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ON THE EVOLUTIONARY STABILITY OF MALE HARASSMENT

IN A COERCIVE MATING GAME

OYITA UDIANI, YUAN LOU AND IAN HAMILTON

Abstract. In many animals, males employ coercive mating strategies to help them maxi-

mize their expected number of offspring. In such systems, selection will favor behavioral

adaptations in females that help them mitigate harassment costs and maximize their re-

productive fitness. Previously, Bokides et al. [1] presented a model showing how male

harassment strategies can co-evolve with female habitat preferences in a mating game.

Their results indicated that if females dispersed freely between habitats where males

were present and where males were excluded, selection could favor males who strate-

gically harassed at high (or low) levels, depending on the proximity of their phenotype

to a threshold level h∗. This article is a continuation of that work addressing the ques-

tions of stability at equilibria where males harass at the threshold level (i.e., h∗). We show

these states are both locally and globally asymptotically stable. Further, we argue based

on these results that h∗ is an evolutionary stable male harassment level at which females

will be ideally distributed to match the resource quality and social environments of their

alternative habitats.

1. Introduction

Sexual conflict is ubiquitous in animals—a consequence of the often divergent reproduc-

tive strategies of the sexes. This conflict can sometimes result in a co-evolutionary arms race

where both males and females develop costly adaptations aimed at maximizing their repro-

ductive fitness (to the detriment of the other). The emergence of mate coercion in systems

where males cannot effectively control mating access to females, or contribute negligibly to

the survival of their progeny is believed to be one such example of this phenomenon [2]. Mate

coercion strategies like aggressive harassment can be fitness reducing to females especially if

rejecting male advances allows them to mate with a genetically superior male or when eco-

logical conditions are more suitable. In general, harassment is costly to both sexes (e.g., loss
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of feeding time, increased energy expenditure and predation risks, etc.) [2]. However, females

can also suffer more direct fitness costs from mating superfluously (e.g., disease transmission

and physical damage) [3, 4]. Consequently, they are expected develop a suite of morpholog-

ical and behavioral counter-adaptations to mitigate male harassment. Dispersal behavior is

one of several empirically noted examples of such adaptations [5, 6, 7].

In a predator-prey system, prey animals can increase their fitness by employing habitat

use strategies that balance predation risk with expected foraging returns. Similarly, in a co-

ercive mating system, females can increase their fitness by regulating their activity levels and

availability in antagonistic (male-dominant) environments [7, 8]. When females can effec-

tively disperse, the efficacy of male aggression strategies may become context-dependent. For

instance, in a study of the common water strider Aquarius remigis, Eldakar et al. [7] showed

that medially aggressive males had more successful copulations than highly aggressive males

when females could move freely between several habitats. However, highly aggressive males

were most successful when female movement was artificially restricted to a single habitat.

This result is interesting because it suggest that a simple female behavioral rule (i.e., move

away from overly aggressive males) can mediate population structure in ways that ultimately

alter the fitness landscape for aggression in males.

Inspired by the mating conflict in A. remigis and similar systems [9, 10], Bokides et al. [1]

modeled the dynamics of female patch use and male harassment as a habitat choice game

with predator-prey style interactions. Their analysis revealed that selection always favored

male strategies with harassment closest to a threshold level h∗. However, some questions re-

mained. First, their analysis failed to predict evolutionary outcomes if males exactly adopted

h∗ in their strategy set. This question is critical to determine whether or not playing h∗ is ro-

bust to the emergence of mutant strategies and/or stochastic perturbations in female patch

use frequencies. Furthermore, their analysis failed to give any indication of whether non-

equilibrium dynamics were possible in the model. A result like this would be unsurprising

given that the fitness optima of both male and female strategies are asymmetrically coupled,

and exhibit negative frequency-dependence.

Here, we address these questions in turn, ultimately showing that game equilibria in

which males use the threshold harassment h∗ in their strategy set corresponds to an attracting

evolutionary stable state where females are optimally distributed between alternative habi-

tats.

The rest of the article is structured as follows. In section 2, we briefly summarize the mat-

ing game model presented in Bokides et al. [1]. In section 3, we present our main results.

We begin with a nonlinear analysis of the model under degeneracy condition, proving that all

pure and mixed strategy equilibria are locally asymptotically stable whenever they exist [11].
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Next, we rule out the existence of periodic solutions by applying Dulac’s criterion [12]. Fi-

nally, using the results of Poincaré-Bendixson theorem [12], we show that these equilibria are

globally stable. We conclude with a brief discussion our results, noting their biological impli-

cations in the context of evolutionary stable strategies (ESSs; Maynard Smith [13]) and ideal

free distributions (IFDs; Fretwell & Lucas [14]) of fitness-optimizing animals in population

games [15]. Proofs of our main analytical results are presented in the appendix.

