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A REACTION-DIFFUSION SYSTEM AND ITS SHADOW SYSTEM

DESCRIBING HARMFUL ALGAL BLOOMS

SHINTARO KONDO AND MASAYASU MIMURA

Abstract. The occurrence of harmful algal blooms (HAB) in ecosystems is a worldwide

environmental issue that currently needs to be addressed. An attempt to theoretically

understand the mechanism behind the formation of HAB has led to the proposal of a

reaction-diffusion model of the Lotka–Volterra type. In particular, a shadow system, as a

limiting system of the model in which the diffusion rate tends to infinity, has been pro-

posed to study whether or not stable nonconstant equilibrium solutions of the system

exist, because these solutions are mathematically associated with HAB. In this paper, we

discuss the convergence property between solutions of the full system and its shadow

system from the point of view of an evolutional problem.

1. Introduction

It is known that an algal bloom has a negative impact on other organisms via the pro-

duction of toxins, mechanical damage, or by other means. In recent years, the occurrence of

toxic blooms of cyanobacteria in lakes and rivers has been causing increasing concern from

an ecological viewpoint. Therefore, a theoretical understanding of the mechanism behind the

formation of spatial blooms on toxic plankton is one of the important subjects in mathemat-

ical ecology.

The study of this problem has recently led to the proposal of the following three-component

reaction-diffusion system of the Lotka–Volterra type ([17]):





∂u

∂t
= r1u

(
1−

u +av

K1
−w

)
+d1∆u,

∂v

∂t
= r2v

(
1−

v +bu

K2
−d (µ)w

)
+d2∆v,

∂w

∂t
= w

(
u −µv −1

)
+d3∆w,

(1.1)
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where u = u(t , x), v = v(t , x), and w = w (t , x) represent the population densities of the non-

toxic phytoplankton, the toxic phytoplankton, and the zooplankton for time t and position x,

respectively. The parameters a, b, µ, ri , Ki (i = 1,2), and di (i = 1,2,3) are all positive con-

stants and d (µ) is a positive and monotone decreasing function of µ with d (0) = 1. It is noted

that µ, which we will refer to as “toxicity", is an important parameter in (1.1). The ecological

explanation of (1.1) is stated in [17]. Here we simply assume r1 = r2 = r, K1 = K2 = K , d1 =
d2 = d , and D = d3/d so that (1.1) is rewritten as





∂u

∂t
= r u

(
1−

u +av

K
−w

)
+∆u,

∂v

∂t
= r v

(
1−

v +bu

K
−d (µ)w

)
+∆v,

∂w

∂t
= w

(
u −µv −1

)
+D∆w.

(1.2)

From ecological viewpoints, we may assume that D is rather large, because it was reported

that swimming speed of some species of the zooplankton is the order of mm/s and that of

Cyanobacteria which is one of the phytoplankton is the order of µm/s ([17]).

We consider (1.2) in a bounded domain Ω in Rn (n = 1,2,3) with the zero-flux boundary

conditions
∂u

∂ν
=

∂v

∂ν
=

∂w

∂ν
= 0, t > 0, x ∈ ∂Ω, (1.3)

where ∂Ω is the smooth boundary of Ω and ∂
∂ν is the outward unit normal derivative on ∂Ω

and the initial conditions 



u(0, x) =u0(x),

v(0, x) = v0(x), x ∈Ω,

w (0, x)= w0(x),

(1.4)

where u0(x), v0(x) and w0(x) are non-negative smooth functions. We first not that in the

absence of the nontoxic prey, it is obvious to see that the predator fades out; that is, when

u ≡ 0,

lim
t→∞

(v(t , x), w (t , x))= (K ,0) , x ∈Ω

holds if v0(x) is not identically zero ([16]). We now impose the following two assumptions for

(1.2):

(A1) a < 1 < b,
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which implies that, in the absence of the predator (w ), the nontoxic prey (u) is a competi-

tor who is absolutely stronger than the toxic prey (v) in terms of common resources ([11]); that

is, when w ≡ 0,

lim
t→∞

(u(t , x), v(t , x))= (K ,0) , x ∈Ω

holds if u0(x) is not identically zero ([10]), and

(A2) K > 1,

which implies that, in the absence of toxic prey, the predator and nontoxic prey coexist

([8]); that is, when v ≡ 0,

lim
t→∞

(u(t , x), w (t , x))=
(
1,

K −1

K

)
, x ∈Ω

holds if u0(x) and w0(x) are both not identically zero.

These results indicate that in order to understand the occurrence of harmful algal blooms

(HAB), the analysis of the full three-component reaction-diffusion system (1.2) for (u, v, w ) is

required.

First, noting that E3 =
(
1,0, K−1

K

)
is a constant equilibrium solution of (1.2) and (1.3),

which exists for any µ> 0, we study the stability of E3. Instead of (A2), we assume

(A3) K > b.

By (A3), E3 is stable for µ < µc = d−1( K−b
K−1 ) > 0, while it is unstable for µc < µ and there

exists a positive constant equilibrium solution E4 =
(
uµ, vµ, wµ

)
of (1.2) and (1.3). When we

simply specify d (µ) as d (µ)= 1
1+µ ([5]), E4 is given by





uµ =
1−a +µ+Kµ2

1−a +bµ+bµ2
,

vµ =
1−b −bµ+Kµ

1−a +bµ+bµ2
=

(K −b)(µ−µc )

1−a +bµ+bµ2
,

wµ = 1+
a

Kµ
−

(a +µ)(1−a +µ+Kµ2)

Kµ(1−a +bµ+bµ2)
.

This implies that E4 bifurcates super-critically from E3 at µ = µc when µ increases. However,

it is not necessarily stable, that is, the stability of E4 depends on the parameters µ, r, K , and

D. If the one-dimensional problem of (1.2) and (1.3) is considered in the interval (0,L), then

the local stability of E4 can be easily studied. As an example, if d (µ) = 1
1+µ and r = 2.3, a =

0.95, b = 1.2, K = 2.9, and L = 30, and µ and D are free parameters, the stable and unstable

regions of E4 can be drawn in (D,µ) space, as shown in Figure 1. This suggests the following

results:
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Figure 1: Stable and unstable regions of E4 of the one dimensional problem of (1.2) with

d (µ) = 1
1+µ and (1.3) in the (D,µ)-plane where r = 2.3, a = 0.95, b = 1.2, K = 2.9, µc = 2

17

and L = 30. The curve indicated by n corresponds to the n-mode bifurcation where the zero

solution of the linearized problem of (1.2) and (1.3) around E4 is destabilized under the nth

eigenmode cos( nπx
L ) perturbation.

