ON THE SET OF α, p-BOUNDED VARIATION OF ORDER h

BRUNO DE MALAFOSSE

Abstract

In this paper we first explicit a subset of the set (l_{p}, l_{u}) for $1 \leq p<\infty$ and $0<u<\infty$. Then we deal with the space $b v_{p}^{h}(\alpha)=l_{p}(\alpha)\left(\Delta^{h}\right)$ for $h>0$ real, generalizing the well-known set of p-bounded variation $b v_{p}=l_{p}(\Delta)$, and characterize martix transformations mapping from $b v_{p}^{h}(\alpha)$ to $b v_{u}^{k}(\beta)$ for $1 \leq p \leq \infty$ and $0<u \leq \infty$.

1. Preliminaries, background and notation.

Let $A=\left(a_{n m}\right)_{n, m \geq 1}$ be an infinite matrix and consider the sequence $X=\left(x_{n}\right)_{n \geq 1}$ as a column vector. Then we will define the product $A X=\left(A_{n}(X)\right)_{n \geq 1}$ with $A_{n}(X)=$ $\sum_{m=1}^{\infty} a_{n m} x_{m}$ whenever the series are convergent for all $n \geq 1$. We will denote by s, c_{0}, c and l_{∞} the sets of all sequences, the set of sequences that converge to zero, that are convergent and that are bounded respectively. A Banach space E of complex sequences with the norm $\left\|\|_{E}\right.$ is a $B K$ space if each projection $P_{n}: X \rightarrow P_{n} X=x_{n}$ is continuous. $A B K$ space E is said to have $A K$ if every sequence $X=\left(x_{n}\right)_{n=1}^{\infty} \in E$ has a unique representation $X=\sum_{n=1}^{\infty} x_{n} e_{n}$ where e_{n} is the sequence with 1 in the n-th position and 0 otherwise.

For any given subsets E, F of s, we shall say that the operator represented by the infinite matrix $A=\left(a_{n m}\right)_{n, m \geq 1}$ maps E into F, that is $A \in(E, F)$, see [4], if
(i) the series defined by $A_{n}(X)=\sum_{m=1}^{\infty} a_{n m} x_{m}$ are convergent for all $n \geq 1$ and for all $X \in E$;
(ii) $A X \in F$ for all $X \in E$.

For any subset E of s, we shall write

$$
A E=\{Y \in s: Y=A X \text { for some } X \in E\}
$$

If F is a subset of s, we shall denote the so-called matrix domain by

$$
\begin{equation*}
F(A)=F_{A}=\{X \in s: Y=A X \in F\} . \tag{1}
\end{equation*}
$$

In this paper we will consider the well-known set

$$
l_{p}=\left\{X=\left(x_{n}\right)_{n \geq 1}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\} \text { for } p>0 \text { real. }
$$

Received June 17, 2005.
2000 Mathematics Subject Classification. 40C05, 40J05, 46A15.
Key words and phrases. Matrix transformations, operator of the first-difference, set of α, p bounded variation of order h, BK space.

In the case when $p, u>0$ are both unequals to 1 except for $p=u=2$, (see [2]), there is no characterization of the set $\left(l_{p}, l_{u}\right)$. Denote now

$$
U^{+}=\left\{X=\left(x_{n}\right)_{n \geq 1} \in s: x_{n}>0 \text { for all } n\right\}
$$

and let $l_{p}(\alpha)$ for $\alpha \in U^{+}$be the set of all sequences $X=\left(x_{n}\right)_{n \geq 1}$ such that $\left(x_{n} / \alpha_{n}\right)_{n \geq 1} \in$ l_{p}. The set $l_{p}(\alpha)$ is a Banach space with the norm

$$
\|X\|_{l_{p}(\alpha)}=\left\|D_{\frac{1}{\alpha}} X\right\|_{l_{p}}=\left[\sum_{n=1}^{\infty}\left(\frac{\left|x_{n}\right|}{\alpha_{n}}\right)^{p}\right]^{\frac{1}{p}}
$$

Using Wilansky's notation, it can easily be seen that $l_{p}(\alpha)=(1 / \alpha)^{-1} * l_{p}$ is a $B K$ space with $A K$, see [15, Example 1.13, p.152]. For $p=\infty$ we will write

$$
l_{\infty}(\alpha)=s_{\alpha}=\left\{X=\left(x_{n}\right)_{n \geq 1}: \sup _{n} \frac{\left|x_{n}\right|}{\alpha_{n}}<\infty\right\} .
$$

For given $\alpha \in U^{+}$, we also have, see [6, 8, 9,10

$$
\begin{aligned}
s_{\alpha}^{0} & =\left\{X=\left(x_{n}\right)_{n \geq 1}: \lim _{n \rightarrow \infty} \frac{x_{n}}{\alpha_{n}}=0\right\} \text { and } \\
s_{\alpha}^{(c)} & =\left\{X=\left(x_{n}\right)_{n \geq 1}: \lim _{n \rightarrow \infty} \frac{x_{n}}{\alpha_{n}}=l \text { for some } l \in \mathbb{C}\right\} .
\end{aligned}
$$

Each of the sets $s_{\alpha}, s_{\alpha}^{0}$ and $s_{\alpha}^{(c)}$ is a BK space and s_{α}^{0} has $A K$. For $\alpha, \beta=\left(\beta_{n}\right)_{n \geq 1} \in U^{+}$ we will use the set

$$
S_{\alpha, \beta}=\left\{A=\left(a_{n m}\right)_{n, m \geq 1}: \sup _{n}\left\{\frac{1}{\beta_{n}} \sum_{m=1}^{\infty}\left|a_{n m}\right| \alpha_{m}\right\}<\infty\right\}
$$

which is a Banach space with the norm $\|A\|_{S_{\alpha, \beta}}=\sup _{n}\left\{\left(1 / \beta_{n}\right) \sum_{m=1}^{\infty}\left|a_{n m}\right| \alpha_{m}\right\}$, see [5-12]. If $s_{\alpha}=s_{\beta}$ we get the Banach algebra with identity $S_{\alpha, \alpha}=S_{\alpha}$, see [5, 8, 11].

We will use the operator Δ defined by $\Delta x_{1}=x_{1}$ and $\Delta x_{n}=x_{n}-x_{n-1}$ for $n \geq 2$ and for all $X=\left(x_{n}\right)_{n \geq 1}$ and define the set of α, p-bounded variation of order 1 , by

$$
b v_{p}(\alpha)=\left\{X=\left(x_{n}\right)_{n \geq 1}: \sum_{n=1}^{\infty}\left(\frac{\left|x_{n}-x_{n-1}\right|}{\alpha_{n}}\right)^{p}<\infty\right\}, \quad \text { with } x_{0}=0
$$

Recall that for $\alpha=e=(1, \ldots, 1, \ldots)$, we have $b v_{p}(\alpha)=b v_{p}$ and $b v_{p}$ is the set of p bounded variation, and for $p=1$ and $p=\infty$, the space $b v_{p}$ is reduced to the spaces $b v$ and $l_{\infty}(\Delta)$ respectively. Using the notation (1) we may redefine the space $b v_{p}(\alpha)$ as

$$
b v_{p}(\alpha)=l_{p}(\alpha)(\Delta)
$$

There are some results on the sets $\left(b v_{p}, Y\right)$ with $Y=l_{\infty}, c_{0}, c, l_{1}$, or $b v$ in $[1$, Theorem 13.3 and Theorem 13.4, pp.52]. When p is replaced by a sequence $\widetilde{p}=\left(p_{n}\right)_{n \geq 1}$ there are
other results on $\left(b v_{\widetilde{p}}, Y\right)$ where Y is either of the sets $l_{\infty}, c_{0}, c, l_{1}$, see [3, Theorem 3.2, pp.160]. Here we give conditions for a matrix map to belong to $\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ where h, $k>0,1 \leq p \leq \infty, 0<u<\infty$, and $b v_{p}^{h}(\alpha)=l_{p}(\alpha)\left(\Delta^{h}\right)$.
2. Subset of $\left(l_{p}, l_{u}\right)$ with $1 \leq p<\infty$ and $0<u<\infty$