2. A coercive mating game

For the reader’s convenience, we briefly review and summarize main results of the Bokides

et al. model [1]. The model is styled similar to classical habitat choice games [13] with a fixed

population of females (N f ) and males (Nm) vying to maximize resource intake and mating

benefits.

The game unfolds over two interconnected patches: a communal habitat (patch 1) where

males and females can interact, and a spatially isolated female refuge (patch 2) where males

are excluded. The model assumes that there is intraspecific resource competition in each

patch, but that sex ratio variation within the communal patch is strictly due to female move-

ment to and from the refuge. Males are distinctly identifiable by their harassment phenotype

hr and hi (respectively, low and high). The probabilities that a male uses each harassment

type (or equivalently, the proportion of all males using each type) are represented by state

variables mr and mi respectively. Similarly, the probabilities that a female uses the commu-

nal and refuge patches (or the proportion of all females using each patch) are represented by

f1 and f2 respectively. Fitness is defined as lifetime reproductive success; it is calculated by

multiplying the probability of survival (1/µ f for females, and 1/µm for males) with the value of

reproduction. Reproductive success depends on resource intake for both males and females.

However, for females, the model assumes that resource intake contributes more to lifetime

reproductive fitness than mating alone. This can occur if females do not benefit from exces-

sive mating, but suffer associated costs such as injury, predation risk, etc. [3, 16]. Conversely,

for males, lifetime reproductive fitness is assumed to increase with mating frequency, which

correlates with their harassment level (i.e., hr or hi ). Moreover, males also pay an energetic

cost (c) proportional to their aggression level. Because males behave like predators, acting to

maximize food intake and mating interactions in patch 1, their fitness is calculated by mul-

tiplying together: (i) intake rate, (ii) the net benefit of using a harassment strategy relative to

the total number of mating attempts per female, and (iii) survival probability.

Wmr
=

ν1

f1N f +Nm
·

( f1N f b −c)hr

(mr hr +mi hi )bNm
·

1

µm
(2.1a)

Wmi
=

ν1

f1N f +Nm
·

( f1N f b −c)hi

(mr hr +mi hi )bNm
·

1

µm
(2.1b)
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On the other hand, because female survival in patch 1 is assumed to decrease with mat-

ing frequency, their fitness is calculated by multiplying together: (i) intake rate, (ii) the total

number of mating attempts per female, and (iii) survival probability. Moreover, female fitness

in patch 2 is only dependent on intake since males are excluded.

W f1
=

ν1

f1N f +Nm
·

1

(mr hr +mi hi )Nm
·

1

µ f

(2.2a)

W f2
=

ν2

f2N f

·
1

µ f

(2.2b)

Since f1 + f2 = 1 and mr +mi = 1, the strategy dynamics of female patch use and male

harassment can be modeled by a system of replicator equations [11]:

ḟ1 = f1(1− f1)[W f1
−W̄ f ]

ṁr = mr (1−mr )[Wmr
−W̄m]

(2.3)

where:

W̄ f = f1W f1
+ (1− f1)W f2

(2.4a)

W̄m = mr Wmr
+ (1−mr )Wmi

(2.4b)

The dynamical system (2.3) is defined on the unit square: S = {( f1,mr ) : 0 ≤ f1 ≤ 1,0 ≤

mr ≤ 1} for non-negative initial conditions in S . Moreover, it contains up to five equilibrium

states, three of which females use the communal patch with non-zero probability (cf. Table

1). Bokides et al. [1] showed that the interior equilibrium where males use a probabilistic mix

of low and high harassment (i.e., hr and hi ) with females present was stable if and only if there

existed intermediate harassment threshold:

h∗
=

ν1(bN f −c)

ν2(c +bNm)Nm
, hr < h∗

< hi (2.5)

where bN f > c . Moreover, in the limit when there is no harassment costs:

lim
c→0

h∗
=

ν1N f

ν2N 2
m

, (2.6)

this threshold (2.5) depends on the relative resource quality of the communal and refuge habi-

tats, as well as the population sex ratio. Since the communal patch sex ratio is driven by fe-

male dispersal, this suggests that selection would increasingly favor aggressive males when-

ever the local sex ratio (i.e., in the communal patch) became female-biased. Conversely, se-

lection would favor non-aggressive males whenever the local sex ratio became male-biased.
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Figure 1: Phase portrait of model (2.3) when hr < h∗ < hi . There is a unique stable mixed

strategy interior equilibrium where G intersects the line f1 = c/bN f . All other equilibria are

unstable.

