ON THE SET OF α , p-BOUNDED VARIATION OF ORDER h

BRUNO DE MALAFOSSE

Abstract. In this paper we first explicit a subset of the set (l_p, l_u) for $1 \leq p < \infty$ and $0 < u < \infty$. Then we deal with the space $bv_p^h(\alpha) = l_p(\alpha)(\Delta^h)$ for h > 0 real, generalizing the well-known set of p-bounded variation $bv_p = l_p(\Delta)$, and characterize martix transformations mapping from $bv_n^h(\alpha)$ to $bv_u^k(\beta)$ for $1 \le p \le \infty$ and $0 < u \le \infty$.

1. Preliminaries, background and notation.

Let $A = (a_{nm})_{n,m\geq 1}$ be an infinite matrix and consider the sequence $X = (x_n)_{n\geq 1}$ as a column vector. Then we will define the product $AX = (A_n(X))_{n\geq 1}$ with $A_n(X) =$ $\sum_{m=1}^{\infty} a_{nm} x_m$ whenever the series are convergent for all $n \ge 1$. We will denote by s, c_0, c and l_{∞} the sets of all sequences, the set of sequences that converge to zero, that are convergent and that are bounded respectively. A Banach space E of complex sequences with the norm $||||_E$ is a BK space if each projection $P_n: X \to P_n X = x_n$ is continuous. A BK space E is said to have AK if every sequence $X = (x_n)_{n=1}^{\infty} \in E$ has a unique representation $X = \sum_{n=1}^{\infty} x_n e_n$ where e_n is the sequence with 1 in the *n*-th position and 0 otherwise.

For any given subsets E, F of s, we shall say that the operator represented by the

- infinite matrix $A = (a_{nm})_{n,m \ge 1}$ maps E into F, that is $A \in (E, F)$, see [4], if (i) the series defined by $A_n(X) = \sum_{m=1}^{\infty} a_{nm} x_m$ are convergent for all $n \ge 1$ and for all $X \in E$;
 - (ii) $AX \in F$ for all $X \in E$.

For any subset E of s, we shall write

$$AE = \{ Y \in s : Y = AX \text{ for some } X \in E \}.$$

If F is a subset of s, we shall denote the so-called matrix domain by

$$F(A) = F_A = \{ X \in s : Y = AX \in F \}.$$
 (1)

In this paper we will consider the well-known set

$$l_p = \left\{ X = (x_n)_{n \ge 1} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\} \text{ for } p > 0 \text{ real.}$$

Received June 17, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 40C05, 40J05, 46A15.

Key words and phrases. Matrix transformations, operator of the first-difference, set of α , pbounded variation of order h, BK space.

BRUNO DE MALAFOSSE

In the case when p, u > 0 are both unequals to 1 except for p = u = 2, (see [2]), there is no characterization of the set (l_p, l_u) . Denote now

$$U^{+} = \{ X = (x_n)_{n \ge 1} \in s : x_n > 0 \text{ for all } n \}$$

and let $l_p(\alpha)$ for $\alpha \in U^+$ be the set of all sequences $X = (x_n)_{n \ge 1}$ such that $(x_n/\alpha_n)_{n \ge 1} \in l_p$. The set $l_p(\alpha)$ is a *Banach space with the norm*

$$\|X\|_{l_p(\alpha)} = \left\|D_{\frac{1}{\alpha}}X\right\|_{l_p} = \left[\sum_{n=1}^{\infty} \left(\frac{|x_n|}{\alpha_n}\right)^p\right]^{\frac{1}{p}}.$$

Using Wilansky's notation, it can easily be seen that $l_p(\alpha) = (1/\alpha)^{-1} * l_p$ is a *BK space with AK*, see [15, Example 1.13, p.152]. For $p = \infty$ we will write

$$l_{\infty}(\alpha) = s_{\alpha} = \Big\{ X = (x_n)_{n \ge 1} : \sup_{n} \frac{|x_n|}{\alpha_n} < \infty \Big\}.$$

For given $\alpha \in U^+$, we also have, see [6, 8, 9, 10]

$$s_{\alpha}^{0} = \left\{ X = (x_{n})_{n \ge 1} : \lim_{n \to \infty} \frac{x_{n}}{\alpha_{n}} = 0 \right\} \text{ and}$$
$$s_{\alpha}^{(c)} = \left\{ X = (x_{n})_{n \ge 1} : \lim_{n \to \infty} \frac{x_{n}}{\alpha_{n}} = l \text{ for some } l \in \mathbb{C} \right\}.$$

Each of the sets s_{α} , s_{α}^{0} and $s_{\alpha}^{(c)}$ is a *BK* space and s_{α}^{0} has *AK*. For α , $\beta = (\beta_{n})_{n \geq 1} \in U^{+}$ we will use the set

$$S_{\alpha,\beta} = \left\{ A = (a_{nm})_{n,m\geq 1} : \sup_{n} \left\{ \frac{1}{\beta_n} \sum_{m=1}^{\infty} |a_{nm}| \alpha_m \right\} < \infty \right\},$$

which is a Banach space with the norm $||A||_{S_{\alpha,\beta}} = \sup_n \{(1/\beta_n) \sum_{m=1}^{\infty} |a_{nm}|\alpha_m\}$, see [5-12]. If $s_{\alpha} = s_{\beta}$ we get the Banach algebra with identity $S_{\alpha,\alpha} = S_{\alpha}$, see [5, 8, 11].

We will use the operator Δ defined by $\Delta x_1 = x_1$ and $\Delta x_n = x_n - x_{n-1}$ for $n \geq 2$ and for all $X = (x_n)_{n \geq 1}$ and define the set of α , *p*-bounded variation of order 1, by

$$bv_p(\alpha) = \left\{ X = (x_n)_{n \ge 1} : \sum_{n=1}^{\infty} \left(\frac{|x_n - x_{n-1}|}{\alpha_n} \right)^p < \infty \right\}, \text{ with } x_0 = 0.$$

Recall that for $\alpha = e = (1, \ldots, 1, \ldots)$, we have $bv_p(\alpha) = bv_p$ and bv_p is the set of pbounded variation, and for p = 1 and $p = \infty$, the space bv_p is reduced to the spaces bvand $l_{\infty}(\Delta)$ respectively. Using the notation (1) we may redefine the space $bv_p(\alpha)$ as

$$bv_p(\alpha) = l_p(\alpha)(\Delta).$$

There are some results on the sets (bv_p, Y) with $Y = l_{\infty}$, c_0 , c, l_1 , or bv in [1, Theorem 13.3 and Theorem 13.4, pp.52]. When p is replaced by a sequence $\tilde{p} = (p_n)_{n \ge 1}$ there are

other results on $(bv_{\tilde{p}}, Y)$ where Y is either of the sets l_{∞} , c_0 , c, l_1 , see [3, Theorem 3.2, pp.160]. Here we give conditions for a matrix map to belong to $(bv_p^h(\alpha), bv_u^k(\beta))$ where h, $k > 0, 1 \le p \le \infty, 0 < u < \infty$, and $bv_p^h(\alpha) = l_p(\alpha)(\Delta^h)$.