Let p, u be reals with $p \geq 1$ and $u>0$. For any given infinite matrix A, put

$$
N_{p, u}(A)= \begin{cases}\sup _{m \geq 1}\left(\sum_{n=1}^{\infty}\left|a_{n m}\right|\right) & \text { if } u=p=1, \\ {\left[\sum_{n=1}^{\infty}\left(\sup _{m \geq 1}\left|a_{n m}\right|\right)^{u}\right]^{\frac{1}{u}}} & \text { if } p=1 \text { and } 0<u<\infty, u \neq 1 \\ {\left[\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right|^{q}\right)^{\frac{u}{q}}\right]^{\frac{1}{u}}} & \text { if } 1<p<\infty, 0<u<\infty \text { with } q=p /(p-1) .\end{cases}
$$

We will write $L_{p, u}$ for the set of all infinite matrices A with $N_{p, u}(A)<\infty$. We then have the following result

Theorem 1. Let p, u be reals with $p \geq 1$ and $u>0$. Then

$$
L_{p, u} \subset\left(l_{p}, l_{u}\right)
$$

and for any given $A \in L_{p, u},\|A X\|_{l_{u}} \leq N_{p, u}(A)\|X\|_{l_{p}}$ for all $X \in l_{p}$.
Proof. Case $u=p=1$. We have $A \in\left(l_{1}, l_{1}\right)$ if and only if all the series $\sum_{m=1}^{\infty} a_{n m} x_{m}$ are convergent for all n for all $X \in l_{1}$ and $A X \in l_{1}$ for all $X \in l_{1}$. Let $A \in L_{1,1}$ we get

$$
\begin{aligned}
\|A X\|_{l_{1}} & \leq \sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n m} x_{m}\right|\right) \\
& \leq \sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty}\left|a_{n m} x_{m}\right|\right) \\
& \leq\left(\sum_{m=1}^{\infty}\left|x_{m}\right|\right)\left(\sup _{m \geq 1} \sum_{n=1}^{\infty}\left|a_{n m}\right|\right)=\left\|A^{t}\right\|\|X\|_{l_{1}} \text { for all } X \in l_{1}
\end{aligned}
$$

Case $p=1$ and $u>0, u \neq 1$. As above, let $A \in L_{1, u}$. For every $X \in l_{1}$ we successively get

$$
\begin{aligned}
\|A X\|_{l_{u}}^{u} & \leq \sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n m} x_{m}\right|\right)^{u} \\
& \leq \sum_{n=1}^{\infty}\left[\left(\sup _{m \geq 1}\left|a_{n m}\right|\right) \sum_{m=1}^{\infty}\left|x_{m}\right|\right]^{u} \\
& \leq \sum_{n=1}^{\infty}\left(\sup _{m \geq 1}\left|a_{n m}\right|\right)^{u}\left(\sum_{m=1}^{\infty}\left|x_{m}\right|\right)^{u}
\end{aligned}
$$

We conclude

$$
\|A X\|_{l_{u}} \leq\left[\sum_{n=1}^{\infty}\left(\sup _{m \geq 1}\left|a_{n m}\right|\right)^{u}\right]^{\frac{1}{u}} \quad\|X\|_{l_{1}}=\left[N_{1, u}(A)\right]\|X\|_{l_{1}}
$$

Case $p>1$ and $u>0$. Let $A \in L_{p, u}$. For every $X \in l_{p}$, we get

$$
\|A X\|_{l_{u}}^{u}=\sum_{n=1}^{\infty}\left(\left|\sum_{m=1}^{\infty} a_{n m} x_{m}\right|^{u}\right) \leq \sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n m} x_{m}\right|\right)^{u}
$$

and by the Hölder inequality, where $q=p /(p-1)$, we have

$$
\begin{aligned}
\|A X\|_{l_{u}}^{u} & \leq \sum_{n=1}^{\infty}\left[\left(\sum_{m=1}^{\infty}\left|a_{n m}\right|^{q}\right)^{\frac{1}{q}}\left(\sum_{m=1}^{\infty}\left|x_{m}\right|^{p}\right)^{\frac{1}{p}}\right]^{u} \\
& \leq \sum_{n=1}^{\infty}\left[\left(\sum_{m=1}^{\infty}\left|a_{n m}\right|^{q}\right)^{\frac{1}{q}}\|X\|_{l_{p}}\right]^{u} \\
& \leq \sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right|^{q}\right)^{\frac{u}{q}}\|X\|_{l_{p}}^{u} \leq\left[N_{p, u}(A)\right]^{u}\|X\|_{l_{p}}^{u} .
\end{aligned}
$$

Remark 1. Let us recall the next results due to Stieglitz and Tietz 16], and Maddox [4], where either p or u is equal to one:

$$
\left(l_{1}, l_{u}\right)=\left\{A=\left(a_{n m}\right)_{n, m \geq 1}: \sup _{m \geq 1}\left(\sum_{n=1}^{\infty}\left|a_{n m}\right|^{u}\right)<\infty\right\} \quad \text { for } 1 \leq u<\infty
$$

and if $1<p<\infty$ and $q=p /(p-1)$, then

$$
\left(l_{p}, l_{1}\right)=\left\{A=\left(a_{n m}\right)_{n, m \geq 1}: \sup _{N \subset \mathbb{N}, N \text { finite }}\left(\sum_{m=1}^{\infty}\left|\sum_{n \in N} a_{n m}\right|^{q}\right)<\infty\right\} .
$$

We can also remark that if $u=p \geq 1$, then $\|A\|_{\left(l_{p}, l_{p}\right)} \leq N_{p, p}(A)$ with

$$
N_{p, p}(A)= \begin{cases}\left\|A^{t}\right\|_{S_{1}} & \text { for } p=1 \\ {\left[\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right|^{q}\right)^{\frac{p}{q}}\right]^{\frac{1}{p}}} & \text { for } p>1\end{cases}
$$

We have the following application.
Example 2. Let $\theta, u>0$ and $p>1$ be reals and consider the triangle

$$
C^{\theta}=\left(\begin{array}{ccccc}
1 & & & & \\
\cdot & \cdot & & \mathrm{O} & \\
\frac{1}{n^{\theta}} & \cdot & \frac{1}{n^{\theta}} & & \\
\cdot & \cdot & \cdot & & \cdot
\end{array}\right)
$$

Then $C^{\theta} \in\left(l_{p}, l_{u}\right)$ for $\theta>1 / u+1 / q$ with $q=p /(p-1)$.
Proof. Let $f(x)=x^{\theta}$. Since $n / f^{q}(n)$ is decreasing sequence, writing $C^{\theta} \in\left(a_{n m}\right)_{n, m \geq 1}$ we have

$$
\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n m}\right|^{q}\right)^{\frac{u}{q}}=\sum_{n=1}^{\infty}\left(\frac{n}{f^{q}(n)}\right)^{\frac{u}{q}} \leq \int_{1}^{\infty}\left(\frac{x}{f^{q}(x)}\right)^{\frac{u}{q}} d x
$$

Now $\left(x / f^{q}(x)\right)^{u / q}=1 / x^{\left(q^{\theta-1}\right) u / q}$ and $\int_{1}^{\infty}\left[x /\left(f^{q}(x)\right)\right]^{u / q} d x<\infty$ for $\left(q^{\theta-1}\right) u / q>1$, that is $\theta>1 / u+1 / q$.

