INTUITIONISTIC FUZZY SEMI-GENERALIZED IRRESOLUTE MAPPINGS

R. SANTHI and K. ARUN PRAKASH

Abstract. The purpose of this paper is to introduce and study the concepts of intuitionistic fuzzy semi-generalized continuous mappings and intuitionistic fuzzy semi-generalized irresolute mappings in intuitionistic fuzzy topological space.

1. Introduction

Continuing the work done in the paper [12], we define the notion of intuitionistic fuzzy semi-generalized continuous mappings and intuitionistic fuzzy semi-generalized irresolute mappings. We discuss characterizations of intuitionistic fuzzy semi-generalized continuous mappings and irresolute mappings. We also established their properties and relationships with other classes of early defined forms of intuitionistic continuous mappings.

2. Preliminaries

Definition 2.1 ([1]). An intuitionistic fuzzy set (IFS, for short) A in X is an object having the form

$$A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$$

where the functions $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the degree of the membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A, respectively, $0 \leq \mu_A(x) + \gamma_A(x) \leq 1$ for each $x \in X$.

Corresponding author: R. Santhi.
2000 Mathematics Subject Classification. 54A40, 03F55.
Key words and phrases. Intuitionistic fuzzy topology, intuitionistic fuzzy semi-generalized closed set, intuitionistic fuzzy semi-generalized continuous, intuitionistic fuzzy semi-generalized irresolute.

119
Definition 2.2 ([11]). Let A and B be IFS's of the forms $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$ and $B = \{(x, \mu_B(x), \gamma_B(x)) \mid x \in X\}$. Then,

(a) $A \leq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\gamma_A(x) \geq \gamma_B(x)$ for all $x \in X$,
(b) $A = B$ if and only if $A \leq B$ and $B \leq A$,
(c) $\tilde{A} = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$,
(d) $A \cap B = \{(x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x)) \mid x \in X\}$,
(e) $A \cup B = \{(x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x)) \mid x \in X\}$,
(f) $0_- = \{(x, 0, 1) \mid x \in X\}$ and $1_- = \{(x, 1, 0) \mid x \in X\}$,
(g) $\overline{A} = A$, $\overline{0_-} = 1_-$.

Definition 2.3 ([11]). Let $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$. An intuitionistic fuzzy point (IFP), written as $p_{(\alpha, \beta)}$, is defined to be an IFS of X given by

$$p_{(\alpha, \beta)}(x) = \begin{cases} (\alpha, \beta), & \text{if } x = p, \\ (0, 1), & \text{otherwise.} \end{cases}$$

Definition 2.4 ([4]). An intuitionistic fuzzy topology (IFT for short) on X is a family τ of IFS's in X satisfying the following axioms:

(i) $0_- , 1_- \in \tau$,
(ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
(iii) $\cup G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS for short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS for short) in X. The complement \tilde{A} of an IFS A in IFTS(X, τ) is called an intuitionistic fuzzy closed set (IFCS for short) in X.

Definition 2.5 ([11]). Let f be a mapping from a set X to a set Y. If

$$B = \{(y, \mu_B(y), \gamma_B(y)) \mid y \in Y\}$$

is an IFS in Y, then the preimage of B under f, denoted by $f^{-1}(B)$, is the IFS in X defined by

$$f^{-1}(B) = \{(x, f^{-1}(\mu_B(x)), f^{-1}(\gamma_B(x))) \mid x \in X\}.$$
\[\text{cl}(A) = \cap \{ K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K \}. \]

Note that, for any IFS \(A \) in \((X, \tau)\), we have

\[\text{cl}(\bar{A}) = \overline{\text{int}(A)} \quad \text{and} \quad \text{int}(\bar{A}) = \overline{\text{cl}(A)}. \]

Definition 2.7. An IFS \(A = \{ (x, \mu_A(x), \gamma_A(x)) \mid x \in X \} \) in an IFTS \((X, \tau)\) is called

(i) intuitionistic fuzzy semi open set (IFSOS) if \(A \subseteq \text{cl}(\text{int}(A)). \) [6]

(ii) intuitionistic fuzzy \(\alpha \)-open set (IF\(\alpha \)OS) if \(A \subseteq \text{int}(\text{cl}(\text{int}(A))). \) [6]

(iii) intuitionistic fuzzy preopen set (IFPOS) if \(A \subseteq \text{int}(\text{cl}(A)). \) [6]

(iv) intuitionistic fuzzy regular open set (IFROS) if \(\text{int}(\text{cl}(A)) = A. \) [6]

(v) intuitionistic fuzzy semi-pre open set (IFSPOS) if there exists \(B \in \text{IFPO}(X) \) such that \(B \subseteq A \subseteq \text{cl}(B). \) [13]

An IFS \(A \) is called intuitionistic fuzzy semi closed set, intuitionistic fuzzy \(\alpha \)-closed set, intuitionistic fuzzy preclosed set, intuitionistic fuzzy regular closed set and intuitionistic fuzzy semi-preclosed set, respectively (IFSCS, IF\(\alpha \)CS, IFPCS, IFRCS and IFSPCS resp), if the complement \(\bar{A} \) is an IFSOS, IF\(\alpha \)OS, IFPOS, IFROS and IFSPOS respectively.

The family of all intuitionistic fuzzy semi open (resp. intuitionistic fuzzy \(\alpha \)-open, intuitionistic fuzzy preopen, intuitionistic fuzzy regular open and intuitionistic fuzzy semi-preopen) sets of an IFTS \((X, \tau)\) is denoted by IFSO\((X)\) (resp IF\(\alpha \)(\(X\)), IFPO\((X\)), IFRO\((X\)) and IFSPO\((X\)).

Definition 2.8 ([12]). An intuitionistic fuzzy set \(A \) of an intuitionistic fuzzy topological space \((X, \tau)\) is called an intuitionistic fuzzy semi-generalized closed set (IFSGCS) if \(\text{scl}(A) \subseteq U, \) whenever \(A \subseteq U \) and \(U \) is intuitionistic fuzzy semi-open set.