2. Subset of (l_p, l_u) with $1 \le p < \infty$ and $0 < u < \infty$

Let p, u be reals with $p \ge 1$ and u > 0. For any given infinite matrix A, put

$$N_{p,u}(A) = \begin{cases} \sup_{m \ge 1} \left(\sum_{n=1}^{\infty} |a_{nm}| \right) & \text{if } u = p = 1, \\ \left[\sum_{n=1}^{\infty} \left(\sup_{m \ge 1} |a_{nm}| \right)^{u} \right]^{\frac{1}{u}} & \text{if } p = 1 \text{ and } 0 < u < \infty, u \neq 1; \\ \left[\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |a_{nm}|^{q} \right)^{\frac{u}{q}} \right]^{\frac{1}{u}} & \text{if } 1 < p < \infty, 0 < u < \infty \text{ with } q = p/(p-1). \end{cases}$$

We will write $L_{p,u}$ for the set of all infinite matrices A with $N_{p,u}(A) < \infty$. We then have the following result

Theorem 1. Let p, u be reals with $p \ge 1$ and u > 0. Then

$$L_{p,u} \subset (l_p, l_u)$$

and for any given $A \in L_{p,u}$, $||AX||_{l_u} \leq N_{p,u}(A) ||X||_{l_p}$ for all $X \in l_p$.

Proof. Case u = p = 1. We have $A \in (l_1, l_1)$ if and only if all the series $\sum_{m=1}^{\infty} a_{nm} x_m$ are convergent for all n for all $X \in l_1$ and $AX \in l_1$ for all $X \in l_1$. Let $A \in L_{1,1}$ we get

$$\begin{split} \|AX\|_{l_1} &\leq \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |a_{nm}x_m|\right) \\ &\leq \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} |a_{nm}x_m|\right) \\ &\leq \left(\sum_{m=1}^{\infty} |x_m|\right) \left(\sup_{m \geq 1} \sum_{n=1}^{\infty} |a_{nm}|\right) = \|A^t\| \|X\|_{l_1} \text{ for all } X \in l_1 \end{split}$$

Case p = 1 and u > 0, $u \neq 1$. As above, let $A \in L_{1,u}$. For every $X \in l_1$ we successively get

$$\|AX\|_{l_u}^u \leq \sum_{n=1}^\infty \left(\sum_{m=1}^\infty |a_{nm}x_m|\right)^u$$
$$\leq \sum_{n=1}^\infty \left[\left(\sup_{m\geq 1} |a_{nm}|\right)\sum_{m=1}^\infty |x_m|\right]^u$$
$$\leq \sum_{n=1}^\infty \left(\sup_{m\geq 1} |a_{nm}|\right)^u \left(\sum_{m=1}^\infty |x_m|\right)^u.$$

We conclude

$$||AX||_{l_u} \le \left[\sum_{n=1}^{\infty} \left(\sup_{m\ge 1} |a_{nm}|\right)^u\right]^{\frac{1}{u}} \qquad ||X||_{l_1} = [N_{1,u}(A)] ||X||_{l_1}.$$

Case p > 1 and u > 0. Let $A \in L_{p,u}$. For every $X \in l_p$, we get

$$\|AX\|_{l_{u}}^{u} = \sum_{n=1}^{\infty} \left(\left| \sum_{m=1}^{\infty} a_{nm} x_{m} \right|^{u} \right) \le \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |a_{nm} x_{m}| \right)^{u}$$

and by the Hölder inequality, where q = p/(p-1), we have

$$\|AX\|_{l_{u}}^{u} \leq \sum_{n=1}^{\infty} \left[\left(\sum_{m=1}^{\infty} |a_{nm}|^{q} \right)^{\frac{1}{q}} \left(\sum_{m=1}^{\infty} |x_{m}|^{p} \right)^{\frac{1}{p}} \right]^{u} \\ \leq \sum_{n=1}^{\infty} \left[\left(\sum_{m=1}^{\infty} |a_{nm}|^{q} \right)^{\frac{1}{q}} \|X\|_{l_{p}} \right]^{u} \\ \leq \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |a_{nm}|^{q} \right)^{\frac{u}{q}} \|X\|_{l_{p}}^{u} \leq [N_{p,u}(A)]^{u} \|X\|_{l_{p}}^{u}.$$

Remark 1. Let us recall the next results due to Stieglitz and Tietz [16], and Maddox [4], where either p or u is equal to one:

$$(l_1, l_u) = \left\{ A = (a_{nm})_{n,m \ge 1} : \sup_{m \ge 1} \left(\sum_{n=1}^{\infty} |a_{nm}|^u \right) < \infty \right\} \quad for \ 1 \le u < \infty,$$

and if 1 and <math>q = p/(p-1), then

$$(l_p, l_1) = \left\{ A = (a_{nm})_{n,m \ge 1} : \sup_{N \subset \mathbb{N}, N \text{ finite}} \left(\sum_{m=1}^{\infty} \left| \sum_{n \in N} a_{nm} \right|^q \right) < \infty \right\}.$$

We can also remark that if $u = p \ge 1$, then $||A||_{(l_p, l_p)} \le N_{p, p}(A)$ with

$$N_{p,p}(A) = \begin{cases} \|A^t\|_{S_1} & \text{for } p = 1, \\ \left[\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |a_{nm}|^q\right)^{\frac{p}{q}}\right]^{\frac{1}{p}} & \text{for } p > 1. \end{cases}$$

We have the following application.

Example 2. Let θ , u > 0 and p > 1 be reals and consider the triangle

$$C^{\theta} = \begin{pmatrix} 1 & & & \\ \cdot & \cdot & & O & \\ \frac{1}{n^{\theta}} & \cdot & \frac{1}{n^{\theta}} & & \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{pmatrix}.$$

Then $C^{\theta} \in (l_p, l_u)$ for $\theta > 1/u + 1/q$ with q = p/(p-1).

Proof. Let $f(x) = x^{\theta}$. Since $n/f^q(n)$ is decreasing sequence, writing $C^{\theta} \in (a_{nm})_{n,m \ge 1}$ we have

$$\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} |a_{nm}|^q \right)^{\frac{n}{q}} = \sum_{n=1}^{\infty} \left(\frac{n}{f^q(n)} \right)^{\frac{u}{q}} \le \int_1^{\infty} \left(\frac{x}{f^q(x)} \right)^{\frac{u}{q}} dx.$$

Now $(x/f^q(x))^{u/q} = 1/x^{(q^{\theta-1})u/q}$ and $\int_1^\infty [x/(f^q(x))]^{u/q} dx < \infty$ for $(q^{\theta-1})u/q > 1$, that is $\theta > 1/u + 1/q$.

3. Some properties of the set $bv_p^h(\alpha)$.

First recall some well known properties of the sets bv and $bv^0 = bv \bigcap c_0$. In the following $T = (t_{nm})_{n,m \ge 1}$ is a triangle if $t_{nm} = 0$ for all m > n and $t_{nn} \ne 0$ for all n.