3. Some properties of the set $b v_{p}^{h}(\alpha)$.

First recall some well known properties of the sets $b v$ and $b v^{0}=b v \bigcap c_{0}$. In the following $T=\left(t_{n m}\right)_{n, m \geq 1}$ is a triangle if $t_{n m}=0$ for all $m>n$ and $t_{n n} \neq 0$ for all n.

Theorem 3.([15, Theorems 3.3, 3.5, pp. 178, 179], [17, Theorems 4.3.12, 4.3.14, pp. 63, 64]).

Let E be a BK space. Then E_{T} is a $B K$ space with $\|X\|_{T}=\|T X\|_{E}$. If E is a closed subset of F then E_{T} is a closed subspace of F_{T}.

The set $b v=l_{1}(\Delta)$ is called the set of bounded variation and by Theorem 3 and [14, Theorem 2.2.10, p.152] if we put $b v^{0}=b v \bigcap c_{0}$, then $b v^{0}$ and $b v$ are $B K$ spaces with their natural norm $\|X\|_{b v}=\sum_{n=1}^{\infty}\left|x_{n}-x_{n-1}\right|$. The set $b v^{0}$ has $A K$ and every sequence $X=\left(x_{n}\right)_{n \geq 1} \in$ bv has a unique representation $X=l e+\sum_{n=1}^{\infty}\left(x_{n}-l\right) e_{n}$ where $l=\lim _{n \rightarrow \infty} x_{n}$.

Here for $\alpha \in U^{+}$we define the set of α, p-bounded variation of order h, by $b v_{p}^{h}(\alpha)=$ $l_{p}(\alpha)\left(\Delta^{h}\right)$ for $0<p \leq \infty$ and $h>0$. We will put $b v_{p}^{1}(\alpha)=b v_{p}(\alpha), b v^{h}(\alpha)=l_{1}(\alpha)\left(\Delta^{h}\right)$ and for $p=\infty$, it can easily be seen that $b v_{\infty}^{h}(\alpha)=s_{\alpha}\left(\Delta^{h}\right)$.

We need to recall some results given in [8]. For this consider the following sets

$$
\begin{aligned}
\widehat{C_{1}} & =\left\{X=\left(x_{n}\right)_{n \geq 1} \in U^{+}: \frac{1}{x_{n}}\left(\sum_{k=1}^{n} x_{k}\right)=O(1)(n \rightarrow \infty)\right\} \\
\widehat{C_{1}^{+}} & =\left\{X \in U^{+} \bigcap c s: \frac{1}{x_{n}}\left(\sum_{k=1}^{n} x_{k}\right)=O(1)(n \rightarrow \infty)\right\} \\
\Gamma & =\left\{X \in U^{+}: \overline{\lim _{n \rightarrow \infty}}\left(\frac{x_{n-1}}{x_{n}}\right)<1\right\} \\
\hat{\Gamma} & =\left\{X \in U^{+}: \lim _{n \rightarrow \infty}\left(\frac{x_{n-1}}{x_{n}}\right)<1\right\} \\
\Gamma^{+} & =\left\{X \in U^{+}: \overline{\lim _{n \rightarrow \infty}}\left(\frac{x_{n+1}}{x_{n}}\right)<1\right\}
\end{aligned}
$$

Note that $X \in \Gamma^{+}$if and only if $1 / X \in \Gamma$. We shall see in Lemma 4 that if $X \in \widehat{C_{1}}$, then $x_{n} \rightarrow \infty(n \rightarrow \infty)$. Furthermore, $X \in \Gamma$ if and only if there is an integer $q \geq 1$ such
that

$$
\gamma_{q}(X)=\sup _{n \geq q+1}\left(\frac{x_{n-1}}{x_{n}}\right)<1
$$

We obtain the following results in which we put

$$
[C(X) X]_{n}=\frac{1}{x_{n}}\left(\sum_{k=1}^{n} x_{k}\right)
$$

Lemma 4. Let $\alpha \in U^{+}$.
(i) If $\alpha \in \widehat{C_{1}}$ there are $K>0$ and $\gamma>1$ such that $\alpha_{n} \geq K \gamma^{n}$ for all n.
(ii) The condition $\alpha \in \Gamma$ implies that $\alpha \in \widehat{C_{1}}$ and there exists a real $b>0$ such that

$$
[C(\alpha) \alpha]_{n} \leq \frac{1}{1-\gamma_{q}(\alpha)}+b\left[\gamma_{q}(\alpha)\right]^{n} \quad \text { for } n \geq q+1
$$

(iii) The condition $\alpha \in \Gamma^{+}$implies $\alpha \in \widehat{C_{1}^{+}}$.

The proof follows from [9, Proposition 2.1, p. 1656-1658].
Remark 2. Note that $\Gamma \nsubseteq \widehat{C_{1}}$.
Let us consider now Δ as an operator from E into itself where E is either of the sets $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}$, or $l_{p}(\alpha)$. Then we obtain conditions for $\Delta \in(E, E)$ to be bijective. In this way we have the following results.

Lemma 5. Let $\alpha \in U^{+}$.
(i) If $\alpha \in \Gamma$ then $b v_{p}(\alpha)=l_{p}(\alpha)$ for $1 \leq p \leq \infty$;
(ii) $s_{\alpha}(\Delta)=s_{\alpha}$ if and only if $\alpha \in \widehat{C_{1}}$;
(iii) $s_{\alpha}^{0}(\Delta)=s_{\alpha}^{0}$ if and only if $\alpha \in \widehat{C_{1}}$;
(iv) $s_{\alpha}^{(c)}(\Delta)=s_{\alpha}^{(c)}$ if and only if $\alpha \in \widehat{\Gamma}$;
(v) $\Delta_{\alpha}=D_{\frac{1}{\alpha}} \Delta D_{\alpha}$ is bijective from c into itself with $\lim X=\Delta_{\alpha}-\lim X$, if and only if

$$
\frac{\alpha_{n-1}}{\alpha_{n}} \rightarrow 0
$$

Proof. (i) comes from 10]. (ii), (iii) and (v) come from [8, Theorem 2.6, pp. 1789] and (iv) is a direct consequence of [8, Theorem 2.6, pp. 1789] and [12, Proposition 2, pp. 88].

Remark 3. Note that by Lemma 4(ii) the condition $\alpha \in \Gamma$ implies $s_{\alpha}(\Delta)=s_{\alpha}$ and $s_{\alpha}^{0}(\Delta)=s_{\alpha}^{0}$.

For $h \in \mathbb{R}$ put now

$$
\binom{-h+i-1}{i}= \begin{cases}\frac{-h(-h+1) \cdots(-h+i-1)}{i!} & \text { if } i>0 \\ 1 & \text { if } i=0\end{cases}
$$

and define the operator $\Delta^{h}=\left(\tau_{n m}\right)_{n, m \geq 1}$ for $h \in \mathbb{R}$ by

$$
\tau_{n m}=\left\{\begin{array}{cl}
\binom{-h+n-m-1}{n-m} & \text { if } m \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

For $h=-1$ we get $\Delta^{h}=\Sigma$ with $\Sigma_{n m}=1$ if $m \leq n$ and $\Sigma_{n m}=0$ for $m>n$, see [5]. Study now the identity $b v_{p}^{h}(\alpha)=l_{p}(\alpha)\left(\Delta^{h}\right)=l_{p}(\alpha)$ for $h>0$ or $h \geq 1$ integer and $1 \leq p<\infty$.