The complement \(\bar{A} \) of intuitionistic fuzzy semi-generalized closed set \(A \) is called intuitionistic fuzzy semi-generalized open set (IFSGOS).

Definition 2.9 ([12]). An intuitionistic fuzzy topological space \((X, \tau)\) is said to be intuitionistic fuzzy semi-T\(_{1/2}\) space, if every intuitionistic fuzzy sg-closed set in \(X \) is intuitionistic fuzzy semi-closed in \(X \).

Definition 2.10 ([8]). Let \(p(\alpha, \beta) \) be an IFP of an IFTS\((X, \tau)\). An IFS \(A \) of \(X \) is called an intuitionistic fuzzy neighbourhood (IFN) of \(p(\alpha, \beta) \), if there exists an IFOS \(B \) in \(X \) such that \(p(\alpha, \beta) \in B \subseteq A. \)

Definition 2.11. Let \(f : X \rightarrow Y \) be a mapping from an IFTS \(X \) into an IFTS \(Y \). The mapping \(f \) is called

(i) **intuitionistic fuzzy continuous**, if \(f^{-1}(B) \) is an IFOS in \(X \), for each IFOS \(B \) in \(Y \). [6]
(ii) intuitionistic fuzzy semi-continuous, if $f^{-1}(B)$ is an IFOS in X, for each IFOS B in Y.\cite{[6]}

(iii) intuitionistic fuzzy pre-continuous, if $f^{-1}(B)$ is an IFPOS in X, for each IFOS B in Y.\cite{[6]}

(iv) intuitionistic fuzzy α-continuous, if $f^{-1}(B)$ is an IFαOS in X, for each IFOS B in Y.\cite{[6]}

(v) intuitionistic fuzzy semi-pre continuous, if $f^{-1}(B)$ is an IFαOS in X, for each IFOS B in Y.\cite{[9]}

(vi) intuitionistic fuzzy completely continuous, if $f^{-1}(B)$ is an IFROS in X, for each IFOS B in Y.\cite{[15]}

Lemma 2.12 (\cite{[15]}). Let $g : X \to X \times Y$ be the graph of a function $f : X \to Y$. If A is an IFS of X and B is an IFS of Y, then $g^{-1}(A \times B)(x) = (A \cap f^{-1}(B))(x)$.

3. Intuitionistic fuzzy semi-generalized continuous mappings

In this section we introduce intuitionistic fuzzy semi-generalized continuous mappings and studied some of the properties regarding it.

Definition 3.1. Let A be an IFS in an IFTS (X, τ). Then the intuitionistic fuzzy semi-generalized interior and intuitionistic fuzzy semi-generalized closure of A are defined as follows.

$$
\text{sgint}(A) = \bigcup \{ G \mid G \text{ is an IFSGOS in } X \text{ and } G \subseteq A \},
$$

$$
\text{sgcl}(A) = \bigcap \{ K \mid K \text{ is an IFSGCS in } X \text{ and } A \subseteq K \}.
$$

Example 3.2. Let $X = \{a, b\}$.

Let $A = \left\{ x, \left(\begin{array}{cc} a & b \\ 0.2 & 0.3 \end{array} \right), \left(\begin{array}{cc} a & b \\ 0.7 & 0.7 \end{array} \right) \right\}$

Let $B = \left\{ x, \left(\begin{array}{cc} a & b \\ 0.4 & 0.7 \end{array} \right), \left(\begin{array}{cc} a & b \\ 0.6 & 0.1 \end{array} \right) \right\}$.

Then $\tau = \{0_-, 1_-, A, B\}$ is an IFTS on X.

Then $\text{sgint}(B) = A \cup 0_- = A$ and $\text{sgcl}(B) = 1_-$.\cite{[9]}

Proposition 3.3. If A be an IFS in X, then $A \leq \text{sgcl}(A) \leq \text{scl}(A) \leq \text{cl}(A)$.

Proof. The result follows from Definition.\cite{[9]}

Theorem 3.4. If A is an IFSGCS in X, then $\text{sgcl}(A) = A$.

Proof. Since A is an IFSGCS, $\text{sgcl}(A)$ is the smallest IFSGCS which contains A, which is nothing but A. Hence $\text{sgcl}(A) = A$.\cite{[9]}

Theorem 3.5. If A is an IFSGOS in X, then $\text{sgint}(A) = A$.

Proof. Similar to the above theorem. \qed

Definition 3.6. Let (X, τ) and (Y, κ) be IFTs. A mapping $f : X \to Y$ is called intuitionistic fuzzy semi-generalized continuous (intuitionistic fuzzy sg-continuous), if $f^{-1}(B)$ is an IFSGCS in X for every IFCS B in Y.

Theorem 3.7. Every intuitionistic fuzzy continuous mapping is an intuitionistic fuzzy sg-continuous mapping.

Proof. Let B be an IFCS in Y. Then by our assumption, $f^{-1}(B)$ is an IFCS in X. In [12], it has been proved that every intuitionistic fuzzy closed set is an intuitionistic fuzzy sg-closed set in X. Thus $f^{-1}(B)$ is an IFSGCS in X. Hence f is an intuitionistic fuzzy sg-continuous mapping. \qed

The following example shows that the converse of above theorem is not true in general.

Example 3.8. Let $X = \{a, b\}$, $Y = \{c, d\}$.

$$A = \left< x, \left(\begin{array}{cc} a & b \\ 0.3 & 0.4 \\ 0.7 & 0.6 \end{array} \right) \right>$$

$$B = \left< x, \left(\begin{array}{cc} c & d \\ 0.7 & 0.8 \\ 0.3 & 0.2 \end{array} \right) \right>.$$

Then $\tau = \{0_, 1_, A\}$ and $\kappa = \{0_, 1_, B\}$ are IFTS on X and Y respectively. Define a mapping $f : (X, \tau) \to (Y, \kappa)$ by $f(a) = c$, $f(b) = d$. Clearly f is an intuitionistic fuzzy sg-continuous map.