(i) When µ is greater than µc = 2
17 = 0.117 · · · but is relatively small, E4 is stable for any D.

Conversely when D is rather small, it is also stable for any µ> 0.

(ii) When µ is in the intermediate range, E4 is destabilized, as D increases. It implies Tur-

ing’s diffusion induced instability ([18]). In fact, when D = 2500, we can see the existence

of one-dimensional stable equilibrium solutions of (1.2) and (1.3) in Figure 2, where the

predator (w ) is almost spatially homogeneous, because D is rather large, while the non-

toxic (u) and toxic (v) planktons of the prey exhibit large spatial heterogeneity, which

ecologically indicates the occurrence of HAB.

Ecologically speaking, the results (i) and (ii) are stated in more detail as follows: If the

predator consumes nontoxic and toxic planktons of prey with the same predation rates (µ =
0), HAB does not occur (see the case (i)), whereas if the predator does not prefer to intake the

toxic prey rather than the nontoxic prey (µ> 1), then HAB possibly occurs when the diffusion

rate of the predator is considerably larger than that of the prey, that is, D is relatively large (see

case (ii)).

These numerical results arise the following mathematical question: Can the existence

and stability of such nonconstant equilibrium solutions of (1.2) and (1.3) be discussed analyti-

cally? For this question, the “shadow system" approach can be applied to study nonconstant

equilibrium solutions of (1.2) and (1.3), assuming that D is sufficiently large ([9]). Let us first

introduce the shadow system, which is derived from (1.2). From the third equation of (1.2),
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Figure 2: Spatial profiles of one-dimensional stable equilibrium solutions of (1.2) and (1.3)

where D = 2500, µ = 0.15, 0.5, and 3.1 and the other parameters are the same as those in

Figure 1.

we obtain

1

|Ω|
d

d t

∫

Ω

w dx =
1

|Ω|

∫

Ω

w
(
u −µv −1

)
dx, t > 0, (1.5)

where the symbol |Ω| denotes the measure of Ω. If D → ∞, then w (t , x) → ξ(t ) in the third

equation of (1.2), so that (1.5) is rewritten as

d

d t
ξ= ξ

(
1

|Ω|

∫

Ω

u dx −
µ

|Ω|

∫

Ω

v dx −1

)
.

Consequently, as D → ∞, (1.2)-(1.4) formally reduces to the following limiting system for

(u(t , x), v(t , x),ξ(t )):




∂u

∂t
= r u

(
1−

u +av

K
−ξ

)
+∆u,

∂v

∂t
= r v

(
1−

v +bu

K
−d (µ)ξ

)
+∆v, t > 0, x ∈Ω,

∂ξ

∂t
= ξ

(
1

|Ω|

∫

Ω

u dx −
µ

|Ω|

∫

Ω

v dx −1

)
,

(1.6)

which is termed a shadow s y st em of (1.2). The zero-flux boundary and initial conditions to

(1.6) are

∂u

∂ν
=

∂v

∂ν
= 0, t > 0, x ∈ ∂Ω (1.7)

and 



u(0, x) = u0(x),

v(0, x) = v0(x),

ξ(0) =
1

|Ω|

∫

Ω

w0(x)dx,

x ∈Ω, (1.8)

respectively. For the problems (1.2)-(1.4) and (1.6)-(1.8), the following questions naturally

arise:
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(i) What is the asymptotical behavior of (u∞(t , x), v∞(t , x),ξ(t )) of the limiting problem

(1.6)-(1.8) ? Especially, how are the existence and stability of nonconstant equilibrium

solutions (u∞(x), v∞(x),ξ) of (1.6) and (1.7) ?

(ii) How is the convergence of the solution
(
uD (t , x), v D(t , x), w D (t , x)

)
of the full problem

(1.2)-(1.4) to the one (u∞(t , x), v∞(t , x),ξ(t )) of (1.6)-(1.8) as D →∞ ?

For the question in (i), Ikeda, Mimura, and Scotti have recently discussed the one-dimen-

sional stationary problem of (1.6) with d (µ) = 1
1+µ and (1.7) by using the numerical continua-

tion software AUTO ([5], for instance) ([9]). Let us show an example. Assume that L = 30, for

instance, andµ is a free parameter. Figure 3 demonstrates the global structures of equilibrium

solutions of (1.2) with (1.3) with D = 5000 and 10000 and the shadow system (1.6) with (1.7). It

indicates that there are stable non-constant equilibrium solutions of (1.2) with (1.3) for a suit-

able range of µ, and that when D is very large, the global structure of equilibrium solutions of

(1.2) and (1.3) is qualitatively similar to that of (1.6) and (1.7), that is, the shadow system (1.6)

with (1.7) would be a good approximation to (1.2) with (1.3) to study the existence and stabil-

ity of equilibrium solutions of (1.2) and (1.3) if D is very large. Here we remark the following:

When ξ is assumed to be a known constant, it is well known that non-constant equilibrium

solutions (u∞(x;ξ), v∞(x;ξ)) of the first two equations of (1.6) and (1.7) are unstable, if Ω is

convex ([12]). However, when ξ is an unknown variable, the situation is drastically changed,

that is, there occur stable non-constant equilibrium solutions (u∞(x;ξ), v∞(x;ξ),ξ), of (1.6)

and (1.7) as shown in Figure 2. In relation to this problem, we refer the papers by Nishiura who

discusses the shadow system of two-component reaction-diffusion systems with an activator-

inhibitor type ([14]), and by Miyamoto who discusses the relation between global attractors

for the Gierer–Meinhardt model and its shadow system when one of the diffusion rates is

rather large ([13]).

In this paper, we focus on the question (ii). In other words, we study the problem whether

“the shadow system (1.6) is an approximation to the full system (1.2) when D is very large."

First, we make one remark to (1.1) where all of the diffusion rates di (i = 1,2,3) in (1.1) are

suitably large enough. Then, as one could expect, any solution of (1.1), (1.3), and (1.4) decays

to be spatially homogeneous, and as di (i = 1,2,3) →∞, the ODEs corresponding to (1.1) is

derived as its limiting system ([4]). Our situation is different from the above in a sense that

only D is very large in (1.2).