We obtain the following
Lemma 6. (10) Let $\alpha \in U^{+}$.
(i) For any given real $h>0$, the condition $b v^{h}(\alpha)=l_{1}(\alpha)$ is equivalent to

$$
\alpha_{n}\left(\sum_{m=n}^{\infty}\binom{h+m-n-1}{m-n} \frac{1}{\alpha_{m}}\right)=O(1)(n \rightarrow \infty)
$$

(ii) Let $h \geq 1$ be an integer and $p \geq 1$ a real. If $\alpha \in \Gamma$ then

$$
b v_{p}^{h}(\alpha)=l_{p}(\alpha)
$$

Remark 4. Note that we also have $1 / \alpha \in \widehat{C_{1}^{+}}$if and only if $b v(\alpha)=l_{1}(\alpha)$. Indeed the conditions $\Delta \in\left(l_{1}(\alpha), l_{1}(\alpha)\right)$ and $\Sigma \in\left(l_{1}(\alpha), l_{1}(\alpha)\right)$ are equivalent to $\Delta^{+} \in S_{1 / \alpha}$ and $\Sigma^{+} \in S_{1 / \alpha}$, that is

$$
\frac{\alpha_{n}}{\alpha_{n-1}}=O(1) \quad \text { and } \quad \alpha_{n}\left(\sum_{k=1}^{n} \frac{1}{\alpha_{k}}\right)=O(1)(n \rightarrow \infty)
$$

From the inequality $\alpha_{n} / \alpha_{n-1} \leq \alpha_{n}\left(\sum_{k=1}^{n} 1 / \alpha_{k}\right)$ for all n, we conclude that $1 / \alpha \in \widehat{C_{1}^{+}}$ if and only if $b v(\alpha)=l_{1}(\alpha)$.

4. Matrix map from $b v_{p}^{h}(\alpha)$ to $b v_{u}^{k}(\beta)$

In this section we give necessary conditions for an infinite matrix A to map $b v_{p}^{h}(\alpha)=$ $l_{p}(\alpha)\left(\Delta^{h}\right)$ into $b v_{u}^{k}(\beta)$ and some characterizations of the sets $\left(b v^{h}(\alpha), b v_{u}^{k}(\beta)\right),\left(b v_{p}^{h}(\alpha)\right.$, $\left.b v_{\infty}^{k}(\beta)\right)$ and $\left(b v_{\infty}^{h}(\alpha), b v_{\infty}^{k}(\beta)\right)$. For this we need additional results.

4.1. Other results

To state the next results we first need to recall the characterizations of $\left(l_{p}, l_{\infty}\right)$ and $\left(l_{\infty}, l_{u}\right)$ and consider the identity $A(\chi X)=(A \chi) X$ for $X \in E$, where E is either of the sets $l_{p}(\alpha), 1 \leq p \leq \infty, s_{\alpha}$, or s_{α}^{0}. In this way we have, (see [15] and [16]).

Lemma 7.

(i) $A \in\left(l_{p}, l_{\infty}\right)$ if and only if

$$
\begin{cases}\sup _{n, m}\left|a_{n m}\right|<\infty & \text { for } p=1, \\ \sup _{n} \sum_{m=1}^{\infty}\left|a_{n m}\right|^{q}<\infty & \text { for } 1<p<\infty \text { and } q=\frac{p}{(p-1)}\end{cases}
$$

(ii) Let $1 \leq u<\infty$. Then $A \in\left(l_{\infty}, l_{u}\right)$ if and only if

$$
\sup _{N \subset \mathbb{N}, N \text { finite }}\left(\sum_{n=1}^{\infty}\left|\sum_{m \in N} a_{n m}\right|^{u}\right)<\infty .
$$

We also need the following lemmas.
Lemma 8. Let $p>1$ be a real and $\chi=\left(\chi_{n m}\right)_{n, m \geq 1}$ an infinite matrix. The identity $A(\chi X)=(A \chi) X$ for all $X \in E$ holds in the following cases
(i) When $E=l_{1}(\alpha)$ if

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|a_{n m}\right|<\infty \quad \text { for all } n, \text { and } \sup _{n, m}\left(\left|\chi_{n m}\right| \alpha_{m}\right)<\infty \tag{2}
\end{equation*}
$$

(ii) When $E=l_{p}(\alpha)$ with $1<p<\infty$ if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{n k}\right|\left(\sum_{m=1}^{\infty}\left|\chi_{k m}\right|^{q} \alpha_{m}^{q}\right)^{\frac{1}{q}}<\infty \quad \text { for all } n, \text { with } q=\frac{p}{p-1} \tag{3}
\end{equation*}
$$

(iii) When $E \in\left\{s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}\right\}$ if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\sum_{m=1}^{\infty}\left|a_{n k} \chi_{k m}\right| \alpha_{m}\right)<\infty \quad \text { for all } n \tag{4}
\end{equation*}
$$

Proof. First note that for any given integer n, we have

$$
A_{n}(\chi X)=\sum_{k=1}^{\infty} a_{n k}\left(\sum_{m=1}^{\infty} \chi_{k m} x_{m}\right) \quad \text { for } X=\left(x_{n}\right)_{n \geq 1} \in s
$$

whenever the series in the second member are convergent.
(i) Assume that (2) holds. Then putting

$$
\left|A_{n}\right|(|\chi X|)=\sum_{k=1}^{\infty} \sum_{m=1}^{\infty}\left|a_{n k}\right|\left|\chi_{k m}\right|\left|x_{m}\right| \text { for } n \geq 1
$$

one gets

$$
\begin{aligned}
\left|A_{n}\right|(|\chi X|) & \leq \sum_{k=1}^{\infty}\left|a_{n k}\right| \sup _{m, k}\left(\left|\chi_{k m}\right| \alpha_{m}\right) \sum_{m=1}^{\infty} \frac{\left|x_{m}\right|}{\alpha_{m}} \\
& \leq \sum_{k=1}^{\infty}\left|a_{n k}\right| \sup _{m, k}\left(\left|\chi_{k m}\right| \alpha_{m}\right)\|X\|_{l_{1}(\alpha)}<\infty \text { for all } n \text { and all } X \in l_{1}(\alpha)
\end{aligned}
$$

So we can invert \sum_{k} and \sum_{m} in the expression of y_{n}. This shows $A(\chi X)=(A \chi) X$ for all $X \in l_{1}(\alpha)$.
(ii) Assume that (3) holds. Then by the Hölder inequality

$$
\begin{aligned}
\left|A_{n}\right|(|\chi X|) & =\sum_{k=1}^{\infty}\left(\left|a_{n k}\right| \sum_{m=1}^{\infty}\left(\left|\chi_{k m}\right| \alpha_{m} \frac{\left|x_{m}\right|}{\alpha_{m}}\right)\right) \\
& \leq \sum_{k=1}^{\infty}\left|a_{n k}\right|\left(\sum_{m=1}^{\infty}\left|\chi_{k m}\right|^{q} \alpha_{m}^{q}\right)^{\frac{1}{q}}\left(\sum_{m=1}^{\infty}\left(\frac{\left|x_{m}\right|}{\alpha_{m}}\right)^{p}\right)^{\frac{1}{p}} \\
& \leq \sum_{k=1}^{\infty}\left|a_{n k}\right|\left(\sum_{m=1}^{\infty}\left|\chi_{k m}\right|^{q} \alpha_{m}^{q}\right)^{\frac{1}{q}}\|X\|_{l_{p}(\alpha)} \text { for all } n \text { and for all } X \in l_{p}(\alpha)
\end{aligned}
$$

and we conclude reasoning as above.
(iii) Comes from the fact that if (4) holds then $\left|A_{n}\right|(|\chi X|)<\infty$ for all n and all $X \in s_{\alpha}$. We get the same result when s_{α} is replaced by s_{α}^{0} and by $s_{\alpha}^{(c)}$, since these spaces are included in s_{α}. This completes the proof.