Now we have $f^{-1}(B) = \left< x, \left(\begin{array}{cc} a & b \\ 0.7 & 0.8 \\ 0.3 & 0.2 \end{array} \right) \right>$. $f^{-1}(B) \notin \tau$, which shows that f is not an intuitionistic fuzzy continuous map.

Theorem 3.9. Every intuitionistic fuzzy α-continuous mapping is an intuitionistic fuzzy sg-continuous mapping.

Proof. Let B be an IFCS in Y. Since f is an intuitionistic fuzzy α-continuous mapping, $f^{-1}(B)$ is an intuitionistic fuzzy α-closed set in X. In [12], it has been proved that every IFαCS is an intuitionistic fuzzy sg-closed set in X. Thus $f^{-1}(B)$ is an IFSGCS in X. Hence f is an intuitionistic fuzzy sg-continuous mapping. \qed

The following example shows that the converse of the above theorem is not true in general.
Example 3.10. Let $X = \{a, b\}$, $Y = \{u, v\}$.

Let $A = \left\langle x, \begin{pmatrix} a & b \\ 0.7 & 0.5 \end{pmatrix}, \begin{pmatrix} a & b \\ 0.3 & 0.5 \end{pmatrix} \right\rangle$

$B = \left\langle y, \begin{pmatrix} u & v \\ 0.25 & 0.3 \end{pmatrix}, \begin{pmatrix} u & v \\ 0.2 & 0.2 \end{pmatrix} \right\rangle$.

Then $\tau = \{0_-, 1_-, A\}$ and $\kappa = \{0_-, 1_-, B\}$ are IFTS on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \kappa)$ by $f(a) = u$, $f(b) = v$. Clearly f is intuitionistic fuzzy sg-continuous map.

Now we have $f^{-1}(B) = \left\langle x, \begin{pmatrix} a & b \\ 0.25 & 0.3 \end{pmatrix}, \begin{pmatrix} a & b \\ 0.2 & 0.2 \end{pmatrix} \right\rangle$.

$\text{cl}(f^{-1}(B)) = 1_-$, $\text{int}(\text{cl}(f^{-1}(B))) = \text{int}(1_-) = 1_-$

$\text{cl}(\text{int}(\text{cl}(f^{-1}(B)))) = \text{cl}(1_-) = 1_-$. Thus $\text{cl}(\text{int}(\text{cl}(f^{-1}(B)))) \not\subseteq f^{-1}(B)$, which shows that f is not an intuitionistic fuzzy α-continuous map.

Thus the class of intuitionistic fuzzy α-continuous maps is properly contained in the class of intuitionistic fuzzy sg-continuous maps.

Forthcoming theorem and example shows that the class of intuitionistic fuzzy semi-continuous maps is properly contained in the class of intuitionistic fuzzy sg-continuous maps.

Theorem 3.11. Every intuitionistic fuzzy semi-continuous mapping is intuitionistic fuzzy sg-continuous mapping.

Proof. Let $f : X \rightarrow Y$ be any function from IFTS X in to Y such that f is intuitionistic fuzzy semi-continuous. By definition of intuitionistic fuzzy semi-continuous, $f^{-1}(A)$ is IFSCS in X for every IFCS A in Y. In [12], it has been proved that every intuitionistic fuzzy semi-closed set is an intuitionistic fuzzy sg-closed set in X. Thus $f^{-1}(B)$ IFSGCS in X. Hence f is an intuitionistic fuzzy sg-continuous mapping.

The converse of the above theorem is not true as seen from the following example. \hfill \square

Example 3.12. Let $X = \{a, b\}$, $Y = \{u, v\}$.

Let $A = \left\langle x, \begin{pmatrix} a & b \\ 0.2 & 0.4 \end{pmatrix}, \begin{pmatrix} a & b \\ 0.6 & 0.25 \end{pmatrix} \right\rangle$

$B = \left\langle y, \begin{pmatrix} u & v \\ 0.3 & 0.5 \end{pmatrix}, \begin{pmatrix} u & v \\ 0.4 & 0.5 \end{pmatrix} \right\rangle$.

Then $\tau = \{0_-, 1_-, A\}$ and $\kappa = \{0_-, 1_-, B\}$ are IFTS on X and Y respectively. Define a mapping $f : X \rightarrow Y$ by $f(a) = u$, $f(b) = v$. Clearly f is intuitionistic fuzzy sg-continuous map.
Now we have $f^{-1}(B) = \left< x, \left(\frac{a}{0.3}, \frac{b}{0.5} \right), \left(\frac{a}{0.4}, \frac{b}{0.5} \right) \right>$.

$\text{cl}(f^{-1}(B)) = 1_\sim \quad \text{int}[\text{cl}(f^{-1}(B))] = \text{int}(1_\sim) = 1_\sim \quad \text{Thus int}[\text{cl}(f^{-1}(B))] \not\subseteq f^{-1}(B)$, which shows that f is not intuitionistic fuzzy semi-continuous mapping.

Theorem 3.13. Every intuitionistic fuzzy sg-continuous mapping is intuitionistic fuzzy semi-pre continuous mapping.

Proof. Let B be an IFCS in Y. Since f is intuitionistic fuzzy sg-continuous map, $f^{-1}(B)$ is an intuitionistic fuzzy sg-closed set in X. In paper [12], it has been proved that, every intuitionistic fuzzy sg-closed set is an intuitionistic fuzzy semi-pre closed set. Therefore $f^{-1}(B)$ is an IFSPCS in X. Hence f is an intuitionistic fuzzy semi-pre continuous mapping. \square

The converse of the above theorem is not true as seen from the following example.

Example 3.14. Let $X = \{a, b\}, Y = \{u, v\}$.

