Q) is λ(P,N)-nuclear by Corol-

lary 2.7 [22]. However, Nelimarkka [15] informs that λ(P ; N)-nuclear DF -spaces are

λ(P )-nuclear.

Note: (1) One can directly apply Theorem 2.6 [22] to get λ(P ; N)-nuclearity.

(2) Completeness of E can also be obtained by using the fact that an 1.c.TVS with a

fully-λ(P )-basis is always nuclear (cf. [12]). But DF -nuclear spaces are complete Montel

spaces (cf. [16]).

Remark 1.3. (i) In the light of Example 1.1, it stands to reason that DF -character

is essential for the validity of above result.

(ii) Taking P = {(ik) : k ≥ 1} in the aforementioned result what we come across is

that a DF -space with a fully-λ(P )-basis is strongly nuclear.

(iii) Fully-λ(P )-bases stay out of infinite dimensional normed spaces. This is averred

by
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Corollary 1.4. Suppose E is a normed space and {xi, fi} is a fully-λ(P )-basis for
E. Then E is finite dimensional.

Proof. [12] informs that an 1.c.TVS E with a fully-λ(P )-basis is nuclear; while
normed nuclear spaces are finite dimensional (cf. [24]).

Note: Indeed, (λ(P ))∗β is a uniformly λ(P )-nuclear G1-space.
Restrictions on P yields the following in view of proposition 1.2.

Corollary 1.5. Suppose E is a DF -space and {xi, fi} is a fully-Λ(α)-basis for E.
Then E is Λ(α)-nuclear; Λ(α) being a stable nuclear power series space of infinite type.

Note: (i) (Λ(α))∗β is a uniformly Λ(α)-nuclear G1-space (cf. [17], [18]).
(ii) if a DF -space E contains a fully-λ(P )-basis {xi, fi} and {ei, ei} is a fully-Λ(α)-

basis for λ(P ), then E is Λ(α)-nuclear because {xi, fi} becomes a fully-Λ(α)-basis.
By Proposition 2.12 [18] Λ(α) is Λ1(α)-nuclear which yields a variant of Corollary 1.5

contained in

Corollary 1.6. Suppose E is a DF -space with a fully-Λ(α)-basis {xi, fi}. Then E
is Λ1(α)-nuclear.

Remarks 1.7. (i) (Λ(α))∗β is a uniformly Λ1(α)-nuclear G1-space.
(ii) If Λ1(α) is nuclear, then an 1.c.TVS with a fully-Λ(α)-basis is Λ(ξ)-nuclear where

ξ = (ξi), ξi = (αi log i)1/2. Its proof follows the standard analysis laid down in [12] for
Λ(α) is Λ(ξ)-nuclear in view of Proposition 2.12 [18] as {ξi/αι} ∈ c0.

Since λ(P )∗β is a uniformly λ(P )-nuclear Montel G1-space, it transmits sufficient
signals to mull over whether fully-λ(P )-basis character of {ei, ei} in a Montel G1-space
measures upto the uniform λ(P )-nuclearity. Not only this is true in a barrelled G1-space
but also the reverse implication holds. Thus, for a barrelled G1-space fully-λ(P )-basis
character of {ei, ei} and λ(P )-nuclearity are identical. This is manifest in

Proposition 1.8. Suppose λ(Q) is a barrelled G1-space. Then λ(Q) is uniformly
λ(P )-nuclear iff {ei, ei} is a fully-λ(P )-basis for λ(Q).

Proof. Suppose {ei, ei} is a fully-λ(P )-basis for λ(Q). Then invoking Proposition
2.1 [22] λ(Q) can be identified topologically with the Köthe space λ(M);

M = {bia
k
i : b ∈ Q, k ≥ 1}

But by a result of [22] λ(P ) is λ(P,N)-nuclear which in turn yields the λ(P )-nuclearity
of λ(Q) as λ(P,N)-nuclear G1-spaces are uniformly λ(P )-nuclear (cf. [22]).

Conversely, if λ(Q) is uniformly λ(P )-nuclear, then by using the criterion Theorem
3.2 [23] we find that Q ⊂ λ(P ). Now take any x ∈ λ(Q), b ∈ Q and k ≥ 1 arbitrarily.
That {ei, ei} is a fully-λ(P )-basis for λ(Q) is a consequence of the following inequality;

Σ| < x, ei > |pb(ei)a
k
i = Σ|xi|bia

k
i
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≤ Σ|xi|ci · Σcia
k
i

= Kpc(x)

where c ∈ Q is such that bi ≤ c2i due to the G1-character and K ≡ Σcia
k
i < ∞ as

Q ⊂ λ(P ).