Theorem 3.([15, Theorems 3.3, 3.5, pp. 178, 179], [17, Theorems 4.3.12, 4.3.14, pp. 63, 64]).

Let E be a BK space. Then E_T is a BK space with $||X||_T = ||TX||_E$. If E is a closed subset of F then E_T is a closed subspace of F_T .

The set $bv = l_1(\Delta)$ is called the set of bounded variation and by Theorem 3 and [14, Theorem 2.2.10, p.152] if we put $bv^0 = bv \bigcap c_0$, then bv^0 and bv are BK spaces with their natural norm $||X||_{bv} = \sum_{n=1}^{\infty} |x_n - x_{n-1}|$. The set bv^0 has AK and every sequence $X = (x_n)_{n\geq 1} \in bv$ has a unique representation $X = le + \sum_{n=1}^{\infty} (x_n - l)e_n$ where $l = \lim_{n \to \infty} x_n$.

Here for $\alpha \in U^+$ we define the set of α , *p*-bounded variation of order *h*, by $bv_p^h(\alpha) = l_p(\alpha)(\Delta^h)$ for 0 and <math>h > 0. We will put $bv_p^1(\alpha) = bv_p(\alpha)$, $bv^h(\alpha) = l_1(\alpha)(\Delta^h)$ and for $p = \infty$, it can easily be seen that $bv_{\infty}^h(\alpha) = s_{\alpha}(\Delta^h)$.

We need to recall some results given in [8]. For this consider the following sets

$$\begin{split} \widehat{C}_1 &= \left\{ X = (x_n)_{n \ge 1} \in U^+ : \frac{1}{x_n} \left(\sum_{k=1}^n x_k \right) = O(1) \ (n \to \infty) \right\}, \\ \widehat{C}_1^+ &= \left\{ X \in U^+ \bigcap cs : \frac{1}{x_n} \left(\sum_{k=1}^n x_k \right) = O(1) \ (n \to \infty) \right\}, \\ \Gamma &= \left\{ X \in U^+ : \overline{\lim_{n \to \infty}} \left(\frac{x_{n-1}}{x_n} \right) < 1 \right\}, \\ \widehat{\Gamma} &= \left\{ X \in U^+ : \lim_{n \to \infty} \left(\frac{x_{n-1}}{x_n} \right) < 1 \right\}, \\ \Gamma^+ &= \left\{ X \in U^+ : \overline{\lim_{n \to \infty}} \left(\frac{x_{n+1}}{x_n} \right) < 1 \right\}. \end{split}$$

Note that $X \in \Gamma^+$ if and only if $1/X \in \Gamma$. We shall see in Lemma 4 that if $X \in \widehat{C}_1$, then $x_n \to \infty(n \to \infty)$. Furthermore, $X \in \Gamma$ if and only if there is an integer $q \ge 1$ such

that

126

$$\gamma_q(X) = \sup_{n \ge q+1} \left(\frac{x_{n-1}}{x_n}\right) < 1.$$

We obtain the following results in which we put

$$[C(X)X]_n = \frac{1}{x_n} \left(\sum_{k=1}^n x_k\right).$$

Lemma 4. Let $\alpha \in U^+$.

- (i) If $\alpha \in \widehat{C_1}$ there are K > 0 and $\gamma > 1$ such that $\alpha_n \ge K\gamma^n$ for all n.
- (ii) The condition $\alpha \in \Gamma$ implies that $\alpha \in \widehat{C}_1$ and there exists a real b > 0 such that

$$[C(\alpha)\alpha]_n \le \frac{1}{1 - \gamma_q(\alpha)} + b[\gamma_q(\alpha)]^n \quad for \, n \ge q+1.$$

(iii) The condition $\alpha \in \Gamma^+$ implies $\alpha \in \widehat{C_1^+}$.

The proof follows from [9, Proposition 2.1, p. 1656-1658].

Remark 2. Note that $\Gamma \not\subseteq \widehat{C_1}$.

Let us consider now Δ as an operator from E into itself where E is either of the sets $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}, \text{ or } l_{p}(\alpha)$. Then we obtain conditions for $\Delta \in (E, E)$ to be bijective. In this way we have the following results.

Lemma 5. Let $\alpha \in U^+$.

- (i) If $\alpha \in \Gamma$ then $bv_p(\alpha) = l_p(\alpha)$ for $1 \le p \le \infty$;

- (i) If $\alpha \in \Gamma$ such $\operatorname{obp}(\alpha) = \operatorname{op}(\alpha)$ if $\Gamma \subseteq p \subseteq \operatorname{oc}$, (ii) $s_{\alpha}(\Delta) = s_{\alpha}$ if and only if $\alpha \in \widehat{C}_{1}$; (iii) $s_{\alpha}^{0}(\Delta) = s_{\alpha}^{0}$ if and only if $\alpha \in \widehat{C}_{1}$; (iv) $s_{\alpha}^{(c)}(\Delta) = s_{\alpha}^{(c)}$ if and only if $\alpha \in \widehat{\Gamma}$; (v) $\Delta_{\alpha} = D_{\frac{1}{\alpha}} \Delta D_{\alpha}$ is bijective from c into itself with $\lim X = \Delta_{\alpha} \lim X$, if and only if $\alpha \in \widehat{\Gamma}$;

$$\frac{\alpha_{n-1}}{\alpha_n} \to 0.$$

Proof. (i) comes from [10]. (ii), (iii) and (v) come from [8, Theorem 2.6, pp. 1789] and (iv) is a direct consequence of [8, Theorem 2.6, pp. 1789] and [12, Proposition 2, pp. 88].

Remark 3. Note that by Lemma 4(ii) the condition $\alpha \in \Gamma$ implies $s_{\alpha}(\Delta) = s_{\alpha}$ and $s^0_\alpha(\Delta) = s^0_\alpha.$

For $h \in \mathbb{R}$ put now

$$\binom{-h+i-1}{i} = \begin{cases} \frac{-h(-h+1)\cdots(-h+i-1)}{i!} & \text{if } i > 0, \\ 1 & \text{if } i = 0, \end{cases}$$

and define the operator $\Delta^h = (\tau_{nm})_{n,m\geq 1}$ for $h \in \mathbb{R}$ by

$$\tau_{nm} = \begin{cases} \begin{pmatrix} -h+n-m-1\\ n-m \end{pmatrix} & \text{ if } m \leq n, \\ 0 & \text{ otherwise.} \end{cases}$$

For h = -1 we get $\Delta^h = \Sigma$ with $\Sigma_{nm} = 1$ if $m \leq n$ and $\Sigma_{nm} = 0$ for m > n, see [5]. Study now the identity $bv_p^h(\alpha) = l_p(\alpha)(\Delta^h) = l_p(\alpha)$ for h > 0 or $h \geq 1$ integer and $1 \leq p < \infty$.