Let $A = \left< x, \left(\frac{a}{0.4}, \frac{b}{0.5} \right), \left(\frac{a}{0.1}, \frac{b}{0.3} \right) \right>$

$B = \left< y, \left(\frac{u}{0.15}, \frac{v}{0.3} \right), \left(\frac{u}{0.5}, \frac{v}{0.7} \right) \right>$.

Then $\tau = \{0_\sim, 1_\sim, A\}$ and $\kappa = \{0_\sim, 1_\sim, B\}$ are IFTS on X and Y respectively. Define a mapping $g: (X, \tau) \rightarrow (Y, \kappa)$ by $g(a) = u, g(b) = v$. Clearly g is intuitionistic fuzzy semi-pre continuous map. Infact we have

$g^{-1}(B) = \left< x, \left(\frac{a}{0.15}, \frac{b}{0.3} \right), \left(\frac{a}{0.5}, \frac{b}{0.7} \right) \right>$

$scl(g^{-1}(B)) = 1_\sim \not\subseteq A$. Hence g is not intuitionistic fuzzy semi-generalized continuous mapping.

Remark 3.15. Intuitionistic fuzzy pre-continuity is independent from intuitionistic fuzzy sg-continuity.

The proof follows from the following examples.

Example 3.16. Let $X = \{a, b\}, Y = \{u, v\}$.

Let $A = \left< x, \left(\frac{a}{0.3}, \frac{b}{0.4} \right), \left(\frac{a}{0.7}, \frac{b}{0.6} \right) \right>$

$B = \left< y, \left(\frac{u}{0.6}, \frac{v}{0.5} \right), \left(\frac{u}{0.4}, \frac{v}{0.5} \right) \right>$.

Then $\tau = \{0, 1\}$ and $\kappa = \{0, 1\}$ are IFTS on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \kappa)$ by $f(a) = u$, $f(b) = v$. Clearly f is intuitionistic fuzzy sg-continuous map. In fact we have

$$f^{-1}(B) = \langle x, \left(\frac{a}{0.15}, \frac{b}{0.7}\right), \left(\frac{a}{0.15}, \frac{b}{0.7}\right)\rangle$$

$$\text{cl}(f^{-1}(B)) = 1. \cap \bar{A} = \bar{A}. \int\text{cl}(f^{-1}(B)) = \int\bar{A} = 0. \cup A = A. \text{ Hence } f^{-1}(B) \not\subseteq A = \int\text{cl}(f^{-1}(B))$$

which shows that f is not an intuitionistic fuzzy pre-continuous map.

Example 3.17. Let $X = \{a, b\}$, $Y = \{u, v\}$.

Let $A = \langle x, \left(\frac{a}{0.4}, \frac{b}{0.5}\right), \left(\frac{a}{0.5}, \frac{b}{0.6}\right)\rangle$,

$B = \langle y, \left(\frac{u}{0.2}, \frac{v}{0.3}\right), \left(\frac{u}{0.4}, \frac{v}{0.7}\right)\rangle$.

Then $\tau = \{0, 1\}$ and $\kappa = \{0, 1\}$ are IFTS on X and Y respectively. Define a mapping $h : (X, \tau) \rightarrow (Y, \kappa)$ by $h(a) = u$, $h(b) = v$. Clearly h is intuitionistic fuzzy pre-continuous map. In fact we have

$$h^{-1}(B) = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.3}\right), \left(\frac{a}{0.2}, \frac{b}{0.3}\right)\rangle$$

$$\text{scl}(h^{-1}(B)) = 1. \cup A, \text{ but } \text{scl}(h^{-1}(B)) \not\subseteq A, \text{ which shows that } f \text{ is not an intuitionistic fuzzy sg-continuous map.}$$

The above diagram shows the relationships between intuitionistic fuzzy sg-continuous mappings and some other mappings. The reverse implications are not true in the above diagram.
Theorem 3.18. Let $f : X \rightarrow Y$ be a mapping from a IFTS X into an IFTS Y. Then the following statements are equivalent.

(i) f is intuitionistic fuzzy sg-continuous mapping.
(ii) $f^{-1}(B)$ is an IFSGOS in X, for every IFOS B in X.

Proof. (i)⇒(ii) Let B be an IFOS in Y, then \overline{B} is an IFCS in Y. Since f is intuitionistic fuzzy sg-continuous mapping $f^{-1}(\overline{B})$ is an IFSGCS in X. Then $f^{-1}(\overline{B}) = f^{-1}(B)$, implies $f^{-1}(B)$ is an IFSGOS in Y.

(ii)⇒(i) Let B be an IFCS in Y. By our assumption $f^{-1}(\overline{B})$ is an IFSGOS in X for every IFOS \overline{B} in Y. But $f^{-1}(\overline{B}) = f^{-1}(B)$, which in turn implies $f^{-1}(B)$ is an IFSGCS in X. Hence f is intuitionistic fuzzy sg-continuous mapping. □

Theorem 3.19. Let $f : X \rightarrow Y$ be an intuitionistic fuzzy sg-continuous mapping. Then the following statements hold.

(i) $f(\text{sgc}1(A)) \leq \text{c}1(f(A))$, for every intuitionistic fuzzy set A in X.
(ii) $\text{sgc}1(f^{-1}(B)) \leq f^{-1}(\text{c}1(B))$ for every intuitionistic fuzzy set B in Y.

Proof. (i) Let $A \subseteq X$. Then $\text{c}1(f(A))$ is an intuitionistic fuzzy closed set in Y. Since f is intuitionistic fuzzy sg-continuous, $f^{-1}[\text{c}1(f(A))]$ is intuitionistic fuzzy sg-closed in X. Since $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}[\text{c}1(f(A))]$ and $f^{-1}[\text{c}1(f(A))]$ is intuitionistic fuzzy sg-closed, implies $\text{sgc}1(A) \subseteq f^{-1}[\text{c}1(f(A))]$. Hence $f(\text{sgc}1(A)) \leq \text{c}1(f(A))$.