We also need to recall the following well-known result given in [13, Theorem 1].
Lemma 9. Let $T \in £$. Then for arbitrary subsets E and F of s, the condition $A \in(E, F(T))$ is equivalent to $T A \in(E, F)$.
4.2. Properties of the set $\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ for $1<p<\infty, 0<u<\infty, h$ and k being reals or integers

First we give necessary conditions to have $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$, this gives the following

Theorem 10. Let $\alpha, \beta \in U^{+}$and $1<p<\infty$.
(i) Let $0<u<\infty$.
(a) Let $k \in \mathbb{R}$ and $h \geq 1$ be an integer. If $\alpha \in \Gamma$, the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty}\left(\left|\frac{1}{\beta_{n}} \sum_{j=1}^{n}\binom{-k+n-j-1}{n-j} a_{j m}\right| \alpha_{m}\right)^{q}\right)^{\frac{u}{q}}<\infty \quad \text { with } q=\frac{p}{p-1} \tag{5}
\end{equation*}
$$

implies $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$.
(b) Let $\beta \in \Gamma, h \in \mathbb{R}$ and $k \geq 1$ be an integer. Assume

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|a_{n m}\right|\left(\sum_{j=m}^{\infty}\left|\binom{h+j-m-1}{j-m}\right|^{q} \alpha_{m}^{q}\right)<\infty \quad \text { for all } n \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\beta_{n}^{u}}\left(\sum_{m=1}^{\infty}\left|\sum_{j=m}^{\infty} a_{n j}\binom{h+j-m-1}{j-m} \alpha_{m}\right|^{q}\right)^{\frac{u}{q}}<\infty, \tag{7}
\end{equation*}
$$

then $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$.
(ii) Let $1 \leq u<\infty$ and $h, k \geq 1$ integers. If $\alpha, \beta \in \Gamma$, then condition

$$
\sum_{n=1}^{\infty} \frac{1}{\beta_{n}^{u}}\left(\sum_{m=1}^{\infty}\left(\left|a_{n m}\right| \alpha_{m}\right)^{q}\right)^{\frac{u}{q}}<\infty
$$

implies $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$.
Proof. First $\alpha \in \Gamma$ implies Δ is bijective from $l_{p}(\alpha)$ into itself and

$$
b v_{p}^{h}(\alpha)=l_{p}(\alpha)\left(\Delta^{h}\right)=l_{p}(\alpha)
$$

Then $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ if and only if $D_{1 / \beta} \Delta^{k} A \in\left(b v_{p}^{h}(\alpha), l_{u}\right)=\left(l_{p}(\alpha), l_{u}\right)$; and $D_{1 / \beta} \Delta^{k} A D_{\alpha} \in\left(l_{p}, l_{u}\right)$ if $D_{1 / \beta} \Delta^{k} A D_{\alpha} \in L_{p, u}$. We have

$$
D_{\frac{1}{\beta}} \Delta^{k} A D_{\alpha}=\left(\frac{1}{\beta_{n}}\left(\sum_{j=1}^{n}\binom{-k+n-j-1}{n-j} a_{j m}\right) \alpha_{m}\right)_{n, m \geq 1}
$$

and using Lemma 8(ii), we conclude that condition (5) implies $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$.
(i)(b) Since $\beta \in \Gamma$, then Δ is bijective from $l_{u}(\beta)$ to itself and it is the same for Δ^{k}. So

$$
b v_{u}^{k}(\beta)=l_{u}(\beta)\left(\Delta^{k}\right)=l_{u}(\beta)
$$

We have $\Delta^{-h}=\left(\tau_{n m}\right)_{n, m \geq 1}$ with

$$
\tau_{n m}=\left\{\begin{array}{cl}
\binom{h+n-m-1}{n-m} & \text { for } m \leq n \\
0 & \text { for } m>n
\end{array}\right.
$$

By Lemma 8, condition (6) permits us to write that

$$
\begin{equation*}
A\left(\Delta^{-h} X\right)=\left(A \Delta^{-h}\right) X \quad \text { for all } X \in l_{p}(\alpha) \tag{8}
\end{equation*}
$$

Now since $A \Delta^{-h}=\left(c_{n m}\right)_{n, m \geq 1}$ with

$$
c_{n m}=\sum_{j=m}^{\infty} a_{n j}\binom{h+j-m-1}{j-m}
$$

condition (7) means that $D_{1 / \beta} A \Delta^{-h} D_{\alpha} \in L_{p, u}$; and since $L_{p, u} \subset\left(l_{p}, l_{u}\right)$ then $A \Delta^{-h} \in$ $\left(l_{p}(\alpha), l_{u}(\beta)\right)$. Thus $\left(A \Delta^{-h}\right) X \in l_{u}(\beta)$ for all $X \in l_{p}(\alpha)$ and (8) implies that the series defined by $A_{n}\left(\Delta^{-h} X\right)$ are convergent for all n and for all $X \in l_{p}(\alpha)$, and $A\left(\Delta^{-h} X\right) \in$ $l_{u}(\beta)$. We conclude that $D_{1 / \beta} A \Delta^{-h} D_{\alpha} \in L_{p, u}$ implies $A \in\left(b v_{p}^{h}(\alpha), l_{u}(\beta)\right)$ and $A \in$ $\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$.

Statement (ii) The condition $\alpha, \beta \in \Gamma$ implies $b v_{p}^{h}(\alpha)=l_{p}(\alpha)$ and $b v_{u}^{k}(\beta)=l_{u}(\beta)\left(\Delta^{k}\right)$ $=l_{u}(\beta)$. Then $D_{1 / \beta} A D_{\alpha}=\left(a_{n m} \alpha_{m} / \beta_{n}\right)_{n, m \geq 1} \in L_{p, u}$ implies $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$.

Until now were given necessary conditions for A to belong to $\left(b v_{p}^{h}(\alpha), b v_{u}(\beta)\right)$, when $u=1$ and $h \in \mathbb{R}$ we get the next characterization. In all that follows we will need to use the convention $a_{0 m}=0$ for all m.