We obtain the following

Lemma 6.([10]) Let $\alpha \in U^+$.

(i) For any given real h > 0, the condition $bv^h(\alpha) = l_1(\alpha)$ is equivalent to

$$\alpha_n \left(\sum_{m=n}^{\infty} \binom{h+m-n-1}{m-n} \frac{1}{\alpha_m} \right) = O(1)(n \to \infty);$$

(ii) Let $h \ge 1$ be an integer and $p \ge 1$ a real. If $\alpha \in \Gamma$ then

$$bv_p^h(\alpha) = l_p(\alpha).$$

Remark 4. Note that we also have $1/\alpha \in \widehat{C_1^+}$ if and only if $bv(\alpha) = l_1(\alpha)$. Indeed the conditions $\Delta \in (l_1(\alpha), l_1(\alpha))$ and $\Sigma \in (l_1(\alpha), l_1(\alpha))$ are equivalent to $\Delta^+ \in S_{1/\alpha}$ and $\Sigma^+ \in S_{1/\alpha}$, that is

$$\frac{\alpha_n}{\alpha_{n-1}} = O(1) \quad \text{and} \quad \alpha_n \left(\sum_{k=1}^n \frac{1}{\alpha_k} \right) = O(1)(n \to \infty).$$

From the inequality $\alpha_n/\alpha_{n-1} \leq \alpha_n \left(\sum_{k=1}^n 1/\alpha_k\right)$ for all n, we conclude that $1/\alpha \in \widehat{C_1^+}$ if and only if $bv(\alpha) = l_1(\alpha)$.

4. Matrix map from $bv_p^h(\alpha)$ to $bv_u^k(\beta)$

In this section we give necessary conditions for an infinite matrix A to map $bv_p^h(\alpha) = l_p(\alpha)(\Delta^h)$ into $bv_u^k(\beta)$ and some characterizations of the sets $(bv^h(\alpha), bv_u^k(\beta))$, $(bv_p^h(\alpha), bv_{\infty}^k(\beta))$ and $(bv_{\infty}^h(\alpha), bv_{\infty}^k(\beta))$. For this we need additional results.

4.1. Other results

To state the next results we first need to recall the characterizations of (l_p, l_∞) and (l_∞, l_u) and consider the identity $A(\chi X) = (A\chi)X$ for $X \in E$, where E is either of the sets $l_p(\alpha)$, $1 \le p \le \infty$, s_α , or s_α^0 . In this way we have, (see [15] and [16]).

Lemma 7. (i) $A \in (l_p, l_\infty)$ if and only if

$$\begin{cases} \sup_{n,m} |a_{nm}| < \infty & for \ p = 1, \\ \sup_{n} \sum_{m=1}^{\infty} |a_{nm}|^q < \infty & for \ 1 < p < \infty \ and \ q = \frac{p}{(p-1)}. \end{cases}$$

(ii) Let $1 \leq u < \infty$. Then $A \in (l_{\infty}, l_u)$ if and only if

$$\sup_{N \subset \mathbb{N}, N \text{ finite}} \left(\sum_{n=1}^{\infty} \left| \sum_{m \in N} a_{nm} \right|^u \right) < \infty.$$

We also need the following lemmas.

Lemma 8. Let p > 1 be a real and $\chi = (\chi_{nm})_{n,m \ge 1}$ an infinite matrix. The identity $A(\chi X) = (A\chi)X$ for all $X \in E$ holds in the following cases

(i) When $E = l_1(\alpha)$ if

$$\sum_{m=1}^{\infty} |a_{nm}| < \infty \qquad for \ all \ n, \ and \ \sup_{n,m}(|\chi_{nm}|\alpha_m) < \infty; \tag{2}$$

(ii) When $E = l_p(\alpha)$ with 1 if

$$\sum_{k=1}^{\infty} |a_{nk}| \left(\sum_{m=1}^{\infty} |\chi_{km}|^q \alpha_m^q\right)^{\frac{1}{q}} < \infty \qquad \text{for all } n, \text{ with } q = \frac{p}{p-1}; \tag{3}$$

(iii) When $E \in \left\{s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}\right\}$ if

$$\sum_{k=1}^{\infty} \left(\sum_{m=1}^{\infty} |a_{nk} \chi_{km}| \alpha_m \right) < \infty \quad for \ all \ n.$$
(4)

Proof. First note that for any given integer n, we have

$$A_n(\chi X) = \sum_{k=1}^{\infty} a_{nk} \left(\sum_{m=1}^{\infty} \chi_{km} x_m \right) \quad \text{for } X = (x_n)_{n \ge 1} \in s,$$

whenever the series in the second member are convergent.

(i) Assume that (2) holds. Then putting

$$|A_n|(|\chi X|) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} |a_{nk}| |\chi_{km}| |x_m| \text{ for } n \ge 1$$

one gets

$$|A_n|(|\chi X|) \le \sum_{k=1}^{\infty} |a_{nk}| \sup_{m,k} (|\chi_{km}|\alpha_m) \sum_{m=1}^{\infty} \frac{|x_m|}{\alpha_m}$$
$$\le \sum_{k=1}^{\infty} |a_{nk}| \sup_{m,k} (|\chi_{km}|\alpha_m) ||X||_{l_1(\alpha)} < \infty \text{ for all } n \text{ and all } X \in l_1(\alpha).$$

So we can invert \sum_k and \sum_m in the expression of y_n . This shows $A(\chi X) = (A\chi)X$ for all $X \in l_1(\alpha)$.

(ii) Assume that (3) holds. Then by the Hölder inequality

$$|A_n|(|\chi X|) = \sum_{k=1}^{\infty} \left(|a_{nk}| \sum_{m=1}^{\infty} \left(|\chi_{km}| \alpha_m \frac{|x_m|}{\alpha_m} \right) \right)$$

$$\leq \sum_{k=1}^{\infty} |a_{nk}| \left(\sum_{m=1}^{\infty} |\chi_{km}|^q \alpha_m^q \right)^{\frac{1}{q}} \left(\sum_{m=1}^{\infty} \left(\frac{|x_m|}{\alpha_m} \right)^p \right)^{\frac{1}{p}}$$

$$\leq \sum_{k=1}^{\infty} |a_{nk}| \left(\sum_{m=1}^{\infty} |\chi_{km}|^q \alpha_m^q \right)^{\frac{1}{q}} ||X||_{l_p(\alpha)} \text{ for all } n \text{ and for all } X \in l_p(\alpha);$$

and we conclude reasoning as above.

(iii) Comes from the fact that if (4) holds then $|A_n|(|\chi X|) < \infty$ for all n and all $X \in s_{\alpha}$. We get the same result when s_{α} is replaced by s_{α}^0 and by $s_{\alpha}^{(c)}$, since these spaces are included in s_{α} . This completes the proof.

We also need to recall the following well-known result given in [13, Theorem 1].

Lemma 9. Let $T \in \mathcal{L}$. Then for arbitrary subsets E and F of s, the condition $A \in (E, F(T))$ is equivalent to $TA \in (E, F)$.