(ii) Replacing A by $f^{-1}(B)$ in (i), we get

\[
\begin{align*}
\text{c}1(f^{-1}(B)) & \leq \text{c}1(f(B)) \\
\text{sgc}1(f^{-1}(B)) & \leq f^{-1}(\text{c}1(B))
\end{align*}
\]

Hence $\text{sgc}1(\text{f}^{-1}(B)) \leq f^{-1}[\text{c}1(B)]$. □

Theorem 3.20. Let $f : X \rightarrow Y$ be a function and $g : X \rightarrow X \times Y$ the graph of the function f. Then f is intuitionistic fuzzy sg-continuous if g is so.

Proof. Let B be an IFOS in Y. Then by Lemma 2.11, $f^{-1}(B) = f^{-1}(1_\times \times B) = 1_\times \cap f^{-1}(B) = g^{-1}(1_\times \times B)$. Since B is an IFOS in Y, $1_\times \times B$ is an IFOS in $X \times Y$. Also since g is intuitionistic fuzzy sg-continuous implies that $g^{-1}(1_\times \times B)$ is an IFSGOS in X. Therefore $f^{-1}(B)$ is an IFSGOS in X. Hence f is intuitionistic fuzzy sg-continuous mapping. □

Theorem 3.21. Let $f : X \rightarrow Y$ is a mapping from an IFTS X into an IFTS Y. If any union of IFSGCS is IFSGCS, then the following statements are equivalent.
(i) \(f \) is intuitionistic fuzzy sg-continuous mapping.

(ii) For each IFP \(p_{(a,b)} \in X \) and every IFN \(A \) of \(f(p_{(a,b)}) \), there exists an IFSGCS \(B \) such that \(p_{(a,b)} \in B \leq f^{-1}(A) \).

(iii) For each IFP \(p_{(a,b)} \in X \) and every IFN \(A \) of \(f(p_{(a,b)}) \), there exists an IFSGCS \(B \) such that \(p_{(a,b)} \in B \) and \(f(B) \leq A \).

Proof. (i)\(\Rightarrow\) (ii): Assume that \(f \) is intuitionistic fuzzy sg-continuous. Let \(p_{(a,b)} \) be an IFP in \(X \) and \(A \) be an IFN of \(f(p_{(a,b)}) \). Then by Definition of IFN, there exists an IFCS \(C \) in \(Y \), such that \(f(p_{(a,b)}) \in C \leq A \). Taking \(B = f^{-1}(C) \in X \), since \(f \) is intuitionistic fuzzy sg-continuous, \(f^{-1}(C) \) is IFSGCS and

\[
p_{(a,b)} \in B \leq f^{-1}[f(p_{(a,b)})] \leq f^{-1}(C) = B \leq f^{-1}(A).
\]

Hence \(p_{(a,b)} \in B \leq f^{-1}(A) \).

(ii)\(\Rightarrow\) (iii): Let \(p_{(a,b)} \) be an IFP in \(X \) and \(A \) be an IFN of \(f(p_{(a,b)}) \), such that there exists an IFSGCS \(B \) with \(p_{(a,b)} \in B \leq f^{-1}(A) \). From this we have \(p_{(a,b)} \in B \) and \(B \leq f^{-1}(A) \). This implies \(f(B) \leq f(f^{-1}(A)) = A \). Hence (iii) holds.

(iii)\(\Rightarrow\) (i): Assume that (iii) holds. Let \(B \) be an IFCS in \(Y \) and take \(p_{(a,b)} \in f^{-1}(B) \). Then \(f(p_{(a,b)}) \in f(f^{-1}(B)) \leq B \). Since \(B \) is IFCS in \(Y \), it follows that \(B \) is an IFN of \(f(p_{(a,b)}) \). Then from (iii), there exists an IFSGCS \(A \) such that \(p_{(a,b)} \in A \) and \(f(A) \leq B \). This shows that \(p_{(a,b)} \in A \leq f^{-1}(f(A)) \leq f^{-1}(B) \). (i.e) \(p_{(a,b)} \in A \leq f^{-1}(B) \). Since \(p_{(a,b)} \) is an arbitrary IFP and \(f^{-1}(B) \) is union of all IFP contained in \(f^{-1}(B) \), by assumption \(f^{-1}(B) \) is an IFSGCS. Hence \(f \) is intuitionistic fuzzy sg-continuous mapping.

Theorem 3.22. Let \(f : X \rightarrow Y \) is a mapping from an IFTS \(X \) into an IFTS \(Y \). Then the following statements are equivalent.

(i) \(f \) is intuitionistic fuzzy sg-continuous mapping.

(ii) \(f^{-1}(B) \) is an IFSGOS in \(X \), for every IFOS \(B \) in \(Y \).

(iii) \(f(sgc1(A)) \leq c1(f(A)) \), for every fuzzy set \(A \) in \(X \).

(iv) \(sgc1(f^{-1}(B)) \leq f^{-1}(c1(B)) \) for every fuzzy set \(B \) in \(Y \).

(v) For each IFP \(p_{(a,b)} \in X \) and every IFN \(A \) of \(f(p_{(a,b)}) \), there exists an IFSGCS \(B \) such that \(p_{(a,b)} \in B \leq f^{-1}(A) \).

(vi) For each IFP \(p_{(a,b)} \in X \) and every IFN \(A \) of \(f(p_{(a,b)}) \), there exists an IFSGCS \(B \) such that \(p_{(a,b)} \in B \) and \(f(B) \leq A \).

Proof. Follows from the Theorems 3.18, 3.19 and 3.22.

Theorem 3.23. If \(f : X \rightarrow Y \) is intuitionistic fuzzy sg-continuous and \(g : Y \rightarrow Z \) is intuitionistic fuzzy completely continuous, then \(g \circ f : X \rightarrow Z \) is intuitionistic fuzzy sg-continuous.
Proof. Let B be any IFCS in Z. Since g is intuitionistic fuzzy completely continuous, $g^{-1}(B)$ is an IFRCS in Y. In [6], it has been proved that every IFRCS is an IFCS. Therefore $g^{-1}(B)$ is an IFCS in Y. Also since f is intuitionistic fuzzy sg-continuous mapping $f^{-1}[g^{-1}(B)]$ is an IFSGCS in X.