Note: This underscores the prodigious impact of a fully-λ(P )-basis in a barrelled

G1-space.

Opting for a power series space of infinite type Λ(α), in view of above result it is

evident that the following stands confirmed

Corollary 1.9. Suppose λ(Q) is a barrelled G1-space. Then λ(Q) is uniformly

Λ̃j(α)-nuclear for some j > 1 iff {ei, ei} is a fully-Λ(α)-basis for λ(Q).

Proof. This follows from the fact that, a nuclear G1-space λ(Q) is Λ̃j(α)-nuclear for

some j > 1 iff λ(Q) is uniformly Λ(α)-nuclear which is a consequence of Proposition 2.11

[18]. The remainder of the proof is just the application of the above result.

Imposition of suitable restrictions on λ(Q) in the above result presents a very inter-

esting situation namely;

Corollary 1.10. A nuclear power series space of finite type Λ1(β) is uniformly

Ãj(α)-nuclear for some j > 1 iff {ei, ei} is a fully-Λ(α)-basis for Λ1(β).

At this stage one may be inclined to know whether there exists a non-DF -, non-G1-

space in which a fully-λ(P )-basis guarantees the λ(P )-nuclearity. Yes, there are such

spaces; for instance consider

Example 1.11. Let P be the set of all increasing sequence of real numbers. Then

λ(P ) = φ with its usual direct sum topology. It is easy to visualize that {ei, ei} is a fully-

φ-basis for ω. In addition, ω is φ-nuclear. However, ω is neither a G1-space (otherwise

Q ⊂ φ if ω = λ(Q)) nor a DF -space. Incidentally, ω is not a nuclear G∞-space (otherwise

ω ⊂ l1) (cf. [23]).

This Section concludes with

Proposition 1.12. A DF -space E with a fully-λ(P0)-basis {xi, fi} is Λ(α)-nuclear

provided λ(P0) is uniformly Λ̃j(α)-nuclear for some j > 1 with λ(P0) ⊆ l1.

Proof. Since λ(P0) is in particular nuclear, by making use of Corollary 4.2 [14]

we find that E is semi-reflexive which in turn yields the completeness of E. Now by

invoking Proposition 2.1 [22] we can identify E topologically with the Köthe space λ(M);

M = {p(xi)bi : p ∈ DE , b ∈ P0}. Since λ(P0) is uniformly Λ̃j(α)-nuclear it is ΛN(α)-

nuclear by Proposition 2.11 [18]. Thus, ΛN(α)-nuclearity of λ(M) follows by appealing

to Proposition 2.1 [18]. However, ΛN(α)-nuclear DF -spaces are always Λ(α)-nuclear by

Proposition 2.5 [18].
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Remarks 1.13. A cursory glance at the above proof reveals that a barrelledG1-space
λ(Q) in which {ei, ei} is a semi-λ(P0)-basis is uniformly Λ(α)-nuclear for a uniformly
Λ̃j(α)-nuclear Köthe space λ(P0) with λ(P0) ⊆ l1.

2. λ(P )-nuclearity of Spaces having a Fully-(λ, σµ)-basis

As suggested vividly by the caption this Section makes the arrangements for the study
of λ(P )-nuclearity of spaces admitting fully-(λ, σµ)-bases.

Throughout this Section λ will be a µ-perfect sequence space for a perfect sequence
space µ such that there exist u ∈ λµ and ν ∈ µx with ui ≥ ε > 0 and νi ≥ 1 > 0 for
some ε and 1 for all i.

To begin with we have the

Proposition 2.1. Let E be a sequentially complete space with a fully-λ(, σµ)-basis
{xi, fi}. Suppose (λ, σµ) is λ(P )-nuclear. Then E is λ(P )-nuclear.

Proof. Appealing to Proposition 0.1 one can topologically identify E with the Köthe
space λ(M);

M = {p(xi)yizi : p ∈ DE , y ∈ λµ
+, z ∈ µx

+}

Since (λ, σµ) is λ(P )-nuclear using the Grothendieck-Pietsch criterion Corollary 0.7
we find that λ(M) is λ(P )-nuclear in view of Grothendick-Pietsch criterion for λ(P )-
nuclearity of a Köthe space; Remarks 0.6 (ii) (cf. [23], [24]). Thus, E becomes λ(P )-
nuclear.

Note: In the light of Remarks 0.6, the above result yields at once Proposition 0.3.