3. Results

3.1. Degenerate case: hi = h∗ (hr < hi )

When they exist, the mixed harassment equilibrium (E1) as well as the pure high and low

harassment equilibria (E2 and E3 respectively) are connected by a curve:

G( f1;hi ) =
hi f1ν2Nm N f −ν1N f (1− f1)+hi N 2

mν2)

ν2Nm(hi −hr )( f1N f +Nm)
(3.1)

which is strictly convex (i.e., ∂G2

d f 2
1

< 0) provided hr < hi . Biologically, G represents the female

equal-payoff curve on which the expected value of using the communal and refuge patches

are balanced for a given male harassment strategy. Under the condition hr 6= hi and hr <

h∗ < hi , the phase portrait of (2.3) is partitioned into four distinct regions with a unique stable

mixed strategy equilibrium, E1 (Fig. 1). However, system (2.3) becomes degenerate if hi = h∗

(or alternatively, hr = h∗). In this paper, we will restrict our analysis to the former as these

cases are symmetrical.

For instance, suppose that we take hi > h∗ as a control parameter. Mathematically, we

claim that system (2.3) undergoes a transcritical bifurcation at hi = h∗, leading to a subse-

quent exchange of stability between the mixed strategy state (E1) and the pure strategy state

(E2). To see this, we note that as hi decreases towards h∗, G( f1) moves to the right, drawing

E1 and E2 closer. When hi = h∗, these points coalesce, destroying the mixed strategy. More-

over, when hi < h∗, E2 is the focal stable node. At the bifurcation point, a new equilibrium
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Table 1: Equilibria and stability conditions for model (2.3) assuming hr < hi . Pure strategy

equilibria where males harass close to the threshold level h∗ are locally stable. Note that when

E1, E2, or E3 exist, they are the only stable points in the plane. However, E4 and E5 are not

biologically realistic because in each case, females always use the refuge patch.

Equilibrium Existence condition Local stability

E1 =

(

c
bN f

,
hi−h∗

hi−hr

)

hr < h∗ < hi hr < h∗ < hi

E2 =

(

ν1N f −hi N 2
mν2

ν1N f +hi Nm N f ν2
,0

)

ν1N f > hi N 2
mν2 hr < hi <h∗

E3 =

(

ν1N f −hr N 2
mν2

ν1N f +hr Nm N f ν2
,1

)

ν1N f > hr N 2
mν2 h∗ <hr < hi

E4 = (0,1) Always
h∗ <hr < hi ,

ν1N f <hr N 2
mν2

E5 = (0,0) Always Never

E∗ = (c/bN f ,0) is formed where males use the harassment level h∗ with unit probability. A

straightforward linear analysis of (2.3) near E∗ yields the following eigenvalues:

λ1 =−
(ν1 +hi Nmν2)(ν1N f −hi N 2

mν2)

hi N f Nm(N f +Nm)ν1µ f
< 0, (3.2a)

λ2 =
(hi −hr )(hi −h∗)(c +bNm)ν2

hi b(N f +Nm)µm
. (3.2b)

Clearly, λ1 is strictly negative whenever E2 exists (cf. Table 1). However, λ2 is zero when-

ever hi = h∗ (since we assume hr 6= hi ). Thus, the linearization fails to predict local dynamics

of (2.3) near E∗. Subsequent steps usually involve analysis of higher order terms in the Taylor

series expansion, or using the Center Manifold Theorem as described in [11, 17]. Our ap-

proach here is subtler.

3.2. Non-linear stability analysis of E∗

To determine whether (2.3) is stable against perturbations once at the new pure strategy

state E∗ = (c/bN f ,0), we analyzed its nonlinear dynamics near E∗. Figure 2 shows the phase

portrait of (2.3). The nullclines of ḟ1 are the lines f1 = 0 and f1 = 1. There is also an interior

nullcline defined by:

G( f1;h∗) =
(1− f1)(c +bNm)ν1N f − ( f1N f +Nm)(bN f −c)ν1

( f1N f +Nm)((c +bNm)hr Nmν2 − (bN f −c)ν1)
(3.3)

which connects equilibriums E∗ and E3 when hi = h∗. The nullclines of ṁr are the lines

mr = 0, mr = 1. There is also an interior nullcline defined by:

f1 =
c

bN f

(3.4)
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Figure 2: Phase portrait of (2.3) when hi =h∗. The interior nullclines of mr (red) and f1 (blue)

partition the strategy space into distinct regions (I), (II) & (III). We conjecture that the given

sufficient time, all initial conditions converge to ( f ∗
1 ,m∗

r ) = c/bN f ,0).

on which the fitness of male using alternative strategies are identically zero. Thus, (3.4) rep-

resents the male equal-payoff curve.