We have $(g \circ f)^{-1}[B] = f^{-1}[g^{-1}(B)]$ is IFSGCS in X, for every IFCS B in Z. Hence $g \circ f$ is intuitionistic fuzzy sg-continuous mapping. □

Theorem 3.24. If $f : X \to Y$ is intuitionistic fuzzy sg-continuous and $g : Y \to Z$ is intuitionistic fuzzy continuous, then $g \circ f : X \to Z$ is intuitionistic fuzzy sg-continuous.

Proof. Let B be any intuitionistic fuzzy closed set in Z. Since g is intuitionistic fuzzy continuous, $g^{-1}(B)$ is intuitionistic fuzzy closed set in Y. Since f is intuitionistic fuzzy sg-continuous mapping $f^{-1}[g^{-1}(B)]$ is an intuitionistic fuzzy sg-closed set in X.

$$(g \circ f)^{-1}[B] = f^{-1}[g^{-1}(B)]$$ is intuitionistic fuzzy sg-closed set, for every intuitionistic fuzzy closed B in Z.

Hence $g \circ f$ is intuitionistic fuzzy sg-continuous mapping. □

Theorem 3.25. Let $f : X \to Y$ is a mapping from an IFTS X into an IFTS Y. If X is intuitionistic fuzzy semi-$T_{1/2}$ space, then f is intuitionistic fuzzy sg-continuous iff it is intuitionistic fuzzy semi-continuous.

Proof. Let f be intuitionistic fuzzy sg-continuous mapping and let A be an intuitionistic fuzzy closed set in Y. Then by definition of intuitionistic fuzzy semi-generalized continuous $f^{-1}(A)$ is intuitionistic fuzzy sg-closed in X. Since X is intuitionistic fuzzy semi-$T_{1/2}$ space, $f^{-1}(A)$ is intuitionistic fuzzy semi-closed set.

Hence f is intuitionistic fuzzy semi-continuous.

Conversely assume that f is intuitionistic fuzzy semi-continuous. Then by **Theorem 3.11** f is intuitionistic fuzzy sg-continuous mapping. □

Theorem 3.26. Let X, X_1, X_2 are IFTS’s and $p_i : X_1 \times X_2 \to X_i$ ($i = 1, 2$) are projections of $X_1 \times X_2$ onto X_i. If $f : X \to X_1 \times X_2$ is intuitionistic fuzzy sg-continuous, then $p_i \circ f$ ($i = 1, 2$) is intuitionistic fuzzy sg-continuous mapping.

Proof. It follows from the facts that projections are intuitionistic fuzzy continuous mappings. □
4. Intuitionistic fuzzy semi-generalized irresolute mappings

Definition 4.1. A mapping \(f : X \to Y \) from an IFTS \(X \) into an IFTS \(Y \) is said to be intuitionistic fuzzy semi-generalized irresolute (intuitionistic fuzzy sg-irresolute) if \(f^{-1}(B) \) is an IFSGCS in \(X \) for every IFSGCS \(B \) in \(Y \).

Theorem 4.2. Let \(f : X \to Y \) is a mapping from an IFTS \(X \) into an IFTS \(Y \). Then every intuitionistic fuzzy sg-irresolute mapping is intuitionistic fuzzy sg-continuous.

Proof. Assume that \(f : X \to Y \) is an intuitionistic fuzzy sg-irresolute mapping and let \(A \) be an IFCS in \(Y \). In [12], it has been proved that every intuitionistic fuzzy closed set is an intuitionistic fuzzy sg-closed. Therefore \(A \) is an IFSGCS in \(Y \). Since \(f \) is intuitionistic fuzzy sg-irresolute, by definition \(f^{-1}(A) \) is IFSGCS in \(X \). Hence \(f \) is intuitionistic fuzzy sg-continuous. \(\square \)

Example 4.3. Let \(X = \{a, b, c\}, Y = \{u, v, w\} \).

Let
\[
A = \left\{ \begin{array}{l}
x,
\left(\begin{array}{ccc}
0.8 & 0.4 & 0.4 \\
0.1 & 0.6 & 0.6
\end{array} \right) \\
\end{array} \right\}, \\
B = \left\{ \begin{array}{l}
y,
\left(\begin{array}{ccc}
0 & 0.4 & 0.2 \\
0 & 0.6 & 0.6
\end{array} \right) \\
\end{array} \right\}.
\]

Then \(\tau = \{0, 1, A\} \) and \(\kappa = \{0, 1, B\} \) are IFTS on \(X \) and \(Y \) respectively. Define a mapping \(h : (X, \tau) \to (Y, \kappa) \) by \(h(a) = u, h(b) = v, h(c) = w \). Clearly \(h \) is intuitionistic fuzzy sg-continuous map. In fact we have
\[
C = \left\{ \begin{array}{l}
y,
\left(\begin{array}{ccc}
0 & 0.4 & 0.2 \\
0 & 0.6 & 0.6
\end{array} \right) \\
\end{array} \right\}
\]
be an IFSGCS in \(Y \).

\[
h^{-1}(C) = \left\{ \begin{array}{l}
x,
\left(\begin{array}{ccc}
0 & 0.4 & 0.2 \\
0 & 0.6 & 0.6
\end{array} \right) \\
\end{array} \right\}.
\]

\(\text{scl}(h^{-1}(C)) = 1 = 1 \). \(h^{-1}(C) \subset A \), but \(\text{scl}(h^{-1}(C)) \not\subset A \), which shows that \(h^{-1}(C) \) is not an IFSGCS in \(X \). Therefore \(f \) is not an intuitionistic fuzzy sg-irresolute map.