We begin by showing a pr i or i estimates for solutions of the problems (1.2)-(1.4) and

(1.6)-(1.8), which assure the global existence of nonnegative solutions with respect to time,

and then discuss the convergence problem of solutions of (1.2)-(1.4) and (1.6)-(1.8).
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Figure 3: Global structures of equilibrium solutions (uD (x), v D (x), w D(x)) of (1.2) and (1.3)

for different values of large D and (u∞(x), v∞(x),ξ) of (1.6) and (1.7) where the other param-

eters are the same as those in Figure 1 except for µ. The horizontal axis is µ and the vertical

axis is v D (0) ((a), (b)) and v∞(0) ((c)). Solid and dashed lines represent stable and unstable

equilibrium solutions, respectively ([9]).

Theorem 1. Let
(
uD (t , x), v D (t , x), w D(t , x)

)
be the nonnegative global smooth solution of (1.2)

−(1.4) and let λ be the smallest (positive) eigenvalue of −∆ on Ω with zero-flux boundary con-

ditions. Then there exist positive constants c1, c2, and c3 independent of D such that

0 ≤ uD (t , x)≤ c1,

0 ≤ v D (t , x)≤ c2,
for t > 0, x ∈Ω (1.9)

hold, where c1 = max
{
‖u0‖L∞(Ω) ,K

}
and c2 = max

{
‖v0‖L∞(Ω) ,K

}
, and that if D ≥ 2c1

λ is as-

sumed,

0 ≤ w D(t , x) ≤ c3 for t > 0, x ∈Ω (1.10)

holds, where

c3 =





c3(u0, v0, w0,∇u0,∇v0,∇w0) if n = 1,

c3(u0, v0, w0,∆u0,∆v0,∆w0) if n = 2,3.

In the following we denote
1

|Ω|

∫

Ω

f (x) dx by f simply.

Theorem 2. Let (u∞(t , x), v∞(t , x),ξ(t )) be the nonnegative global smooth solution of (1.6)

−(1.8). Then there exists a positive constant c4 such that





0 ≤ u∞(t , x)≤ c1,

0 ≤ v∞(t , x)≤ c2,

0 ≤ ξ(t )≤ c4

for t > 0, x ∈Ω, (1.11)

hold, where c1 and c2 are the same as those in Theorem 1 and c4 = 1
r

(
u0 + r w0

)
+ K

4

(
1+ 1

r

)2
.



78 SHINTARO KONDO AND MASAYASU MIMURA

The proofs of Theorems 1 and 2 will be shown in Section 3.

We now show our main results as Theorems 3 and 4.

Theorem 3. Let
(
uD (t , x), v D (t , x), w D(t , x)

)
be the nonnegative global smooth solution of (1.2)

−(1.4). If D ≥ 2c1

λ is assumed, then there exist positive constants c5 independent of D and T (D)

such that

‖(w D −w D )(t )‖L∞(Ω) ≤ c5

√
1

D
for t ∈ [T (D),∞) (1.12)

holds, where

c5 =





c5(u0, v0, w0,∇u0,∇v0,∇w0) if n = 1,

c5(u0, v0, w0,∆u0,∆v0,∆w0) if n = 2,3

and

T (D) =





max

{
0,

4log
(
‖∇w0‖2

L2(Ω)
D

)

Dλ

}
if n = 1,

max

{
0,

4log
(
‖∆w0‖2

L2(Ω)
D

)

Dλ

}
if n = 2,3.

By noting that limD→∞ T (D) = 0, this theorem indicates that if D is sufficiently large, then

w D (t , x) of (1.2)−(1.4) becomes almost spatially homogeneous in time. This result supports

the behavior of w D(t , x) in Figure 2. However, this theorem does not imply that w D (t , x) con-

verges to w D(x) as t →∞, even if D is large enough.

Theorem 4. Let
(
uD (t , x), v D (t , x), w D(t , x)

)
and (u∞(t , x), v∞(t , x),ξ(t )) be the nonnegative

global smooth solutions of (1.2)-(1.4) and (1.6)-(1.8), respectively. If D ≥ 2c1

λ is assumed, then

for any fixed T > 0, there exists a positive constant c6(T ) independent of D such that

‖(uD −u∞)(t )‖L∞(Ω) +‖(v D −v∞)(t )‖L∞(Ω) +‖(w D −ξ)(t )‖L∞(Ω)

≤ c6(T )

√
1

D
for t ∈ [T (D),T ] (1.13)

holds, where T (D) is the same as that in Theorems 3 and

c6(T ) =





c6(T,u0, v0, w0,∇u0,∇v0,∇w0) if n = 1,

c6(T,u0, v0, w0,∆u0,∆v0,∆w0) if n = 2,3.

This theorem indicates that, if T > 0 is arbitrarily fixed, the solution of (1.2)−(1.4) con-

verges to that of (1.6)−(1.8) in (0,T ] as D →∞.

The proofs of Theorems 3 and 4 will be stated in Section 4.
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In the following sections, we use the Banach space Lp (Ω) with the norm

‖u‖p =‖u‖Lp (Ω) =
(∫

Ω

|u(x)|p dx

) 1
p

for 1 ≤ p <∞, and

‖u‖∞ =‖u‖L∞(Ω) = sup
x∈Ω

|u(x)|

for p = ∞. In addition, we use Sobolev spaces W l
2 (Ω) (l = 1,2,3) of which the elements are

functions u such that Dk
x u belong to L2(Ω) for any k (|k | ≤ l ), where Dk

x u = ∂|k |u/∂x
k1

1 . . .∂x
kn
n

is the generalized derivative of order |k | = k1+k2+ . . .+kn for a multi-index k = (k1,k2, . . . ,kn).

W l
2 (Ω) are endowed with the finite norm ‖u‖2

W l
2 (Ω)

=
∑

|k |≤l ‖Dk
x u‖2

L2(Ω)
.

Throughout the proofs of the theorems which will be stated later, we use c , ci , c ′
i
, c ′′

i
and

c ′′′
i

(i = 1,2, . . .) as positive constants independent of D.

2. Preliminaries

Before proceeding to the next section, we recall the well-known inequalities, which are

used in the proofs of Theorems 1−4.

(i) Young’s inequality ([7]): For any positive constants a, b, p , and q satisfying 1
p + 1

q = 1,

ab ≤
ap

p
+

bq

q
(2.1)

holds.

(ii) Let f be a suitably smooth function defined in Ω with the zero-flux boundary conditions

at ∂Ω.