Starting in region (I), trajectories tend away from E∗ (Fig. 2). This is because when there

are few available females, the costs of harassing to males are much greater than the expected

benefits (i.e., b f1N f < c). As such, males can increase their fitness by using the less aggressive

strategy. This dynamic, in turn, improves the social environment of the communal patch,

and drives females to use with it increasing frequency especially if intake rates are lower in

the refuge. However, as more females become available, there is weak selection for aggressive

males who will get a slightly greater share of mating by harassing more than others. Moreover,

the communal patch will remain favorable for females until average fitness in both patches

are balanced (i.e., on the equal payoff curve G). Consequently, in region (III), all trajectories

tend towards E∗.

We conjectured that an invariant region exists inside S , which traps local trajectories and

forces them toward E∗ asymptotically. We proved this by first showing that (2.3) is bounded

in the stripΩ⊂S :

Ω=

{

( f1,mr ) :
c

2bN f

≤ f1 ≤
c

bN f

, 0 ≤ mr ≤ 1

}

. (3.5)

In particular, we claim the following lemmas.

Lemma 3.2.1. Suppose that hr < hi = h∗. Then, there exists some positive constant C1 such
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that

ḟ1 ≥C1

(

c

bN f

− f1

)

, ∀ ( f1,mr ) ∈Ω.

Lemma 3.2.2. Suppose that hr < hi = h∗. Then, there exists some positive constant C2 such

that

ṁr ≤C2mr

(

c

bN f
− f1

)

, ∀ ( f1,mr ) ∈Ω.

Lemma 3.2.3. Suppose that hr < hi = h∗. There exists some positive constant C3 such that

ṁr

ḟ1

≤C3mr , ∀ ( f1,mr ) ∈Ω.

We direct the reader to appendix A for detailed proofs of these results. Next, we showed

that for some sufficiently small ε> 0, the ratio ṁr

ḟ1
=

dmr

d f1
< 1 holds on a line segment L in the

( f1,mr ) plane (Fig. 3). Specifically, L is given by:

L =

{

( f1,mr ) : mr = f1 −

(

c

bN f

−ε

)

,
c

bN f

−ε≤ f1 ≤
c

bN f

}

, (3.6)

which connects the points ( c
bN f

− ε,0) and ( c
bN f

,ε) and forms a right triangle with the lines

mr = 0 and f1 =
c

bN f
in region (I) (Fig. 3). This result is summarized in the following lemma (a

proof of which is also given in appendix A).

Lemma 3.2.4. Suppose that hr < hi = h∗. For any 0 < ε≤ min
{

c
2bN f

, 1
2C3

}

,

ṁr

ḟ1

≤
1

2
, ∀ ( f1,mr ) ∈L .

To complete the argument, it sufficed to construct a square of dimensions l = w = ε,

which together with L forms a trapezoid ABCD enclosing E∗ . All together, Lemmas 3.2.1−3.2.4

show that the region contained with trapezoid ABCD is invariant under the flow of system

(2.3). Moreover, since ε can be chosen to be arbitrarily small, E∗ is locally asymptotically

stable.

3.3. Ruling out closed orbits

Periodic solutions are not uncommon in asymmetric fitness games with co-evolving strate-

gies (e.g., predator-prey games [15]). Like predator-prey conflicts, mating conflicts between

males and females may also generate a co-evolutionary cycling especially if the value of adap-

tations exhibits negative frequency-dependence (i.e., rare strategies have higher fitness than

common types). However, we claim that the system (2.3) cannot have periodic solutions as
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Figure 3: Trapping region. The trapezoid ABC D defines an invariant region within which

trajectories approach E∗ = (c/bN f ,0) asymptotically. Note also that Ω always contains L

because ε≤ c
2bN f

. Also, since ε can be chosen arbitrarily small, the construction always exists.

a consequence of the Bendixson-Dulac theorem. A proof of this theorem can be found in

Strogatz [12]. In appendix B, we show that:

β( f1,mr ) =

[

( f1N f +Nm)((hr −hi )mr +hi )

f1(1− f1)(1−mr )mr

]

(3.7)

is a Dulac function for system (2.3), which necessarily excludes the possibility of closed orbit

solutions lying entirely in S .