Theorem 4.4. Let \(f : X \to Y \) be a mapping from a IFTS \(X \) into an IFTS \(Y \). Then the following statements are equivalent.

(i) \(f \) is intuitionistic fuzzy sg-irresolute mapping.

(ii) \(f^{-1}(B) \) is an IFSGOS in \(X \), for every IFSGOS \(B \) in \(X \).

Proof. Similar to Theorem 3.18. \(\square \)

Theorem 4.5. Let \(f : X \to Y \) be a mapping from an IFTS \(X \) into an IFTS \(Y \). Then the following statements are equivalent.
(i) \(f \) is an intuitionistic fuzzy semi-generalized irresolute mapping.

(ii) \(f^{-1}(B) \) is an IFSGOS in \(X \) for each IFSGOS \(B \) in \(Y \).

(iii) \(\text{sgcl}(f^{-1}(B)) \leq f^{-1}(\text{sgcl}(B)) \), for each IFS \(B \) of \(Y \).

(iv) \(f^{-1}(\text{sgint}(B)) \leq \text{sgint}(f^{-1}(B)) \), for each IFS \(B \) of \(Y \).

Proof. (i)\(\Rightarrow\)(ii) It can be proved by using the complement and **Definition 4.1**.

(ii)\(\Rightarrow\)(iii) Let \(B \) be an IFS in \(Y \). Since \(B \leq \text{sgcl}(B) \), \(f^{-1}(B) = f^{-1}(\text{sgcl}(B)) \). Since \(\text{sgcl}(B) \) is an IFSGCS in \(Y \), by our assumption, \(f^{-1}(\text{sgcl}(B)) \) is an IFSGCS in \(X \). Therefore \(\text{sgcl}(f^{-1}(B)) \leq f^{-1}(\text{sgcl}(B)) \).

(iii)\(\Rightarrow\)(iv) By taking complement we get the result.

(iv)\(\Rightarrow\)(i) Let \(B \) be any IFSGOS in \(Y \). Then \(\text{sgint}(B) = B \). By our assumption we have \(f^{-1}(B) = f^{-1}(\text{sgint}(B)) \leq \text{sgint}(f^{-1}(B)) \), so \(f^{-1}(B) \) is an IFSGCS in \(X \). Hence \(f \) is intuitionistic fuzzy sg-irresolute mapping.

Theorem 4.6. Let \(f : X \to Y \) be intuitionistic fuzzy sg-irresolute mapping. Then \(f \) is intuitionistic fuzzy irresolute mapping if \((X, \tau)\) is intuitionistic fuzzy semi-\(T_{1/2} \) space.

Proof. Let \(B \) be an IFSCS in \(Y \). Then \(B \) is an IFSGCS in \(Y \). Since \(f \) is intuitionistic fuzzy sg-irresolute, \(f^{-1}(B) \) is an IFSGCS in \(X \). But \((X, \tau)\) is intuitionistic fuzzy semi-\(T_{1/2} \) space implies \(f^{-1}(B) \) is an IFSCS in \(X \). Hence \(f \) is intuitionistic fuzzy irresolute.

Theorem 4.7. If a mapping \(f : X \to Y \) is intuitionistic fuzzy sg-irresolute mapping, then \(f(\text{sgcl}(B)) \leq \text{scl}(f(B)) \) for every IFS \(B \) of \(X \).

Proof. Let \(B \) be an IFS of \(X \). Since \(\text{scl}(f(B)) \) is an IFSGCS in \(Y \), by our assumption \(f^{-1}(\text{scl}(f(B))) \) is an IFSGCS in \(X \). Furthermore \(B \leq f^{-1}(f(B)) \leq f^{-1}(\text{scl}(f(B))) \) and hence \(\text{sgcl}(B) \leq f^{-1}(\text{scl}(f(B))) \) and consequently \(f[\text{sgcl}(B)] \leq f[f^{-1}(\text{scl}(f(B)))] \leq \text{scl}(f(B)) \).

Theorem 4.8. Let \((Y, \kappa)\) be an IFTS such that every IFSCS in \(Y \) is an IFCS. If \(f : (X, \tau) \to (Y, \kappa) \) is bijective and intuitionistic fuzzy sg-continuous then \(f \) is intuitionistic fuzzy sg-irresolute.

Proof. Let \(B \) be an IFSGCS in \(Y \) and let \(f^{-1}(B) \leq A \), where \(A \) is an IFSOS in \(X \). Then \(B \leq f(A) \). Since \(f(A) \) is an IFSO in \(Y \) and \(B \) is an IFSGCS in \(Y \), then \(\text{scl}(B) \leq f(A) \) and hence \(f^{-1}(\text{scl}(A)) \leq f^{-1}(f(A)) = A \). Since \(f \) is intuitionistic fuzzy sg-continuous and \(\text{scl}(B) \) is an IFCS in \(Y \), then \(f^{-1}(\text{scl}(B)) \) is an IFSGCS in \(X \). Therefore \(\text{scl}(f^{-1}(\text{scl}(B))) \leq A \) and so \(\text{scl}(f^{-1}(B)) \leq A \). Hence \(f^{-1}(B) \) is an IFSGCS in \(X \). Hence \(f \) is intuitionistic fuzzy sg-irresolute mapping.
Theorem 4.9. Let $f : X \rightarrow Y$ be an intuitionistic fuzzy sg-irresolute mappings. Then f is intuitionistic fuzzy irresolute, if (X, τ) is an intuitionistic fuzzy semi-$T_{1/2}$ space.

Proof. Let A be any IFSCS in Y. In [12], it has been proved that every IFSCS is an IFSGCS. Therefore A is an IFSGCS in Y and f is an intuitionistic fuzzy sg-irresolute. Then by definition $f^{-1}(A)$ is IFSGCS in X. But (X, τ) is an intuitionistic fuzzy semi-$T_{1/2}$ space, so $f^{-1}(A)$ is an IFSCS. Hence f is an intuitionistic fuzzy irresolute.