If we impose further restrictions on the space λ(P ) then we obtain

Corollary 2.2. Suppose E is a sequentially complete space with a fully-(λ, σµ)-basis
{xi, fi}. If (λ, σµ) is Λ(α)-nuclear then E is Λ(α)-nuclear.

Remarks 0.6 informs that for a λ(P )-nuclear space µ; (λ, σµ) is always λ(P )-nuclear
thereby leading the way to

Corollary 2.3. Suppose E is a sequentially complete space with a fully-(λ, σµ)-basis
{xi, fi}. If µ is λ(P )-nuclear [resp. Λ(α)-nuclear] then E is Λ(P )-nuclear [resp. Λ(α)-
nuclear].

Note: This includes in particular proposition 2.5 [2].

Also, Remarks 0.6 intimates that λ(P )-nuclearity of (µ, η(µ, µx)) brings forth the
λ(P )-nuclearity of the µ-dual λµ. This sets the stage for,

Proposition 2.4. Suppose {xi, fi} is a fully-λµ-basis for a sequentially complete
space E where µ is λ(P )-nuclear and for some ξ ∈ λ, ξi ≥ ε > 0, for all i, for some
ε > 0. Then E is λ(P )-nuclear.
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Proof. By making use of Proposition 0.2 E can be identified topologically with the

Köthe space λ(M);

M = {p(xi)yizi : p ∈ DE , y ∈ λ+, z ∈ µx
+}

But µ is λ(P )-nuclear and hence by Remarks 0.6 λµ is λ(P )-nuclear. Then the proof

follows mutatis mutandis on lines similar to that of Proposition 2.1. Of course, one needs

to use Corollary 0.7 which says that λµ is λ(P )-nuclear iff for each y ∈ λ+ and z ∈ µx
+

there correspond a ∈ λ+, b ∈ µx
+ and a permutation π = π(y, z) such that

{

yπ(i)zπ(i)

aπ(i)bπ(i)

}

∈ λ(P ).

In view of the study carried out in Section 1 we arrive at

Corollary 2.5. Suppose E is a sequentially complete space with a fully-(λ, σµ)-basis

and if µ is a DF -space in which {ei, ei} is a fully-λ(P )-basis then E is λ(P )-nuclear.

Proof. This follows from Proposition 1.2 and Corollary 2.3.

If the DF -character is withdrawn from the hypothesis of Corollary 2.5 then the fol-

lowing enables us to obtain only the λ(P ; N)-nuclearity of E.

Corollary 2.6. Suppose {xi, fi} is a fully-(λ, σµ)-basis for a sequentially complete

space E. Further, µ is barrelled and {ei, ei} is a fully-λ(P )-basis for µ; then E is λ(P ; N)-

nuclear.

Proof. Since {ei, ei} is a fully-λ(P )-basis for µ, it turns out that for each z ∈ µx and

k ≥ 1 we get t ∈ µx with |zi|a
k
i ≤ |ti|. Now take any p ∈ DE , y ∈ λµ, z ∈ µx and k ≥ 1.

Then we arrive at the inequality

Σ|fi(x)|p(xi)|yizi|a
k
i ≤ Σ|fi(x)|p(xi)|yiti| ≤ q(x)

as {xi, fi} is a fully-(λ, σµ)-basis for E. By making use of the existence of u ∈ λµ and

ν ∈ µx with ui ≥ ε > 0 and νi ≥ 1 > 0 in the above inequality we find that {xi, fi} is

a fully-λ(P )-basis for E. But a sequentially completes space with a fully-λ(P )-basis is

always λ(P ; N)-nuclear which has been established in Corollary 2.7 [22].

Turning to DF -spaces we have the

Proposition 2.7. Suppose E is a DF -space with a fully-(λ, σµ)-basis {xi, fi}. If µ

is barrelled and {ei, ei} is a fully-λ(P )-basis for µ then E is λ(P )-nuclear.

Proof. Proceeding exactly as in Corollary 2.6 we obtain that {xi, fi} is a fully-λ(P )-

basis. Then just apply Proposition 1.2.

Analogously, for G1-spaces we have
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Proposition 2.8. Suppose λ(Q) is a barrelled G1-space in which {ei, ei} is a fully-
(λ, σµ)-basis. If {ei, ei} is a semi-λ(P )-basis for the barrelled space µ, then λ(Q) is
uniformly λ(P )-nuclear.

Proof. Following the lines as in the proof of Corollary 2.6 we find that {ei, ei} is a
fully-λ(P )-basis for λ(Q). The rest is the application of Proposition 1.8.