4.2. Properties of the set $(bv_p^h(\alpha), bv_u^k(\beta))$ for 1 and k being reals or integers

First we give necessary conditions to have $A\in (bv_p^h(\alpha), bv_u^k(\beta)),$ this gives the following

Theorem 10. Let $\alpha, \beta \in U^+$ and 1 .

- (i) Let $0 < u < \infty$.
 - (a) Let $k \in \mathbb{R}$ and $h \ge 1$ be an integer. If $\alpha \in \Gamma$, the condition

$$\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} \left(\left| \frac{1}{\beta_n} \sum_{j=1}^n \left(\frac{-k+n-j-1}{n-j} \right) a_{jm} \right| \alpha_m \right)^q \right)^{\frac{u}{q}} < \infty \quad with \ q = \frac{p}{p-1},$$
(5)

implies $A \in (bv_p^h(\alpha), bv_u^k(\beta)).$

(b) Let $\beta \in \Gamma$, $h \in \mathbb{R}$ and $k \ge 1$ be an integer. Assume

$$\sum_{m=1}^{\infty} |a_{nm}| \left(\sum_{j=m}^{\infty} \left| \begin{pmatrix} h+j-m-1\\ j-m \end{pmatrix} \right|^q \alpha_m^q \right) < \infty \quad for \ all \ n \tag{6}$$

and

$$\sum_{n=1}^{\infty} \frac{1}{\beta_n^u} \left(\sum_{m=1}^{\infty} \left| \sum_{j=m}^{\infty} a_{nj} \begin{pmatrix} h+j-m-1\\ j-m \end{pmatrix} \alpha_m \right|^q \right)^{\frac{u}{q}} < \infty, \tag{7}$$

then $A \in (bv_p^h(\alpha), bv_u^k(\beta)).$

(ii) Let $1 \leq u < \infty$ and $h, k \geq 1$ integers. If $\alpha, \beta \in \Gamma$, then condition

$$\sum_{n=1}^{\infty} \frac{1}{\beta_n^u} \left(\sum_{m=1}^{\infty} (|a_{nm}|\alpha_m)^q \right)^{\frac{u}{q}} < \infty$$

implies $A \in (bv_p^h(\alpha), bv_u^k(\beta)).$

Proof. First $\alpha \in \Gamma$ implies Δ is bijective from $l_p(\alpha)$ into itself and

$$bv_p^h(\alpha) = l_p(\alpha)(\Delta^h) = l_p(\alpha).$$

Then $A \in (bv_p^h(\alpha), bv_u^k(\beta))$ if and only if $D_{1/\beta}\Delta^k A \in (bv_p^h(\alpha), l_u) = (l_p(\alpha), l_u)$; and $D_{1/\beta}\Delta^k A D_\alpha \in (l_p, l_u)$ if $D_{1/\beta}\Delta^k A D_\alpha \in L_{p,u}$. We have

$$D_{\frac{1}{\beta}}\Delta^k A D_{\alpha} = \left(\frac{1}{\beta_n} \left(\sum_{j=1}^n \binom{-k+n-j-1}{n-j} a_{jm}\right) \alpha_m\right)_{n,m \ge 1},$$

and using Lemma 8(ii), we conclude that condition (5) implies $A \in (bv_p^h(\alpha), bv_u^k(\beta))$. (i)(b) Since $\beta \in \Gamma$, then Δ is bijective from $l_u(\beta)$ to itself and it is the same for Δ^k . So

$$bv_u^k(\beta) = l_u(\beta)(\Delta^k) = l_u(\beta).$$

We have $\Delta^{-h} = (\tau_{nm})_{n,m>1}$ with

$$\tau_{nm} = \begin{cases} \begin{pmatrix} h+n-m-1\\ n-m \end{pmatrix} & \text{ for } m \le n, \\ 0 & \text{ for } m > n. \end{cases}$$

By Lemma 8, condition (6) permits us to write that

$$A(\Delta^{-h}X) = (A\Delta^{-h})X \qquad \text{for all } X \in l_p(\alpha).$$
(8)

Now since $A\Delta^{-h} = (c_{nm})_{n,m\geq 1}$ with

$$c_{nm} = \sum_{j=m}^{\infty} a_{nj} \begin{pmatrix} h+j-m-1\\ j-m \end{pmatrix}$$

condition (7) means that $D_{1/\beta}A\Delta^{-h}D_{\alpha} \in L_{p,u}$; and since $L_{p,u} \subset (l_p, l_u)$ then $A\Delta^{-h} \in (l_p(\alpha), l_u(\beta))$. Thus $(A\Delta^{-h})X \in l_u(\beta)$ for all $X \in l_p(\alpha)$ and (8) implies that the series defined by $A_n(\Delta^{-h}X)$ are convergent for all n and for all $X \in l_p(\alpha)$, and $A(\Delta^{-h}X) \in l_u(\beta)$. We conclude that $D_{1/\beta}A\Delta^{-h}D_{\alpha} \in L_{p,u}$ implies $A \in (bv_p^h(\alpha), l_u(\beta))$ and $A \in (bv_p^h(\alpha), bv_u^k(\beta))$.

Statement (ii) The condition $\alpha, \beta \in \Gamma$ implies $bv_p^h(\alpha) = l_p(\alpha)$ and $bv_u^k(\beta) = l_u(\beta)(\Delta^k)$ = $l_u(\beta)$. Then $D_{1/\beta}AD_\alpha = (a_{nm}\alpha_m/\beta_n)_{n,m\geq 1} \in L_{p,u}$ implies $A \in (bv_p^h(\alpha), bv_u^k(\beta))$.

Until now were given necessary conditions for A to belong to $(bv_p^h(\alpha), bv_u(\beta))$, when u = 1 and $h \in \mathbb{R}$ we get the next characterization. In all that follows we will need to use the convention $a_{0m} = 0$ for all m.

Proposition 11. Let 1 , h be a real and assume that

$$\sum_{j=1}^{\infty} |a_{nj} - a_{n-1,j}| \left(\sum_{m=1}^{\infty} \left| \left(\frac{h+j-m-1}{j-m} \right) \alpha_m \right|^q \right) < \infty \quad for \ all \ n.$$
(9)

Then $A \in (bv_p^h(\alpha), bv(\beta))$ if and only if

$$\sup_{N \subset \mathbb{N}, N \text{ finite}} \sum_{m=1}^{\infty} \frac{1}{\beta_n} \bigg| \sum_{n \in N} \sum_{j=m}^{\infty} (a_{nj} - a_{n-1,j}) \binom{h+j-m-1}{j-m} \alpha_m \bigg|^q < \infty.$$

Proof. First $A \in (bv_p^h(\alpha), bv(\beta))$ if and only if

$$\Delta A(\Delta^{-h}X) \in l_1(\beta)$$
 for all $X \in l_p(\alpha)$.