(1) The elliptic estimate ([2]): For some c




‖ f ‖W 2

2 (Ω) ≤ c(
∥∥∆ f

∥∥
2 +

∥∥ f
∥∥

2),

‖ f ‖W 3
2 (Ω) ≤ c(

∥∥∇(∆ f )
∥∥

2 +
∥∥ f

∥∥
2)

(2.2)

hold.

(2) ([4]):




λ‖ f − f ‖2

2 ≤ ‖∇ f ‖2
2,

λ‖∇ f ‖2
2 ≤ ‖∆ f ‖2

2

(2.3)

hold.
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(iii) The Gagliardo–Nirenberg inequality ([3], [6]): Let α = α(n) be a constant satisfying 1
2 <

α< 1 (n = 1,2,3). For some c

‖∇ f ‖4 ≤ c‖ f ‖α
W 2

2 (Ω)

∥∥ f
∥∥1−α

2 (2.4)

holds.

(iv) The Sobolev embedding theorem ([1]): For some c

‖ f ‖∞ ≤





c‖ f ‖W 1
2 (Ω) if n = 1,

c‖ f ‖W 2
2 (Ω) if n = 2,3

(2.5)

holds.

3. Proofs of Theorems 1 and 2

In this section, we obtain a pr i or i estimates for solutions of the problems (1.2)−(1.4)

and (1.6)−(1.8).

3.1. Proof of Theorem 1

First, it is obvious to see that

0 ≤uD (t , x)≤ max
{
‖u0‖∞ ,K

}

and 0 ≤ v D (t , x) ≤max
{
‖v0‖∞ ,K

} for t > 0, x ∈Ω.

So we only show (1.10). Since (2.2) and (2.5) lead to

‖w D(t )‖2
∞ ≤





c
(
‖w D(t )‖2

2 +‖∇w D(t )‖2
2

)
if n = 1,

c
(
‖w D(t )‖2

2 +‖∆w D(t )‖2
2

)
if n = 2,3

(3.1)

for some c , therefore we obtain a pr i or i estimates for ‖w D (t )‖2, ‖∇w D (t )‖2 and ‖∆w D(t )‖2

as follows:

Lemma 3.1. If D ≥ 2c1

λ
, then there exist c7, c8 and c9 such that

‖w D(t )‖2
2 ≤ c7, (3.2)

‖∇w D(t )‖2
2 ≤ c8 for t > 0 (3.3)

and ‖∆w D(t )‖2
2 ≤ c9 (3.4)

hold, where c7 = c7(u0, v0, w0), c8 = c8(u0, v0, w0,∇u0,∇v0,∇w0) and c9 = c9(u0, v0, w0,∆u0,

∆v0,∆w0).
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Proof. (i) Proof of (3.2): Define w̃ D(t , x) by w D(t , x)= w D(t )+ w̃ D (t , x). Then we know

‖w D(t )‖2
2 ≤ 2(|Ω||w D (t )|2 +‖w̃ D (t )‖2

2). (3.5)

We first show a pr i or i estimate for w D (t ) in a similar way to the ones in [15] and [19]. Adding

the first equation and the third one of (1.2) multiplied by 1
|Ω| and by r

|Ω| , respectively, and

integrating it over Ω, we have

d

d t

(
uD + r w D

)
+

ar

K |Ω|

∫

Ω

uD v D dx +
µr

|Ω|

∫

Ω

w D v D dx

=
1

|Ω|

∫

Ω

r uD

(
1−

uD

K

)
dx − r w D ≤

K r

4

(
1+

1

r

)2

−
(
uD + r w D

)
.

Here we used

r uD

(
1−

uD

K

)
≤

K r

4

(
1+

1

r

)2

−uD .

Then by Gronwall’s lemma, we obtain

uD + r w D ≤ e−t
(
u0 + r w0

)
+

K r

4

(
1+

1

r

)2

and by uD > 0,

0 < w D(t ) ≤
1

r
e−t

(
u0 + r w0

)
+

K

4

(
1+

1

r

)2

for t > 0. (3.6)

We next show a pr i or i estimate for ‖w̃ D(t )‖2. Define M by M f = f . Subtracting M

{the third equation of (1.2)} from the third equation of (1.2), and multiplying it by w̃ D and

integrating over Ω, we find

1

2

d

d t
‖w̃ D(t )‖2

2 +‖w̃ D (t )‖2
2 +D‖∇w D (t )‖2

2

=
∫

Ω

w̃ D
[

w D
(
uD −µv D

)
−M

{
w D(uD −µv D )

}]
dx

=
∫

Ω

w̃ D
(
w D + w̃ D

)(
uD −µv D

)
dx

≤ c1

(√
|Ω|‖w̃ D (t )‖2|w D |+‖w̃ D(t )‖2

2

)
−µ

∫

Ω

w̃ D
(
w D + w̃ D

)
v D dx

≤ (c1 +1)‖w̃ D (t )‖2
2 +

|Ω|(c2
1 +2µc2)

4
|w D |2 −

µ

2

∫

Ω

|w̃ D |2v D dx.

Here we used (1.9) and the following inequalities:

−µ
∫

Ω

w̃ D w D v D dx ≤
µ

2

∫

Ω

|w̃ D |2v D dx +
µ|Ω|c2

2
|w D |2

and
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c1

√
|Ω|‖w̃ D(t )‖2|w D | ≤ ‖w̃ D(t )‖2

2 +
|Ω|c2

1

4
|w D |2

which was obtained from (2.1) with a =
p

2‖w̃ D (t )‖2, b = c1

√
|Ω|
2
|w D | and p = q = 2. By using

(2.3) and (3.6), we obtain

d

d t
‖w̃ D(t )‖2

2 ≤ 2(c1 −Dλ)‖w̃ D(t )‖2
2 +

|Ω|(c2
1 +2µc2)c ′27

2
, (3.7)

where c ′7 = 1
r

(
u0 + r w0

)
+ K

4

(
1+ 1

r

)2
. Therefore, since 2(c1 −Dλ) ≤ −Dλ

4
by D ≥ 2c1

λ
, (3.7) is

rewritten as

d

d t

(
‖w̃ D(t )‖2

2e
Dλ

4
t
)
≤

|Ω|(c2
1 +2µc2)c ′27

2
e

Dλ
4

t .

Thus, putting c ′′7 = 3|Ω|
8λ (c2

1 +2µc2)c ′27 , we obtain

‖w̃ D(t )‖2
2 ≤ ‖w̃0‖2

2e−
Dλ

4
t +

c ′′7
D

(
1−e−

Dλ
4

t
)

for t > 0. (3.8)

Then, if (3.6) and (3.8) are used in (3.5), (3.2) is proved, where c7 is simply taken as c7 =
2|Ω|c ′27 +2(‖w̃0‖2

2 +
λ

3c1
c ′′7 ).