Proposition 11. Let $1<p<\infty$, h be a real and assume that

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|a_{n j}-a_{n-1, j}\right|\left(\sum_{m=1}^{\infty}\left|\binom{h+j-m-1}{j-m} \alpha_{m}\right|^{q}\right)<\infty \quad \text { for all } n . \tag{9}
\end{equation*}
$$

Then $A \in\left(b v_{p}^{h}(\alpha), b v(\beta)\right)$ if and only if

$$
\sup _{N \subset \mathbb{N}, N \text { finite }} \sum_{m=1}^{\infty} \frac{1}{\beta_{n}}\left|\sum_{n \in N} \sum_{j=m}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\binom{h+j-m-1}{j-m} \alpha_{m}\right|^{q}<\infty .
$$

Proof. First $A \in\left(b v_{p}^{h}(\alpha), b v(\beta)\right)$ if and only if

$$
\Delta A\left(\Delta^{-h} X\right) \in l_{1}(\beta) \quad \text { for all } X \in l_{p}(\alpha)
$$

Now since $\Delta A=\left(a_{n m}-a_{n-1, m}\right)_{n, m \geq 1}$, from Lemma 8(ii), we see that under condition (9) $\Delta A\left(\Delta^{-h} X\right)=\left(\Delta A \Delta^{-h}\right) X$ for all $X \in l_{p}(\alpha)$. Then $A \in\left(b v_{p}^{h}(\alpha), b v(\beta)\right)$ if and only if $\Delta A \Delta^{-h} \in\left(l_{p}(\alpha), l_{1}(\beta)\right)$ and we conclude using the characterization of $\left(l_{p}, l_{1}\right)$.

Remark 5. Note that for $h, k \in \mathbb{R}$, we have $A \in\left(b v_{p}^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ if $D_{1 / \beta} \Delta^{k} A \Delta^{-h} D_{\alpha}$ $\in L_{p, u}$ when the identity

$$
\Delta^{k} A\left(\Delta^{-h} X\right)=\left(\Delta^{k} A \Delta^{-h}\right) X \quad \text { for all } X \in l_{p}(\alpha)
$$

is satisfied.

4.3. Properties of the $\operatorname{set}\left(b v^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ for $h>0$ and k real or integer

Now we can state the next results
Theorem 12. Let $1 \leq u<\infty$ and $h>0$.
(i) Assume $\alpha \in \Gamma$ and $k \in \mathbb{R}$. Then $A \in\left(b v^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ if and only if

$$
\begin{equation*}
\sup _{m} \sum_{n=1}^{\infty} \frac{1}{\beta_{n}^{u}}\left(\left|\sum_{j=1}^{n} a_{j m}\binom{-k+n-j-1}{n-j}\right| \alpha_{m}\right)^{u}<\infty ; \tag{10}
\end{equation*}
$$

(ii) Let $\beta \in \Gamma$ and $k \geq 1$ be an integer. Under the condition

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|a_{n m}\right|<\infty \quad \text { for all } n, \text { and } \sup _{n, m}\left\{\left|\binom{h+n-m-1}{n-m}\right| \alpha_{m}\right\}<\infty \tag{11}
\end{equation*}
$$

$A \in\left(b v^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ if and only if

$$
\sup _{m} \sum_{n=1}^{\infty} \frac{1}{\beta_{n}^{u}}\left|\sum_{j=m}^{\infty} a_{n j}\binom{h+j-m-1}{j-m} \alpha_{m}\right|^{u}<\infty
$$

(iii) Let $\alpha, \beta \in \Gamma$ and $k \geq 1$ be integer. Then $A \in\left(b v^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ if and only if

$$
\begin{equation*}
\sup _{m}\left\{\alpha_{m}^{u} \sum_{n=1}^{\infty}\left(\frac{\left|a_{n m}\right|}{\beta_{n}}\right)^{u}\right\}<\infty \tag{12}
\end{equation*}
$$

Proof. (i) The condition $\alpha \in \Gamma$ implies $b v^{h}(\alpha)=l_{1}(\alpha)$. So $A \in\left(b v^{h}(\alpha), b v_{u}^{k}(\beta)\right)$ if and only if $\Delta^{k} A \in\left(l_{1}(\alpha), l_{u}(\beta)\right)$. From the expression of $D_{1 / \beta} \Delta^{k} A D_{\alpha}$ in the proof of Theorem $10(\mathrm{i})(\mathrm{a})$, we conclude that $D_{1 / \beta} \Delta^{k} A D_{\alpha} \in\left(l_{1}, l_{u}\right)$ if and only if (10) holds.
(ii) The condition $A \in\left(b v^{h}(\alpha), l_{u}(\beta)\right)$ means that the series defined by $A_{n}\left(\Delta^{-h} X\right)$ are convergent for all $X \in l_{1}(\alpha)$ and for all n and

$$
A\left(\Delta^{-h} X\right) \in l_{u}(\beta) \quad \text { for all } X \in l_{1}(\alpha)
$$

Under condition (11), $A\left(\Delta^{-h} X\right)=\left(A \Delta^{-h}\right) X$ for all $X \in l_{1}(\alpha)$, so $A \in\left(b v^{h}(\alpha)\right.$, $l_{u}(\beta)$) if and only if $D_{1 / \beta} A \Delta^{-h} D_{\alpha} \in\left(l_{1}, l_{u}\right)$, and we conclude since $\beta \in \Gamma$ implies $b v_{u}(\beta)=l_{u}(\beta)$.
(iii) Here $\alpha, \beta \in \Gamma$ implies $b v^{h}(\alpha)=l_{1}(\alpha)\left(\Delta^{h}\right)=l_{1}(\alpha)$ and $b v_{u}^{k}(\beta)=l_{u}(\beta)$. So $A \in\left(l_{1}(\alpha), l_{u}(\beta)\right)$ if and only if $D_{1 / \beta} A D_{\alpha} \in\left(l_{1}, l_{u}\right)$ and we conclude using the characterization of $\left(l_{1}, l_{u}\right)$.

Remark 6. We also have the next result. Let $k \in \mathbb{R}, 1 \leq u<\infty$ and $\alpha \in l_{\infty}$. Then under the condition

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|a_{n m}-a_{n-1, m}\right|<\infty \quad \text { for all } n \tag{13}
\end{equation*}
$$

we have $A \in\left(b v(\alpha), b v_{u}^{k}(\beta)\right)$ if and only

$$
\sup _{m}\left\{\sum_{n=1}^{\infty} \frac{1}{\beta_{n}^{u}}\left|\sum_{j=m}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\binom{h+j-m-1}{j-m} \alpha_{m}\right|^{u}\right\}<\infty
$$

Indeed $A \in\left(b v(\alpha), b v_{u}^{k}(\beta)\right)$ if only if $\Delta A\left(\Delta^{-h} X\right) \in l_{u}(\beta)$ for all $X \in l_{1}(\alpha)$. Since $\alpha \in l_{\infty}$ and (13) holds, by Lemma 8(i) we have $\Delta A\left(\Delta^{-h} X\right)=\left(\Delta A\left(\Delta^{-h}\right) X\right.$ for all $X \in l_{1}(\alpha)$. We conclude since $\Delta A \Delta^{-h} \in\left(l_{1}(\alpha), l_{u}(\beta)\right)$ and

$$
\Delta A \Delta^{-h}=\left(\sum_{j=m}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\binom{h+j-m-1}{j-m}\right)_{n, m \geq 1}
$$

Remark 7. Note that (ii) in the previous theorem is true for h real.

4.4. The sets $\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ and $\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$

In this part we characterize the set $\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ in the cases when $1 \leq p<\infty$, $u=\infty$ and $p=\infty, 1 \leq u<\infty$. Then we get the following result.