Now since $\Delta A = (a_{nm} - a_{n-1,m})_{n,m\geq 1}$, from Lemma 8(ii), we see that under condition (9) $\Delta A(\Delta^{-h}X) = (\Delta A \Delta^{-h})X$ for all $X \in l_p(\alpha)$. Then $A \in (bv_p^h(\alpha), bv(\beta))$ if and only if $\Delta A \Delta^{-h} \in (l_p(\alpha), l_1(\beta))$ and we conclude using the characterization of (l_p, l_1) .

Remark 5. Note that for $h, k \in \mathbb{R}$, we have $A \in (bv_p^h(\alpha), bv_u^k(\beta))$ if $D_{1/\beta}\Delta^k A \Delta^{-h} D_\alpha \in L_{p,u}$ when the identity

$$\Delta^k A(\Delta^{-h}X) = (\Delta^k A \Delta^{-h})X \qquad for \ all \ X \in l_p(\alpha)$$

is satisfied.

4.3. Properties of the set $(bv^h(\alpha), bv^k_u(\beta))$ for h > 0 and k real or integer

Now we can state the next results

Theorem 12. Let $1 \le u < \infty$ and h > 0. (i) Assume $\alpha \in \Gamma$ and $k \in \mathbb{R}$. Then $A \in (bv^h(\alpha), bv_u^k(\beta))$ if and only if

$$\sup_{m} \sum_{n=1}^{\infty} \frac{1}{\beta_n^u} \left(\left| \sum_{j=1}^n a_{jm} \left(\frac{-k+n-j-1}{n-j} \right) \right| \alpha_m \right)^u < \infty;$$
(10)

(ii) Let $\beta \in \Gamma$ and $k \geq 1$ be an integer. Under the condition

$$\sum_{m=1}^{\infty} |a_{nm}| < \infty \quad for \ all \ n, \ and \ \sup_{n,m} \left\{ \left| \begin{pmatrix} h+n-m-1\\n-m \end{pmatrix} \right| \alpha_m \right\} < \infty,$$
(11)

 $A \in (bv^h(\alpha), bv^k_u(\beta))$ if and only if

$$\sup_{m} \sum_{n=1}^{\infty} \frac{1}{\beta_n^u} \left| \sum_{j=m}^{\infty} a_{nj} \begin{pmatrix} h+j-m-1\\ j-m \end{pmatrix} \alpha_m \right|^u < \infty.$$

(iii) Let $\alpha, \beta \in \Gamma$ and $k \geq 1$ be integer. Then $A \in (bv^h(\alpha), bv_u^k(\beta))$ if and only if

$$\sup_{m} \left\{ \alpha_{m}^{u} \sum_{n=1}^{\infty} \left(\frac{|a_{nm}|}{\beta_{n}} \right)^{u} \right\} < \infty.$$
(12)

- **Proof.** (i) The condition $\alpha \in \Gamma$ implies $bv^h(\alpha) = l_1(\alpha)$. So $A \in (bv^h(\alpha), bv_u^k(\beta))$ if and only if $\Delta^k A \in (l_1(\alpha), l_u(\beta))$. From the expression of $D_{1/\beta}\Delta^k A D_\alpha$ in the proof of Theorem 10(i)(a), we conclude that $D_{1/\beta}\Delta^k A D_\alpha \in (l_1, l_u)$ if and only if (10) holds.
- (ii) The condition $A \in (bv^h(\alpha), l_u(\beta))$ means that the series defined by $A_n(\Delta^{-h}X)$ are convergent for all $X \in l_1(\alpha)$ and for all n and

$$A(\Delta^{-h}X) \in l_u(\beta)$$
 for all $X \in l_1(\alpha)$.

Under condition (11), $A(\Delta^{-h}X) = (A\Delta^{-h})X$ for all $X \in l_1(\alpha)$, so $A \in (bv^h(\alpha), l_u(\beta))$ if and only if $D_{1/\beta}A\Delta^{-h}D_\alpha \in (l_1, l_u)$, and we conclude since $\beta \in \Gamma$ implies $bv_u(\beta) = l_u(\beta)$.

(iii) Here $\alpha, \beta \in \Gamma$ implies $bv^h(\alpha) = l_1(\alpha)(\Delta^h) = l_1(\alpha)$ and $bv_u^k(\beta) = l_u(\beta)$. So $A \in (l_1(\alpha), l_u(\beta))$ if and only if $D_{1/\beta}AD_\alpha \in (l_1, l_u)$ and we conclude using the characterization of (l_1, l_u) .

Remark 6. We also have the next result. Let $k \in \mathbb{R}$, $1 \le u < \infty$ and $\alpha \in l_{\infty}$. Then under the condition

$$\sum_{n=1}^{\infty} |a_{nm} - a_{n-1,m}| < \infty \quad for \ all \ n, \tag{13}$$

we have $A \in (bv(\alpha), bv_u^k(\beta))$ if and only

$$\sup_{m} \left\{ \sum_{n=1}^{\infty} \frac{1}{\beta_{n}^{u}} \right| \sum_{j=m}^{\infty} (a_{nj} - a_{n-1,j}) \binom{h+j-m-1}{j-m} \alpha_{m} \Big|^{u} \right\} < \infty.$$

Indeed $A \in (bv(\alpha), bv_u^k(\beta))$ if only if $\Delta A(\Delta^{-h}X) \in l_u(\beta)$ for all $X \in l_1(\alpha)$. Since $\alpha \in l_\infty$ and (13) holds, by Lemma 8(i) we have $\Delta A(\Delta^{-h}X) = (\Delta A(\Delta^{-h})X)$ for all $X \in l_1(\alpha)$. We conclude since $\Delta A \Delta^{-h} \in (l_1(\alpha), l_u(\beta))$ and

$$\Delta A \Delta^{-h} = \left(\sum_{j=m}^{\infty} (a_{nj} - a_{n-1,j}) \begin{pmatrix} h+j-m-1\\ j-m \end{pmatrix}\right)_{n,m \ge 1}$$

Remark 7. Note that (ii) in the previous theorem is true for h real.

4.4. The sets $(bv_p(\alpha), bv_{\infty}(\beta))$ and $(bv_{\infty}(\alpha), bv_u(\beta))$

In this part we characterize the set $(bv_p(\alpha), bv_{\infty}(\beta))$ in the cases when $1 \leq p < \infty$, $u = \infty$ and $p = \infty$, $1 \leq u < \infty$. Then we get the following result.

Theorem 13. Let $\alpha \in U^+$.

(i) Assume

$$\sum_{m=1}^{\infty} |a_{nm} - a_{n-1,m}| < \infty \qquad for \ all \ n \ge 1 \ and \ \alpha \in l_{\infty}.$$
 (14)

Then $A \in (bv(\alpha), bv_{\infty}(\beta))$ if and only if

$$\sup_{n,m} \frac{1}{\beta_n} \bigg| \sum_{j=m}^{\infty} (a_{nj} - a_{n-1,j}) \bigg| \alpha_m < \infty.$$
(15)

(ii) Let 1 .