(ii) Proof of (3.3): Multiplying the third equation of (1.2) by ∆w D and integrating over Ω, by

D ≥ 2c1

λ
, we have

1

2

d

d t
‖∇w D(t )‖2

2 +‖∇w D(t )‖2
2 +µ

∫

Ω

|∇w D |2v D dx +
2c1

λ
‖∆w D(t )‖2

2

≤ ‖w D (t )‖2‖∇(uD −µv D )(t )‖4‖∇w D(t )‖4 +c1‖∇w D(t )‖2
2.

Since we need to obtain a pr i or i estimates for uD and v D , we use sD = T (uD , v D , w D) and

define ‖sD
∇ (t )‖2 and ‖sD

∆
(t )‖2 by

‖sD
∇ (t )‖2

2 = ‖∇uD (t )‖2
2 +‖∇v D (t )‖2

2 +‖∇w D (t )‖2
2

and

‖sD
∆

(t )‖2
2 = ‖∆uD(t )‖2

2 +‖∆v D (t )‖2
2 +‖∆w D(t )‖2

2,

respectively. Then we have

1

2

d

d t
‖∇w D(t )‖2

2 +‖∇w D (t )‖2
2 +

2c1

λ
‖∆w D(t )‖2

2 ≤ δ‖sD
∆

(t )‖2
2 +c ′8δ

− α
1−α (3.9)

for any constant δ satisfying 0 < δ≤ 1, where c ′8 = c ′8(c1,c2,c7). Here we used (1.9), (2.2), (2.4),

(3.2) and the inequality

‖w D(t )‖2‖∇(uD −µv D )(t )‖4‖∇w D (t )‖4
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≤ c
p

c7

(
‖∆uD(t )‖2 +‖∆v D(t )‖2 +

√
|Ω|(c1 +c2)

)α (√
|Ω|(c1 +c2)

)1−α

×
(
‖∆w D(t )‖2 +

p
c7

)α
(
p

c7)1−α

≤ δ‖sD
∆

(t )‖2
2 +c ′′8δ

− α
1−α

for c ′′8 = c ′′8 (c1,c2,c7), which was obtained from (2.1) with

a = δα
(
‖∆uD(t )‖2 +‖∆v D (t )‖2 +

√
|Ω|(c1 +c2)

)α (
‖∆w D(t )‖2 +

p
c7

)α
,

b = δ−αc
p

c7

(√
|Ω|(c1 +c2)

p
c7

)1−α
, p =

1

α
and q =

1

1−α
.

Similarly to (3.9), we have

1

2

d

d t
‖∇uD (t )‖2

2 +‖∆uD(t )‖2
2 ≤ δ‖sD

∆
(t )‖2

2 +c ′′′8 δ−
α

1−α (3.10)

for c ′′′8 = c ′′′8 (c1,c2,c7) and

1

2

d

d t
‖∇v D (t )‖2

2 +‖∆v D (t )‖2
2 ≤ δ‖sD

∆
(t )‖2

2 +c ′′′′8 δ−
α

1−α (3.11)

for c ′′′′8 = c ′′′′8 (c1,c2,c7). Adding (3.9) and (3.10) and (3.11), we have

1

2

d

d t
‖sD

∇ (t )‖2
2 +

(
min{λ,2c1}

λ
−3δ

)
‖sD

∆
(t )‖2

2 ≤ (c ′8 +c ′′′8 +c ′′′′8 )δ−
α

1−α .

Since (2.3) leads to λ‖sD
∇ (t )‖2

2 ≤ ‖sD
∆

(t )‖2
2, if δ is chosen as δ= min{λ,2c1}

6λ
, we obtain

‖sD
∇ (t )‖2

2 ≤ ‖sD
∇ (0)‖2

2e−min{λ,2c1}t +
2(c ′8 +c ′′′8 +c ′′′′8 )

min{λ,2c1}

(
min{λ,2c1}

6λ

)− α
1−α

. (3.12)

Consequently when c8 is simply taken as

c8 = ‖sD
∇ (0)‖2

2 +
2(c ′8 +c ′′′8 +c ′′′′8 )

min{λ,2c1}

(
min{λ,2c1}

6λ

)− α
1−α

,

(3.3) is proved.

(iii) Proof of (3.4): Define ‖sD
∇∆(t )‖2 by

‖sD
∇∆(t )‖2

2 = ‖∇(∆uD (t ))‖2
2 +‖∇(∆v D (t ))‖2

2 +‖∇(∆w D(t ))‖2
2.

In a similar way to (3.9), we have

1

2

d

d t
‖∆w D(t )‖2

2 +‖∆w D(t )‖2
2 +µ

∫

Ω

|∆w D |2v D dx +
2c1

λ
‖∇(∆w D (t ))‖2

2

≤ δ‖sD
∇∆(t )‖2

2 +c ′9δ
− α

1−α
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for any constant δ satisfying 0 < δ≤ 1, where c ′9 = c ′9(c1,c2,c7). Here we used

∂∆sD

∂ν
= T (0,0,0) for t > 0, x ∈ ∂Ω, (3.13)

which was obtained from (1.2) and (1.3). Similarly to (3.10), (3.11) and (3.12), we have

1

2

d

d t
‖∆uD (t )‖2

2 +‖∇(∆uD (t ))‖2
2 ≤δ‖sD

∇∆(t )‖2
2 +c ′′9δ

− α
1−α ,

1

2

d

d t
‖∆v D (t )‖2

2 +‖∇(∆v D (t ))‖2
2 ≤δ‖sD

∇∆(t )‖2
2 +c ′′′9 δ−

α
1−α

and

‖sD
∆

(t )‖2
2 ≤ ‖sD

∆
(0)‖2

2e−min{λ,2c1}t +
2(c ′9 +c ′′9 +c ′′′9 )

min{λ,2c1}

(
min{λ,2c1}

6λ

)− α
1−α

, (3.14)

respectively, where c ′′9 = c ′′9 (c1,c2,c7) and c ′′′9 = c ′′′9 (c1,c2,c7). Then if c9 is simply taken as c9 =

‖sD
∆

(0)‖2
2 +

2(c ′
9+c ′′

9+c ′′′
9 )

min{λ,2c1}

(
min{λ,2c1}

6λ

)− α
1−α

, (3.4) is proved. ���

Consequently, by using (3.1) and Lemma 3.1, Theorem 1 can be proved.