Theorem 13. Let $\alpha \in U^{+}$.
(i) Assume

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|a_{n m}-a_{n-1, m}\right|<\infty \quad \text { for all } n \geq 1 \text { and } \alpha \in l_{\infty} \tag{14}
\end{equation*}
$$

Then $A \in\left(b v(\alpha), b v_{\infty}(\beta)\right)$ if and only if

$$
\begin{equation*}
\sup _{n, m} \frac{1}{\beta_{n}}\left|\sum_{j=m}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right| \alpha_{m}<\infty \tag{15}
\end{equation*}
$$

(ii) Let $1<p<\infty$.
(a) Under the condition

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{n k}-a_{n-1, k}\right|\left(\sum_{m=k}^{\infty} \alpha_{m}^{q}\right)^{\frac{1}{q}}<\infty \quad \text { for all } n\left(\text { with } q=\frac{p}{p-1}\right) \tag{16}
\end{equation*}
$$

we have $A \in\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ if and only if

$$
\begin{equation*}
\sup _{n} \frac{1}{\beta_{n}^{q}} \sum_{m=1}^{\infty}\left|\alpha_{m} \sum_{j=m}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|^{q}<\infty \tag{17}
\end{equation*}
$$

(b) If $\beta \in \Gamma$, under the condition

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{n k}\right|\left(\sum_{m=k}^{\infty} \alpha_{m}^{q}\right)^{\frac{1}{q}}<\infty \quad \text { for all } n\left(\text { with } q=\frac{p}{p-1}\right) \tag{18}
\end{equation*}
$$

$A \in\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ if and only if

$$
\left\{\begin{array}{l}
\sup _{n, m}\left(\frac{1}{\beta_{n}} \sum_{j=m}^{\infty}\left|a_{n j}\right| \alpha_{m}\right)<\infty \quad \text { for } p=1, \\
\sup _{n}\left[\frac{1}{\beta_{n}^{q}} \sum_{m=1}^{\infty}\left|\sum_{j=m}^{\infty} a_{n j} \alpha_{m}\right|^{q}\right]<\infty \text { for } 1<p<\infty
\end{array}\right.
$$

(iii) Under the condition

$$
\begin{equation*}
\sum_{m=1}^{\infty} \alpha_{m} \sum_{j=m}^{\infty}\left|a_{n j}\right|<\infty \quad \text { for all } n \tag{19}
\end{equation*}
$$

$A \in\left(b v_{\infty}(\alpha), b v_{\infty}(\beta)\right)$ if and only if

$$
\begin{equation*}
\sup _{n} \frac{1}{\beta_{n}} \sum_{m=1}^{\infty} \alpha_{m}\left|\sum_{j=m}^{\infty}\left(a_{n j}-a_{n-1, j}\right)\right|<\infty \tag{20}
\end{equation*}
$$

Proof. Since $b v_{\infty}(\beta)=s_{\beta}(\Delta)$, we have $A \in\left(b v(\alpha), b v_{\infty}(\beta)\right)$ if and only if $\Delta A \in$ $\left(b v(\alpha), s_{\beta}\right)$. Then from the identity $b v(\alpha)=l_{1}(\alpha)(\Delta)$, we have $\Delta A \in\left(b v(\alpha), s_{\beta}\right)$ if and only if

$$
(\Delta A)(\Sigma X) \in s_{\beta} \text { for all } X \in l_{1}(\alpha)
$$

and by Lemma 8(i), the conditons given by (14) imply $(\Delta A)(\Sigma X)=(\Delta A \Sigma) X$ for all $X \in$ $l_{1}(\alpha)$. Now we successively get $A \Sigma=\left(\sum_{k=m}^{\infty} a_{n k}\right)_{n, m \geq 1}$ and $\Delta A \Sigma=\left(\sum_{k=m}^{\infty}\left(a_{n k}-\right.\right.$ $\left.\left.a_{n-1, k}\right)\right)_{n, m \geq 1}$ and we conclude that $A \in\left(b v(\alpha), b v_{\infty}(\beta)\right)$ if and only if $D_{1 / \beta} \Delta A \Sigma D_{\alpha} \in$ $\left(l_{1}, l_{\infty}\right)$, that is condition (15).
(ii)(a) Since $b v_{\infty}(\beta)=s_{\beta}(\Delta)$, we have $A \in\left(b v_{p}(\alpha), s_{\beta}(\Delta)\right)$ if and only if $D_{1 / \beta} \Delta A \in$ $\left(b v_{p}(\alpha), l_{\infty}\right)$. Since $b v_{p}(\alpha)=\Sigma l_{p}(\alpha)$, this means

$$
\left(D_{\frac{1}{\beta}} \Delta A\right)(\Sigma X) \in l_{\infty} \text { for all } X \in l_{p}(\alpha) .
$$

By Lemma 8(ii), condition (16) implies $\left(D_{1 / \beta} \Delta A\right)(\Sigma X)=\left(D_{1 / \beta} \Delta A \Sigma\right) X$ for all $X \in$ $l_{p}(\alpha)$, and $A \in\left(b v_{p}(\alpha), s_{\beta}(\Delta)\right)$ if and only if $D_{1 / \beta} \Delta A \Sigma \in\left(l_{p}(\alpha), l_{\infty}\right)$, which in turn is (17).
(ii)(b) If $\beta \in \Gamma$ then by Lemma 5 (ii) $b v_{\infty}(\beta)=s_{\beta}(\Delta)=s_{\beta}$. As above under condition (18) $A \in\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ if and only if $D_{1 / \beta} A \Sigma \in\left(l_{p}(\alpha), l_{\infty}\right)$. This gives the conclusion.
(iii) Here $b v_{\infty}(\alpha)=l_{\infty}(\alpha)(\Delta)=s_{\alpha}(\Delta)$ and $b v_{\infty}(\beta)=s_{\beta}(\Delta)$. As above it can easily be seen that $A \in\left(s_{\alpha}(\Delta), s_{\beta}(\Delta)\right)$ if and only if $\Delta A \Sigma \in S_{\alpha, \beta}$, under condition (19).

We also have the following results when $\alpha \in \Gamma$.

Proposition 14.

(i) If $\alpha \in \Gamma$, then $A \in\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ if and only if

$$
\begin{cases}\sup _{n, m}\left(\frac{1}{\beta_{n}}\left|a_{n m}-a_{n-1, m}\right| \alpha_{m}\right)<\infty \quad \text { for } p=1, \\ \sup _{n}\left[\frac{1}{\beta_{n}^{q}} \sum_{m=1}^{\infty}\left(\left|a_{n m}-a_{n-1, m}\right| \alpha_{m}\right)^{q}\right]<\infty & \text { for } 1<p<\infty\end{cases}
$$

(ii) If $\alpha, \beta \in \Gamma$, then $A \in\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ if and only if

$$
\begin{cases}\sup _{n, m}\left(\frac{1}{\beta_{n}}\left|a_{n m}\right| \alpha_{m}\right)<\infty \quad \text { for } p=1, \\ \sup _{n}\left[\frac{1}{\beta_{n}^{q}} \sum_{m=1}^{\infty}\left(\left|a_{n m}\right| \alpha_{m}\right)^{q}\right]<\infty & \text { for } 1<p<\infty\end{cases}
$$

Proof. Since $\alpha \in \Gamma$ we have $b v_{p}(\alpha)=l_{p}(\alpha)$ and $A \in\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ if and only if $\Delta A \in\left(l_{p}(\alpha), s_{\beta}\right)$. Now the condition $\Delta A \in\left(l_{p}(\alpha), s_{\beta}\right)$ means that $D_{1 / \beta} \Delta A D_{\alpha} \in\left(l_{p}, l_{\infty}\right)$ and we conclude by Lemma 7 .
(ii) The condition $\alpha, \beta \in \Gamma$ implies $b v_{p}(\alpha)=l_{p}(\alpha)$ and $b v_{\infty}(\beta)=s_{\beta}(\Delta)=s_{\beta}$. Thus $A \in\left(b v_{p}(\alpha), b v_{\infty}(\beta)\right)$ if and only if $D_{1 / \beta} A D_{\alpha} \in\left(l_{p}, l_{\infty}\right)$, and we conclude by Lemma 7 .