(a) Under the condition

$$\sum_{k=1}^{\infty} |a_{nk} - a_{n-1,k}| \left(\sum_{m=k}^{\infty} \alpha_m^q\right)^{\frac{1}{q}} < \infty \qquad for \ all \ n \ (with \ q = \frac{p}{p-1}), \quad (16)$$

we have $A \in (bv_p(\alpha), bv_{\infty}(\beta))$ if and only if

$$\sup_{n} \frac{1}{\beta_n^q} \sum_{m=1}^{\infty} \left| \alpha_m \sum_{j=m}^{\infty} (a_{nj} - a_{n-1,j}) \right|^q < \infty.$$
(17)

(b) If $\beta \in \Gamma$, under the condition

$$\sum_{k=1}^{\infty} |a_{nk}| \left(\sum_{m=k}^{\infty} \alpha_m^q\right)^{\frac{1}{q}} < \infty \qquad for \ all \ n \ (with \ q = \frac{p}{p-1}), \tag{18}$$

 $A \in (bv_p(\alpha), bv_{\infty}(\beta))$ if and only if

$$\begin{cases} \sup_{n,m} \left(\frac{1}{\beta_n} \sum_{j=m}^{\infty} |a_{nj}| \alpha_m \right) < \infty & \text{for } p = 1, \\ \sup_n \left[\frac{1}{\beta_n^q} \sum_{m=1}^{\infty} \left| \sum_{j=m}^{\infty} a_{nj} \alpha_m \right|^q \right] < \infty & \text{for } 1 < p < \infty. \end{cases}$$

(iii) Under the condition

$$\sum_{m=1}^{\infty} \alpha_m \sum_{j=m}^{\infty} |a_{nj}| < \infty \qquad for \ all \ n, \tag{19}$$

 $A \in (bv_{\infty}(\alpha), bv_{\infty}(\beta))$ if and only if

$$\sup_{n} \frac{1}{\beta_n} \sum_{m=1}^{\infty} \alpha_m \bigg| \sum_{j=m}^{\infty} (a_{nj} - a_{n-1,j}) \bigg| < \infty.$$
⁽²⁰⁾

Proof. Since $bv_{\infty}(\beta) = s_{\beta}(\Delta)$, we have $A \in (bv(\alpha), bv_{\infty}(\beta))$ if and only if $\Delta A \in (bv(\alpha), s_{\beta})$. Then from the identity $bv(\alpha) = l_1(\alpha)(\Delta)$, we have $\Delta A \in (bv(\alpha), s_{\beta})$ if and only if

$$(\Delta A)(\Sigma X) \in s_{\beta}$$
 for all $X \in l_1(\alpha)$;

and by Lemma 8(i), the conditions given by (14) imply $(\Delta A)(\Sigma X) = (\Delta A\Sigma)X$ for all $X \in l_1(\alpha)$. Now we successively get $A\Sigma = \left(\sum_{k=m}^{\infty} a_{nk}\right)_{n,m\geq 1}$ and $\Delta A\Sigma = \left(\sum_{k=m}^{\infty} (a_{nk} - a_{n-1,k})\right)_{n,m\geq 1}$ and we conclude that $A \in (bv(\alpha), bv_{\infty}(\beta))$ if and only if $D_{1/\beta}\Delta A\Sigma D_{\alpha} \in (l_1, l_{\infty})$, that is condition (15).

(ii)(a) Since $bv_{\infty}(\beta) = s_{\beta}(\Delta)$, we have $A \in (bv_p(\alpha), s_{\beta}(\Delta))$ if and only if $D_{1/\beta}\Delta A \in (bv_p(\alpha), l_{\infty})$. Since $bv_p(\alpha) = \Sigma l_p(\alpha)$, this means

$$(D_{\frac{1}{2}}\Delta A)(\Sigma X) \in l_{\infty}$$
 for all $X \in l_p(\alpha)$.

By Lemma 8(ii), condition (16) implies $(D_{1/\beta}\Delta A)(\Sigma X) = (D_{1/\beta}\Delta A\Sigma)X$ for all $X \in l_p(\alpha)$, and $A \in (bv_p(\alpha), s_\beta(\Delta))$ if and only if $D_{1/\beta}\Delta A\Sigma \in (l_p(\alpha), l_\infty)$, which in turn is (17).

(ii)(b) If $\beta \in \Gamma$ then by Lemma 5(ii) $bv_{\infty}(\beta) = s_{\beta}(\Delta) = s_{\beta}$. As above under condition (18) $A \in (bv_p(\alpha), bv_{\infty}(\beta))$ if and only if $D_{1/\beta}A\Sigma \in (l_p(\alpha), l_{\infty})$. This gives the conclusion. (iii) Here $bv_{\infty}(\alpha) = l_{\infty}(\alpha)(\Delta) = s_{\alpha}(\Delta)$ and $bv_{\infty}(\beta) = s_{\beta}(\Delta)$. As above it can easily

be seen that $A \in (s_{\alpha}(\Delta), s_{\beta}(\Delta))$ if and only if $\Delta A\Sigma \in S_{\alpha,\beta}$, under condition (19).

We also have the following results when $\alpha \in \Gamma$.

Proposition 14.

(i) If $\alpha \in \Gamma$, then $A \in (bv_p(\alpha), bv_{\infty}(\beta))$ if and only if

$$\begin{cases} \sup_{n,m} \left(\frac{1}{\beta_n} |a_{nm} - a_{n-1,m}| \alpha_m \right) < \infty & \text{for } p = 1, \\ \sup_n \left[\frac{1}{\beta_n^q} \sum_{m=1}^\infty (|a_{nm} - a_{n-1,m}| \alpha_m)^q \right] < \infty & \text{for } 1 < p < \infty. \end{cases}$$

(ii) If $\alpha, \beta \in \Gamma$, then $A \in (bv_p(\alpha), bv_{\infty}(\beta))$ if and only if

$$\begin{cases} \sup_{n,m} \left(\frac{1}{\beta_n} |a_{nm}| \alpha_m \right) < \infty & \text{for } p = 1, \\ \sup_n \left[\frac{1}{\beta_n^q} \sum_{m=1}^{\infty} (|a_{nm}| \alpha_m)^q \right] < \infty & \text{for } 1 < p < \infty. \end{cases}$$

Proof. Since $\alpha \in \Gamma$ we have $bv_p(\alpha) = l_p(\alpha)$ and $A \in (bv_p(\alpha), bv_{\infty}(\beta))$ if and only if $\Delta A \in (l_p(\alpha), s_{\beta})$. Now the condition $\Delta A \in (l_p(\alpha), s_{\beta})$ means that $D_{1/\beta} \Delta A D_{\alpha} \in (l_p, l_{\infty})$ and we conclude by Lemma 7.