3.2. Proof of Theorem 2

The first two inequalities of (1.11) are obvious. For the proof of the third inequality of

(1.11), we apply a similar way used in the proof of (3.6) to the third equation of (1.6), and

obtain

0 < ξ(t )≤
1

r
e−t

(
u0 + r w0

)
+

K

4

(
1+

1

r

)2

for t > 0.

Therefore, by putting c4 = 1
r

(
u0 + r w0

)
+ K

4

(
1+ 1

r

)2
, Theorem 2 can be proved.

4. Proofs of Theorems 3 and 4

4.1. Proof of Theorem 3

Since w D −w D = w̃ D , we derive the uniform estimate for ‖w̃ D(t )‖∞ with respect to D. By

using (2.2) and (2.5), we find that for some c ,

‖w̃ D(t )‖2
∞ ≤





c(‖w̃ D(t )‖2
2 +‖∇w̃ D (t )‖2

2) if n = 1,

c(‖w̃ D(t )‖2
2 +‖∆w̃ D (t )‖2

2) if n = 2,3.
(4.1)

Since the uniform estimate for ‖w̃ D(t )‖2 is already known in (3.8), we will obtain the uniform

estimates for ‖∇w̃ D(t )‖2 (=‖∇w D(t )‖2) and ‖∆w̃ D(t )‖2 (=‖∆w D(t )‖2) with respect to D.

Lemma 4.1. If D ≥ 2c1

λ , then there exist c10 and c11 such that

‖∇w D (t )‖2
2 ≤ ‖∇w0‖2

2 e−
Dλ

4
t +

c10

D

(
1−e−

Dλ
4

t
)

(4.2)
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for t > 0
and ‖∆w D(t )‖2

2 ≤ ‖∆w0‖2
2 e−

Dλ
4

t +
c11

D

(
1−e−

Dλ
4

t
)

(4.3)

hold, respectively, where c10 = c10 (u0, v0, w0,∇u0,∇v0,∇w0) and c11 = c11(u0, v0, w0,∆u0,∆v0,∆w0).

Proof. Multiplying the third equation of (1.2) by ∆w D and integrating over Ω, we have

1

2

d

d t
‖∇w D(t )‖2

2 +‖∇w D (t )‖2
2 +µ

∫

Ω

|∇w D |2v D dx +D‖∆w D (t )‖2
2

≤ ‖w D(t )‖∞‖∇(uD −µv D )(t )‖2‖∇w D (t )‖2 +c1‖∇w D(t )‖2
2

≤ c(
p

c7 +
p

c9)
p

c8‖∇w D(t )‖2 +c1‖∇w D(t )‖2
2

≤ (c1 +1)‖∇w D(t )‖2
2 +c ′10,

where c ′10 = c ′10(c7,c8,c9). Here we used (2.2), (2.5), (3.2), (3.12) and (3.14). Hence, by (2.3) we

have

d

d t
‖∇w D(t )‖2

2 ≤ 2(c1 −Dλ)‖∇w D (t )‖2
2 +2c ′10,

and by (3.13)
d

d t
‖∆w D(t )‖2

2 ≤ 2(c1 −Dλ)‖∆w D(t )‖2
2 +2c ′11,

where c ′11 = c ′11(c1,c2,c7,c8,c9). Noting that D ≥ 2c1

λ leads 2(c1 −Dλ) ≤−Dλ
4 , (4.2) and (4.3) are

proved. ���

Using (3.8) and (4.2) in (4.1) and applying the first inequality of (2.3) to ‖w̃0‖2
2, we obtain

‖w̃ D(t )‖2
∞ ≤ c

(
‖w̃0‖2

2e−
Dλ

4
t +

c ′′7
D

+‖∇w0‖2
2 e−

Dλ
4

t +
c10

D

)

≤ c

(
‖∇w0‖2

2 e−
Dλ

4
t +

c ′′7 +c10

D

)

for n = 1, and

‖w̃ D(t )‖2
∞ ≤ c

(
‖w̃0‖2

2e−
Dλ

4
t +

c ′′7
D

+‖∆w0‖2
2 e−

Dλ
4

t +
c11

D

)

≤ c

(
‖∆w0‖2

2 e−
Dλ

4
t +

c ′′7 +c11

D

)

for n = 2,3. Then if T (D) is defined by

T (D) =





0 if ‖∇w0‖2
2 D ≤ 1,

4log
(
‖∇w0‖2

2 D
)

Dλ
if ‖∇w0‖2

2 D > 1,

Theorem 3 is proved.
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4.2. Proof of Theorem 4

Define U D , V D and W D by

U D =uD −u∞, V D = v D −v∞ and W D = w D −ξ,

respectively, and obtain the uniform estimates for ‖U D (t )‖∞, ‖V D (t )‖∞ and ‖W D (t )‖∞ with

respect to D. First, by W̃ D = w̃ D , we note

‖W D (t )‖∞ ≤‖W D (t )‖∞+‖w̃ D(t )‖∞. (4.4)

We therefore obtain the uniform estimates for ‖U D (t )‖∞, ‖V D (t )‖∞ and ‖W D (t )‖∞, because

the uniform estimate for ‖w̃ D(t )‖∞ is already obtained in Theorem 3.

Put SD = T (U D ,V D ,W D ) and define

‖SD (t )‖∞ = ‖U D (t )‖∞+‖V D (t )‖∞+‖W D (t )‖∞,

‖SD (t )‖2
2 = ‖U D (t )‖2

2 +‖V D (t )‖2
2 +‖W D (t )‖2

2,

‖SD
∇ (t )‖2

2 = ‖∇U D (t )‖2
2 +‖∇V D (t )‖2

2

and

‖SD
∆

(t )‖2
2 = ‖∆U D (t )‖2

2 +‖∆V D (t )‖2
2.

Then from (2.2) and (2.5),

‖SD (t )‖∞ ≤ c

√
‖SD (t )‖2

2 +‖SD
∇ (t )‖2

2 if n = 1 (4.5)

and

‖SD (t )‖∞ ≤ c

√
‖SD (t )‖2

2 +‖SD
∆

(t )‖2
2 if n = 2,3 (4.6)

hold for some c .