Study now the set $\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$. We obtain
Proposition 15. Let $1 \leq u<\infty$.
(i) Under the condition

$$
\begin{equation*}
\sum_{m=1}^{\infty} \alpha_{m} \sum_{j=m}^{\infty}\left|a_{n j}-a_{n-1, j}\right|<\infty \quad \text { for all } n \tag{21}
\end{equation*}
$$

$A \in\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$ if and only if

$$
\sup _{N \subset \mathbb{N}, N \text { finite }}\left(\sum_{n=1}^{\infty}\left|\sum_{k \in N} \frac{1}{\beta_{n}} \sum_{m=k}^{\infty}\left(a_{n m}-a_{n-1, m}\right) \alpha_{m}\right|^{u}\right)<\infty
$$

(ii) Let $\alpha \in \Gamma$. Then $A \in\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$ if and only if

$$
\begin{equation*}
\sup _{N \subset \mathbb{N}, N \text { finite }}\left(\sum_{n=1}^{\infty}\left|\frac{1}{\beta_{n}} \sum_{m \in N}\left(a_{n m}-a_{n-1, m}\right) \alpha_{m}\right|^{u}\right)<\infty \tag{22}
\end{equation*}
$$

(iii) If $\beta \in \Gamma$, under the condition

$$
\begin{equation*}
\sum_{m=1}^{\infty} \alpha_{m} \sum_{k=m}^{\infty}\left|a_{n k}\right|<\infty \quad \text { for all } n \tag{23}
\end{equation*}
$$

$A \in\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$ if and only if

$$
\sup _{N \subset \mathbb{N}, N \text { finite }}\left(\sum_{n=1}^{\infty}\left|\frac{1}{\beta_{n}} \sum_{k \in N} \sum_{m=k}^{\infty} a_{n m} \alpha_{m}\right|^{u}\right)<\infty
$$

(iv) Let $\alpha, \beta \in \Gamma$. Then $A \in\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$ if and only if

$$
\sup _{N \subset \mathbb{N}, N \text { finite }}\left(\sum_{n=1}^{\infty}\left|\frac{1}{\beta_{n}} \sum_{m \in N} a_{n m} \alpha_{m}\right|^{u}\right)<\infty
$$

Proof.

(i) $A \in\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$ if and only if $\Delta A \in\left(s_{\alpha}(\Delta), l_{u}(\beta)\right)$. For all $X \in s_{\alpha}$

$$
\Delta A(\Sigma X) \in l_{u}(\beta)
$$

Now since (21) holds $\Delta A(\Sigma X)=(\Delta A \Sigma) X$ for all $X \in s_{\alpha}$. Then $A \in\left(b v_{\infty}(\alpha)\right.$, $\left.b v_{u}(\beta)\right)$ if and only if $D_{1 / \beta} \Delta A \Sigma D_{\alpha} \in\left(l_{\infty}, l_{u}\right)$, and we conclude applying Lemma 7 .
(ii) Since $\alpha \in \Gamma$ we get $b v_{\infty}(\alpha)=s_{\alpha}(\Delta)=s_{\alpha}$. So $A \in\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)$ if and only if

$$
\Delta A \in\left(s_{\alpha}, l_{u}(\beta)\right),
$$

that is $D_{1 / \beta} \Delta A D_{\alpha} \in\left(l_{\infty}, l_{u}\right)$ and we conclude as above.
(iii) Here $b v_{u}(\beta)=l_{u}(\beta)$ and $A \in\left(s_{\alpha}(\Delta), l_{u}(\beta)\right)$ if and only if $A(\Sigma X) \in l_{u}(\beta)$ for all $X \in s_{\alpha}$. Since (23) holds we have $A(\Sigma X)=(A \Sigma) X$ for all $X \in s_{\alpha}$ and $A \in\left(s_{\alpha}(\Delta), l_{u}(\beta)\right)$ if and only if $A \Sigma \in\left(s_{\alpha}, l_{u}(\beta)\right)$, that is $D_{1 / \beta} A \Sigma D_{\alpha} \in\left(l_{\infty}, l_{u}\right)$. we conclude applying Lemma 7(ii).
(iv) Now $\left(b v_{\infty}(\alpha), b v_{u}(\beta)\right)=\left(s_{\alpha}, l_{u}(\beta)\right)$ and $A \in\left(s_{\alpha}, l_{u}(\beta)\right)$ if and only if $D_{1 / \beta} A D_{\alpha} \in$ $\left(l_{\infty}, l_{u}\right)$ and we conclude by Lemma 7.

Remark 8. Note that in Proposition 15(ii), for $h \geq 1$ integer and $\alpha \in \Gamma$, we have $A \in\left(b v_{\infty}^{h}(\alpha), b v_{u}(\beta)\right.$ if and only if (22) holds.

References

[1] R. Çolak, M. Et, E. Malkowsky, Some Topic of Sequence Spaces, Firat University Elaziğ, 2004.
[2] L. Crone, A characterization of matrix mapping on l^{2}, Math. Z. 123(1971), 315-317.
[3] A. Jarrah and E. Malkowsky, The space bv (p), its β-dual and matrix transformations, Collect. Math. 55(2004), 151-162.
[4] I. J. Maddox, Infinite Matrices of Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1980
[5] B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Mathematical Journal 31(2002), 283299.
[6] B. de Malafosse, On the set of sequences that are strongly α-bounded and α-convergent to naught with index p, Seminario Matematico dell'Universitá e del Politecnico di Torino 61(2003), 13-32.
[7] B. de Malafosse, On matrix transformations and sequence spaces, Rend. del Circ. Mat. di Palermo 52(2003), 189-210.
[8] B. de Malafosse, On some BK space, International Journal of Mathematics and Mathematical Sciences 28(2003), 1783-1801.
[9] B. de Malafosse, Calculations on some sequence spaces, International Journal of Mathematics and Mathematical Sciences 31(2004), 1653-1670.
[10] B. de Malafosse, On the Banach algebra $\mathcal{B}\left(l_{p}(\alpha)\right)$, International Journal of Mathematics and Mathematical Sciences, USA 60(2004), 3187-3203.
[11] B. de Malafosse and E. Malkowsky, Sequence spaces and inverse of an infinite matrix, Rend. del Circ. Mat. di Palermo. Serie II, 51(2002), 277-294.
[12] B. de Malafosse and E. Malkowsky, Matrix transformations in the sets $\chi\left(\bar{N}_{p} \bar{N}_{q}\right)$ where χ is in the form s_{ξ}, or s_{ξ}°, or $s_{\xi}^{(c)}$, Filomat $\mathbf{1 7}(2003), 85-106$.
[13] E. Malkowsky, Linear operators in certain BK spaces, Bolyai Soc. Math. Stud. 5(1996), 259-273.
[14] E. Malkowsky, Strong Matrix Domains, Matrix Transformations Between them and the Hausdorff Measure of Noncompactness, Analysis and Applications (2002), 142-178.
[15] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik radova, Mathematički institut SANU 9(2000), 143243.
[16] M. Stieglitz and H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z. 154(1997), 1-16.
[17] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

LMAH Université du Havre BP 4006 I.U.T Le Havre 76610 Le Havre. France.