Theorem 4.10. If any union of IFSGCS is an IFSGCS, then a mapping $f : X \rightarrow Y$ from an IFTS X into an IFTS Y is intuitionistic fuzzy sg-irresolute if and only if for each IFP $p(a, \beta)$ in X and IFSGCS B in Y such that $f(p(a, \beta)) \in B$, there exists an IFSGCS A in X such that $p(a, \beta) \in A$ and $f(A) \subseteq B$.

Proof. Let f be any intuitionistic fuzzy sg-irresolute mapping, $p(a, \beta)$ an IFP in X and B be any IFSGCS in Y, such that $f(p(a, \beta)) \in B$. Then $p(a, \beta) \in f^{-1}(B) = \text{sgcl}(f^{-1}(B))$. We take $A = \text{sgcl}(f^{-1}(B))$. Then A is an IFSGCS in X, containing IFP $p(a, \beta)$ and $f(A) = f[\text{sgcl}(f^{-1}(B))] \subseteq f[f^{-1}(B)] \subseteq B$.

Conversely assume that B be any IFSGCS in Y and IFP $p(a, \beta)$ in X, such that $p(a, \beta) \in f^{-1}(B)$. By assumption there exists IFSGCS A in X such that $p(a, \beta) \in A$ and $f(A) \subseteq B$. Therefore $p(a, \beta) \in A \subseteq f^{-1}(B)$ and $p(a, \beta) \in A = \text{sgcl}(A) \subseteq \text{sgcl}(f^{-1}(B))$. Since $p(a, \beta)$ is an arbitrary IFP and $f^{-1}(B)$ is union of all IFP contained in $f^{-1}(B)$, $f^{-1}(B)$ is an IFSGCS in X, so f is an intuitionistic fuzzy semi-generalized irresolute mapping.

Corollary 4.11. A mapping $f : X \rightarrow Y$ from an IFTS X into an IFTS Y is intuitionistic fuzzy semi-generalized irresolute if and only if for each IFP $p(a, \beta)$ in X and IFSGCS B in Y such that $f(p(a, \beta)) \in B$, there exists an IFSGCS A in X such that $p(a, \beta) \in A$ and $A \subseteq f^{-1}(B)$.

Proof. Follows from Theorem 4.10.

Theorem 4.12. Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are intuitionistic fuzzy sg-irresolute mappings, where X, Y, Z are IFTS. Then $g \circ f$ is an intuitionistic fuzzy sg-irresolute mapping.

Proof. Let A be an intuitionistic fuzzy sg-closed set in Z. Since g is an intuitionistic fuzzy semi-generalized irresolute mapping $g^{-1}(A)$ is an intuitionistic fuzzy sg-closed set in Y. Also since f is intuitionistic fuzzy semi-generalized irresolute mapping, $f^{-1}[g^{-1}(A)]$ is an intuitionistic fuzzy sg-closed set in X.

$$(g \circ f)^{-1}(A) = f^{-1}[g^{-1}(A)]$$

for each A in Z. Hence $(g \circ f)^{-1}(A)$ is an intuitionistic fuzzy sg-closed set in X. Therefore $g \circ f$ is an intuitionistic fuzzy semi-generalized irresolute mapping.
Theorem 4.13. Let $f : X \to Y$ and $g : Y \to Z$ are intuitionistic fuzzy semi-generalized irresolute and intuitionistic fuzzy continuous mappings respectively, where X, Y, Z are IFTS. Then $g \circ f$ is an intuitionistic fuzzy semi-generalized continuous mapping.

Proof. Let A be any IFCS in Z. Since g is intuitionistic fuzzy semi-generalized continuous, $g^{-1}(A)$ is an IFSGCS in Y. Also, since f is intuitionistic fuzzy semi-generalized irresolute, $f^{-1}[g^{-1}(A)]$ is an IFSGCS in X.

$$(g \circ f)^{-1}(A) = f^{-1}[g^{-1}(A)]$$ is an IFSGCS in X. Hence $g \circ f$ is intuitionistic fuzzy semi-generalized continuous.

Theorem 4.14. Let (X, τ), (Y, κ), (Z, δ) be any intuitionistic fuzzy topological spaces. Let $f : (X, \tau) \to (Y, \kappa)$ be intuitionistic fuzzy semi-generalized irresolute and $g : (Y, \kappa) \to (Z, \sigma)$ is intuitionistic fuzzy continuous, then $g \circ f$ is intuitionistic fuzzy semi-generalized continuous.

Proof. Let B be any intuitionistic fuzzy closed set in Z. Since g is intuitionistic fuzzy continuous, $g^{-1}(B)$ is IFCS in Y. In paper [12], it has been proved that every IFCS is an IFSGCS. Therefore $f^{-1}(g^{-1}(B))$ is an IFSGCS in Y. But since f is an intuitionistic fuzzy sgirresolute mapping $f^{-1}(g^{-1}(B))$ is an IFSGCS in X.

$$(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$$ is IFSGCS in X for every IFCS ‘B’ in X.

Hence $g \circ f$ is intuitionistic fuzzy sg-continuous.

Theorem 4.15. Let X, X_1, X_2 are IFTS’s and $p_i : X_1 \times X_2 \to X_i$ ($i = 1, 2$) are projections of $X_1 \times X_2$ onto X_i. If $f : X \to X_1 \times X_2$ is intuitionistic fuzzy semi-generalized irresolute, then $p_i f$ is intuitionistic fuzzy semi-generalized continuous mapping.

Proof. $p_i f : X \to X_i$ ($i = 1, 2$). It follows from the fact that p_i ($i = 1, 2$) are intuitionistic fuzzy continuous mappings and by **Theorem 5.5**.

References

Department of Mathematics, Nallamuthu Gounder Mahalingam College Pollachi - 642 001.

E-mail: santhifuzzy@yahoo.co.in

Department of Mathematics, Kongu Engineering College Perundurai - 638 052.

E-mail: arun.kannusamy@yahoo.co.in