We now obtain the uniform estimates for ‖SD (t )‖2
2, ‖SD

∇ (t )‖2
2 and ‖SD

∆
(t )‖2

2 with respect to

D. In order to obtain these estimates, we first derive the initial and boundary value problem

for SD . The equations for both U D and V D can be written as

∂U D

∂t
= ADU D −

ar

K
u∞V D − r u∞W D − r u∞w̃ D +∆U D

and
∂V D

∂t
= B DV D −

br

K
v∞U D −d (µ)r v∞W D −d (µ)r v∞w̃ D +∆V D ,

respectively, where AD and B D are given by

AD = r

(
1−

uD +u∞+av D

K
−w D

)
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and

B D = r

(
1−

v D +v∞+buD

K
−d (µ)w D

)
,

respectively. In order to derive the equation for W D , we obtain the following equation for w D :

∂w D

∂t
=

1

|Ω|

∫

Ω

w D
(
uD −µv D −1

)
dx

= w D

(
1

|Ω|

∫

Ω

uD dx −
µ

|Ω|

∫

Ω

v D dx −1

)
+ g D (t ),

where g D (t ) is given by

g D (t )=
1

|Ω|

∫

Ω

w̃ D
(
uD −µv D −1

)
dx.

Then, subtracting the third equation of (1.6) from it, we obtain

∂W D

∂t
=C DW D +ξ

(
1

|Ω|

∫

Ω

U D dx −
µ

|Ω|

∫

Ω

V D dx

)
+ g D (t ),

where C D is given by

C D =
1

|Ω|

∫

Ω

uD dx −
µ

|Ω|

∫

Ω

v D dx −1

and by (1.9) and (3.8), g D (t ) satisfies

‖g D (t )‖2
∞ ≤ c‖w̃0‖2

2e−
Dλ

4
t +

c

D

for some c . From the above, we now obtain the following initial and boundary value problem

for SD = T (U D ,V D ,W D ):





∂SD

∂t
= LD SD +R(D), t > 0, x ∈Ω,

SD (0, x) = T (0,0,0), x ∈Ω,

∂SD

∂ν
= 0, t > 0, x ∈ ∂Ω,

(4.7)

where LD and R(D) are given by

LD =




∆+ AD −
ar

K
u∞ −r u∞

−
br

K
v∞

∆+B D −d (µ)r v∞

0 0 C D




and
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R(D) =




−r u∞w̃ D

−d (µ)r v∞w̃ D

ξ

(
1

|Ω|

∫

Ω

U D dx −
µ

|Ω|

∫

Ω

V D dx

)
+ g D (t )




,

respectively.

We first obtain the uniform estimate for ‖SD (t )‖2, ‖SD
∇ (t )‖2 and ‖SD

∆
(t )‖2.

Lemma 4.2. If D ≥ 2c1

λ , then for any fixed T > 0, there exist c12(T ), c13(T ) and c14(T ) depending

on T but independent of D, such that

‖SD (t )‖2
2 ≤

c12(T )

D
, (4.8)

‖SD
∇ (t )‖2

2 ≤
c13(T )

D
for t ∈ [0,T ] (4.9)

and

‖SD
∆

(t )‖2
2 ≤

c14(T )

D
(4.10)

hold, where c12(T ) = c12(T,u0, v0, w0), c13(T ) = c13(T,u0, v0, w0,∆u0,∆v0,∆w0) and c14(T ) =
c14(T,u0, v0, w0,∆u0,∆v0,∆w0).

Proof. Multiplying the first equation of (4.7) by SD and integrating over Ω, we have

1

2

d‖SD (t )‖2
2

d t
=

∫

Ω

LD SD ·SD dx +
∫

Ω

R(D) ·SD dx. (4.11)

Here using (1.9)-(1.11), two terms in the right hand side of (4.11) can be estimated as follows:

There is some c such that

∫

Ω

LD SD ·SD dx ≤ −‖∇U D (t )‖2
2 −‖∇V D (t )‖2

2

−r

∫

Ω

|U D |2
(

uD +u∞+av D

K
+w D

)
dx

−r

∫

Ω

|V D |2
(

v D +v∞+buD

K
+d (µ)w D

)
dx

−
(
µ

|Ω|

∫

Ω

v D dx +1

)
|W D (t )|2 +c‖SD (t )‖2

2 ≤ c‖SD (t )‖2
2 (4.12)

and ∫

Ω

R(D) ·SD dx ≤ c
(
‖U D (t )‖2 +‖V D (t )‖2

)
‖w̃ D(t )‖2

+
{

c
(
‖U D (t )‖2 +‖V D (t )‖2

)
+|g D (t )|

}
|W D (t )|

≤ c(‖SD (t )‖2
2 +‖w̃ D(t )‖2

2), (4.13)
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respectively. Hence, substituting (4.12) and (4.13) in the right hand side of (4.11) and using

(3.8), then we have

1

2

d‖SD (t )‖2
2

d t
≤ c

(
2‖SD (t )‖2

2 +‖w̃0‖2
2e−

Dλ
4

t +
c ′′7
D

)
.

Noting ‖SD (0)‖2
2 = 0, Gronwall’s lemma leads to

‖SD (t )‖2
2 ≤

(
3c‖w̃0‖2

2

6c +2Dλ
+

c ′′7
2D

)
e4ct . (4.14)

Thus putting c12(t )=
(

3c
2λ‖w̃0‖2

2 +
c ′′

7

2

)
e4ct , (4.8) can be derived.

We next consider (4.9). In a similar way to (4.11)-(4.13), we have

1

2

d‖SD
∇ (t )‖2

2

d t
=

∫

Ω

LD SD ·∆SD dx +
∫

Ω

R(D) ·∆SD dx. (4.15)

Using (2.3), (2.4), (3.12), (3.14) and ‖∇w̃ D (t )‖2 = ‖∇w D(t )‖2, two terms in the right hand sides

of (4.15) can be estimated as follows: For some c ,

∫

Ω

LD SD ·∆SD dx ≤ c‖SD
∇ (t )‖2

2 +
∥∥∥∥∇

(
uD +u∞+av D

K
+w D

)
(t )

∥∥∥∥
4

‖U D (t )‖4‖∇U D (t )‖2

+
∥∥∥∥∇

(
v D +v∞+buD

K
+d (µ)w D

)
(t )