(ii) The condition $\alpha, \beta \in \Gamma$ implies $bv_p(\alpha) = l_p(\alpha)$ and $bv_{\infty}(\beta) = s_{\beta}(\Delta) = s_{\beta}$. Thus $A \in (bv_p(\alpha), bv_{\infty}(\beta))$ if and only if $D_{1/\beta}AD_{\alpha} \in (l_p, l_{\infty})$, and we conclude by Lemma 7. Study now the set $(bv_{\infty}(\alpha), bv_u(\beta))$. We obtain

Proposition 15. Let $1 \le u < \infty$.

(i) Under the condition

$$\sum_{m=1}^{\infty} \alpha_m \sum_{j=m}^{\infty} |a_{nj} - a_{n-1,j}| < \infty \qquad for \ all \ n, \tag{21}$$

 $A \in (bv_{\infty}(\alpha), bv_u(\beta))$ if and only if

$$\sup_{N \subset \mathbb{N}, N \text{ finite}} \left(\sum_{n=1}^{\infty} \left| \sum_{k \in N} \frac{1}{\beta_n} \sum_{m=k}^{\infty} (a_{nm} - a_{n-1,m}) \alpha_m \right|^u \right) < \infty.$$

(ii) Let $\alpha \in \Gamma$. Then $A \in (bv_{\infty}(\alpha), bv_u(\beta))$ if and only if

$$\sup_{N \subset \mathbb{N}, N \text{ finite}} \left(\sum_{n=1}^{\infty} \left| \frac{1}{\beta_n} \sum_{m \in N} (a_{nm} - a_{n-1,m}) \alpha_m \right|^u \right) < \infty;$$
(22)

(iii) If $\beta \in \Gamma$, under the condition

$$\sum_{m=1}^{\infty} \alpha_m \sum_{k=m}^{\infty} |a_{nk}| < \infty \qquad for \ all \ n, \tag{23}$$

 $A \in (bv_{\infty}(\alpha), bv_u(\beta))$ if and only if

$$\sup_{N \subset \mathbb{N}, N \text{ finite}} \left(\sum_{n=1}^{\infty} \left| \frac{1}{\beta_n} \sum_{k \in N} \sum_{m=k}^{\infty} a_{nm} \alpha_m \right|^u \right) < \infty.$$

(iv) Let $\alpha, \beta \in \Gamma$. Then $A \in (bv_{\infty}(\alpha), bv_u(\beta))$ if and only if

$$\sup_{N \subset \mathbb{N}, N \text{ finite}} \left(\sum_{n=1}^{\infty} \left| \frac{1}{\beta_n} \sum_{m \in N} a_{nm} \alpha_m \right|^u \right) < \infty.$$

Proof.

(i) $A \in (bv_{\infty}(\alpha), bv_u(\beta))$ if and only if $\Delta A \in (s_{\alpha}(\Delta), l_u(\beta))$. For all $X \in s_{\alpha}$

$$\Delta A(\Sigma X) \in l_u(\beta).$$

Now since (21) holds $\Delta A(\Sigma X) = (\Delta A \Sigma) X$ for all $X \in s_{\alpha}$. Then $A \in (bv_{\infty}(\alpha), bv_u(\beta))$ if and only if $D_{1/\beta} \Delta A \Sigma D_{\alpha} \in (l_{\infty}, l_u)$, and we conclude applying Lemma 7.

(ii) Since $\alpha \in \Gamma$ we get $bv_{\infty}(\alpha) = s_{\alpha}(\Delta) = s_{\alpha}$. So $A \in (bv_{\infty}(\alpha), bv_u(\beta))$ if and only if

$$\Delta A \in (s_{\alpha}, l_u(\beta))$$

that is $D_{1/\beta}\Delta AD_{\alpha} \in (l_{\infty}, l_u)$ and we conclude as above.

- (iii) Here $bv_u(\beta) = l_u(\beta)$ and $A \in (s_\alpha(\Delta), l_u(\beta))$ if and only if $A(\Sigma X) \in l_u(\beta)$ for all $X \in s_\alpha$. Since (23) holds we have $A(\Sigma X) = (A\Sigma)X$ for all $X \in s_\alpha$ and $A \in (s_\alpha(\Delta), l_u(\beta))$ if and only if $A\Sigma \in (s_\alpha, l_u(\beta))$, that is $D_{1/\beta}A\Sigma D_\alpha \in (l_\infty, l_u)$. we conclude applying Lemma 7(ii).
- (iv) Now $(bv_{\infty}(\alpha), bv_u(\beta)) = (s_{\alpha}, l_u(\beta))$ and $A \in (s_{\alpha}, l_u(\beta))$ if and only if $D_{1/\beta}AD_{\alpha} \in (l_{\infty}, l_u)$ and we conclude by Lemma 7.

Remark 8. Note that in Proposition 15(ii), for $h \ge 1$ integer and $\alpha \in \Gamma$, we have $A \in (bv_{\infty}^{h}(\alpha), bv_{u}(\beta)$ if and only if (22) holds.

References

- R. Çolak, M. Et, E. Malkowsky, Some Topic of Sequence Spaces, Firat University Elaziğ, 2004.
- [2] L. Crone, A characterization of matrix mapping on l², Math. Z. 123(1971), 315–317.
- [3] A. Jarrah and E. Malkowsky, The space bv(p), its β-dual and matrix transformations, Collect. Math. 55(2004), 151–162.
- [4] I. J. Maddox, Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980
- [5] B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Mathematical Journal **31**(2002), 283– 299.
- [6] B. de Malafosse, On the set of sequences that are strongly α-bounded and α-convergent to naught with index p, Seminario Matematico dell'Universitá e del Politecnico di Torino 61(2003), 13–32.
- [7] B. de Malafosse, On matrix transformations and sequence spaces, Rend. del Circ. Mat. di Palermo 52(2003), 189–210.
- [8] B. de Malafosse, On some BK space, International Journal of Mathematics and Mathematical Sciences 28(2003), 1783–1801.
- [9] B. de Malafosse, Calculations on some sequence spaces, International Journal of Mathematics and Mathematical Sciences 31(2004), 1653–1670.
- [10] B. de Malafosse, On the Banach algebra $\mathcal{B}(l_p(\alpha))$, International Journal of Mathematics and Mathematical Sciences, USA **60**(2004), 3187-3203.
- [11] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. del Circ. Mat. di Palermo. Serie II, 51(2002), 277–294.
- [12] B. de Malafosse and E. Malkowsky, Matrix transformations in the sets $\chi(\overline{N}_p \overline{N}_q)$ where χ is in the form s_{ξ} , or s_{ξ}° , or $s_{\xi}^{(c)}$, Filomat 17(2003), 85–106.
- [13] E. Malkowsky, Linear operators in certain BK spaces, Bolyai Soc. Math. Stud. 5(1996), 259–273.

- [14] E. Malkowsky, Strong Matrix Domains, Matrix Transformations Between them and the Hausdorff Measure of Noncompactness, Analysis and Applications (2002), 142–178.
- [15] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Mathematički institut SANU 9(2000), 143– 243.
- [16] M. Stieglitz and H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z. 154(1997), 1–16.
- [17] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

LMAH Université du Havre BP 4006 I.U.T Le Havre 76610 Le Havre. France.