Remarks 2.9. For µ = λ(P ) if we take λ to be λ(P ) itself in Proposition 2.7
then what we find is precisely Proposition 1.2; while for the above choice of λ and µ,
Proposition 2.8 yields in particular, Proposition 1.8 because of the following;

Proposition 2.10. (λ(P ), σ(λ(P )) = λ(P )

Proof. Since λ(P ) · λ(P )x = λ(P ) and λ(P )x is a nuclear G1-space it follows that
λ(P )-dual of λ(P ) is λ(P )x. The σµ-topology on λ(P ) is given by the colletion {py,k :
y ∈ λ(P )x, k ≥ 1} of semi-norms where

py,k(x) = Σ|xiyi|a
k
i , x ∈ λ(P )

≤ cΣ|xi|a
1
i a

k
i

≤ cpt(x)

where |yi| ≤ ca1
i for some l ≥ 1 as y ∈ λ(P )x and a1

i a
k
i ≤ at

i for some t ≥ 1. Conversely,
observe that l∞ ⊂ λ(P )x as λ(P )x is a nuclear G1-space. So y = (1, 1, . . .) ∈ λ(P )x,
thereby leading to the inequality;

pt(x) = Σ|xi|a
t
i = Σ|xiyi|a

t
i, x ∈ λ(P )

= py,t(x)

for t ≥ 1. This completes the proof.

Note: Because of the above result once again it is fairly visible that Proposition 2.7
yields Proposition 1.2. What one is required to do is just take λ = λ(P ) = µ.

The penultimate result of this article is the following invariant of Proposition 2.7,
namely,

Proposition 2.11. Let {xi, fi} be a fully-(λ, σµ)-basis for a DF -space E. Suppose
(λ, σµ) is barrelled and {ei, ei} is a fully-λ(P )-basis for (λ, σµ). Then E is λ(P )-nuclear.

Proof. Owing to Proposition 1.2 it will be sufficient to show that {xi, fi} is a fully-
λ(P )-basis for E. For y ∈ λµ, z ∈ µx and k ≥ 1, since {ei, ei} is a fully-λ(P )-basis for λ,
we get s ∈ λµ and t ∈ µx with

|yizi|a
k
i ≤ |siti|, ∀ i ≥ 1.

Choosing u ∈ λµ and ν ∈ µx with ui ≥ ε > 0 and νi ≥ 1 > 0 we obtain that for each
k ≥ 1, there exists s ∈ λµ and t ∈ µx with

ak
i ≤ c|xiti|
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for some constant c > 0. Thus, for any p ∈ DE and k ≥ 1 we get the inequality

Σ|fi(x)|p(xi)a
k
i ≤ cΣ|fi(x)|p(xi)|siti|

≤ cq(x)

for some q ∈ DE as {xi, fi} is a fully-λ, σµ)-basis for E.

We come to close our discussions with the following which is a variant of Proposition

1.8.

Proposition 2.12. Let {ei, ei} be a fully-(λ, σµ)-basis for a barrelled G1-space λ(Q)

where (λ, σµ) is barrelled. Suppose {ei, ei} is a fully-λ(P )-basis for (λ, σµ). Then λ(Q)

is uniformly λ(P )-nuclear.

Proof. In view of Proposition 1.8 it will be enough to show that {ei, ei} is a fully-

λ(P )-basis for λ(Q) which we achieve by following the method adopted in the proof of

the above result.

Remarks 2.13. From the discussions in [4] it can be safely concluded that for

a λ(P0)-nuclear space λ(P ), a locally convex space having a fully-λ(P )-basis is λ(P0)-

nuclear. But the structure of a Frechet nuclear G∞-space λ(P ), indicates that although

{ei, ei} is a fully-λ(P )-basis for λ(P ); λ(P ) is never λ(P )-nuclear (cf. [6], [23]). The

present article not only restores the λ(P )-nuclearity of DF -spaces [or G1-spaces] from

the presence of a fully-λ(P )-basis but also provides a simple alternative method (to

the procedure adopted in [4]) to bring out the λ(P )-nuclearity (λ(P ; N)-nuclearity) of

a locally convex space possessing a fully-(λ, σµ)-basis. While the impact of (λ, σµ) on

a locally convex space having a fully-λ-basis has been analyzed in [4], in the present

situation we focus our attention primarily to the influence of the associated sequence

space µ (for larger choices of λ). Not only, some results (including the main result) in [4]

is sharpened and extended in the present investigations but also these discussions assert

that the role of the associated sequence space µ is equally significant for an arbitrary

choice of λ.
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