∥∥∥∥
4

‖V D (t )‖4‖∇V D (t )‖2

≤ c
(
‖SD (t )‖2

2 +‖SD
∇ (t )‖2

2

)
(4.16)

and ∫

Ω

R(D) ·∆SD dx ≤ c
(
‖∇u∞(t )‖4‖w̃ D(t )‖4 +‖u∞(t )‖∞‖∇w̃ D (t )‖2

)
‖∇U D (t )‖2

+c
(
‖∇v∞(t )‖4‖w̃ D(t )‖4 +‖v∞(t )‖∞‖∇w̃ D(t )‖2

)
‖∇V D (t )‖2

≤ c
(
‖SD

∇ (t )‖2
2 +‖∇w D (t )‖2

2

)
, (4.17)

respectively hold. Here we used

‖∇u∞(t )‖2
2 +‖∇v∞(t )‖2

2 ≤ c15,
for t > 0,

‖∆u∞(t )‖2
2 +‖∆v∞(t )‖2

2 ≤ c ′15,

where c15 = c15(u0, v0, w0,∇u0,∇v0,∇w0) and c ′15 = c ′15(u0, v0, w0,∆u0,∆v0,∆w0). which were

obtained by using the similar way to the proofs of (3.3) and (3.4). Then we have

1

2

d‖SD
∇ (t )‖2

2

d t
≤ c

(
2‖SD

∇ (t )‖2
2 +‖∇w0‖2

2 e−
Dλ

4
t +

c10

D
+

c12(t )

D2

)
,
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where c12(t )=
(

3c
2λ‖w̃0‖2

2 +
c ′′

7

2

)
e4ct . Noting ‖SD

∇ (0)‖2
2 = 0, Gronwall’s lemma leads to

‖SD
∇ (t )‖2

2 ≤
(

6c ‖∇w0‖2
2

12c +Dλ
+

c10

2D

)
e4ct +

2ct c12(t )

D2
. (4.18)

Thus putting c13(t ) =
(

6c
λ
‖∇w0‖2

2 +
c10

2

)
e4ct + 2ct c12(t )

D , (4.9) can be derived.

Finally we obtain (4.10). Similarly to (4.11)−(4.13), we have

1

2

d‖SD
∆

(t )‖2
2

d t
=

∫

Ω

∆LD SD ·∆SD dx +
∫

Ω

∆R(D) ·∆SD dx, (4.19)

where, two terms in the right hand sides of (4.19) can be estimated as follows: For some c ,

∫

Ω

∆LD SD ·∆SD dx ≤ c‖SD
∆

(t )‖2
2

+
∥∥∥∥∆

(
uD +u∞+av D

K
+w D

)
(t )

∥∥∥∥
2

‖U D (t )‖∞‖∆U D (t )‖2

+
∥∥∥∥∆

(
v D +v∞+buD

K
+d (µ)w D

)
(t )

∥∥∥∥
2

‖V D (t )‖∞‖∆V D (t )‖2

+
∥∥∥∥∇

(
uD +u∞+av D

K
+w D

)
(t )

∥∥∥∥
4

‖∇U D (t )‖4‖∆U D (t )‖2

+
∥∥∥∥∇

(
v D +v∞+buD

K
+d (µ)w D

)
(t )

∥∥∥∥
4

‖∇V D (t )‖4‖∆V D (t )‖2

≤ c
(
‖SD (t )‖2

2 +‖SD
∇ (t )‖2

2 +‖SD
∆

(t )‖2
2

)

and ∫

Ω

∆R(D) ·∆SD dx ≤ c(‖w̃ D(t )‖2 +‖∇w̃ D (t )‖2 +‖∆w̃ D(t )‖2)‖SD
∆

(t )‖2

≤ c
(
‖SD

∆
(t )‖2

2 +‖∆w D(t )‖2
2

)
,

respectively. Hence from (4.19), we obtain

1

2

d‖SD
∆

(t )‖2
2

d t
≤ c

(
2‖SD

∆
(t )‖2

2 +‖∆w0‖2
2 e−

Dλ
4

t +
c11

D
+

c12(t )+c13(T )

D2

)
.

Noting ‖SD
∆

(0)‖2
2 = 0, Gronwall’s lemma leads to

‖SD
∇ (t )‖2

2 ≤
(

6c ‖∆w0‖2
2

12c +Dλ
+

c11

2D

)
e4ct +

2ct (c12(t )+c13(t ))

D2
.

Thus putting c14(t ) =
(

6c
λ
‖∆w0‖2

2 +
c11

2

)
e4ct + 2ct (c12(t )+c13(t ))

D , (4.10) can be derived. ���
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Let T > 0 be arbitrarily fixed constant. Consequently, using (4.8)-(4.10) in the right hand

sides of (4.5) and (4.6), we have

‖SD (t )‖∞ ≤





c

√
C12(T )+C13(T )

D
if n = 1,

c

√
C12(T )+C14(T )

D
if n = 2,3

for t ∈ [0,T ]. Then defining T (D) by

T (D) =





max

{
0,

4log
(
‖∇w0‖2

2 D
)

Dλ

}
if n = 1,

max

{
0,

4log
(
‖∆w0‖2

2 D
)

Dλ

}
if n = 2,3

and using (1.12) in (4.4), we obtain

‖W D (t )‖∞ ≤





c

√
C12(T )+C13(T )

D
+c5

√
1

D
if n = 1,

c

√
C12(T )+C14(T )

D
+c5

√
1

D
if n = 2,3

for t ∈ [T (D),T ]. Thus, the proof of Theorem 4 is complete.

5. Concluding remarks

To study the occurrence of harmful algal blooms observed in lakes and rivers, we dis-

cussed a three-component reaction-diffusion system and its shadow system which was de-

rived as the diffusion rate of the predator D tended to infinity. Under the zero-flux boundary

conditions, we showed that a solution of the full system for arbitrarily given initial data (1.4)

for (1.2) and (1.8) for (1.6) is well approximated by the one of the shadow system if D is very

large. Precisely speaking, for any fixed T > 0, any solution tends to that of the shadow system

for 0 < t < T , as D tends to infinity. Of course, this is not a satisfactory result, because numer-

ical simulation suggests that this result extends to the case for 0 < t <∞. Unfortunately, the

method used in this paper is unable to answer to this problem. We think that our approach

is required to combine with the theory of global attractors for the full system and its shadow

system which are discussed in [13] and [14]. However, the situation is rather difficult, because

of the following reason: If d (µ) is 1
1+(µ/δ)

with some constant δ> 0 (for instance δ= 0.01), the

equilibrium E4 undergoes Hopf bifurcations and the system exhibits oscillatory behaviour

when µ increases. This is significantly different from the situation when δ= 1. The extension

of our result to the case for 0 < t <∞ will be part of our future work.
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