3.4. Global stability

By excluding periodic orbits from system (2.3), our analysis also suggest that all locally

stable equilibria (even in the degenerate case hi = h∗) are in fact globally asymptotically sta-

ble whenever they exist. This result is a directly corollary of the Poincaré-Bendixson theorem

— a proof of which can also be found in Strogatz [12].

In appendix C, we remark that (2.3) satisfies the hypothesis of the Poincaré-Bendixson

theorem specifically because it is continuously differentiable and bounded in the unit square

S , which is a closed subset ofR2. Moreover, because (2.3) never exhibits multstability (i.e., si-

multaneously contain two or more locally stable equilibria; c.f. Table 1), Poincaré-Bendixson

theorem allows us to conclude that any existing locally stable equilibrium of (2.3) must also

be globally asymptotically stable.

In biological terms, this result suggests that any initial combination of female patch use

frequency and male aggression lead to one of two outcomes: (i) fixation of a pure male ha-
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rassment strategy with female patch use at a low or high frequencies or (ii) fixation of mixed

male harassment strategy with female patch use at an intermediate frequency. In either case,

the average frequency at which females use the communal patch at equilibrium will balance

the costs of male harassment.

4. Discussion

We analyzed the replicator equations (2.3) of a mating game between females who mod-

ulate the proportion of time spent in a refuge patch where they are not available to mate, and

males who employ one of two costly harassment tactics (hr or hi ) to mate with available fe-

males. Specifically, we focused on the stability of system (2.3) at a degenerate equilibrium

E∗ = (c/bN f ,0) where females use the communal patch with frequency f ∗ = c/bN f and ag-

gressive males always use the threshold harassment (i.e., hi = h∗) (see equation (2.5)). Our

analysis revealed that E∗ is globally asymptotically stable, suggesting that the implied equilib-

rium strategies are evolutionarily optimal. We will argue this claim using analogous principles

from evolutionary game theory [13] and ideal free distribution theory [14].

In evolutionary game theory, a strategy is called evolutionary stable (i.e., an ESS) if the

strategy cannot be invaded by an initially rare mutant once it is being used by majority of

individuals in a population [13, 18]. Generally speaking, there is a tight correspondence be-

tween ESSs and asymptotically stable equilibria of replicator equations [11]. This is because

the replicator dynamics provide a trajectory of the expected fitness of any strategy. Hence,

by proving that E∗ is both locally and globally convergent, we have also shown that in a

monomorphic population, any female (or male) deviating from the equilibrium strategy will

have a lower average fitness relative to others. Consequently, these variants will ultimately be

purged from the population. More generally, our results also hold in non-degenerate cases

hi 6= h∗ for any existing pure or mixed equilibrium strategies (cf. Table 1).

Our results also argue that f ∗ is an optimal patch use frequency for females in the con-

text of an ideal free distribution (IFD). IFD theory [14] provides a framework to understand

how animals should be distributed in patchy environments, assuming they can move freely

and have a complete knowledge about the quality of each habitat. Previously, Cressman et

al. [15] showed that IFD strategies in a general two-patch predator-prey game always corre-

spond to locally asymptotically stable equilibria of the replicator equation if intraspecific prey

competition was allowed.

In the mating game modeled by (2.3), males act like predators altering their harassment

strategy, while females act like prey freely moving between a communal and refuge habitat.

Moreover both sexes compete for resources which contribute to their fitness. The female

equal-payoff curve (3.1) describes the set of male harassment strategies that equalize fitness
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between habitats. Similarly, the male equal-payoff curve (3.4) describes the set of patch use

frequencies at which males are indifferent to harassing at high or low levels. Therefore, points

on either curve correspond to fitness matching Nash equilibria. However, these equilibria

are only evolutionarily stable when they coincide (Fig. 1). As we have shown, a female strat-

egy that uses the communal patch with probability f ∗ = c/bN f when males use h∗ with unit

probability satisfies these Nash conditions, and is convergent (Fig. 2-3). Thus, they corre-

spond to IFD strategies for the mating game.

Our global stability results strengthen those reported in Bokides et al. [1] by predicting

one of two evolutionary outcomes at the population scale: (i) fixation of males who always

harass at high (or low) levels with female patch use at a low (or high) frequencies or (ii) fixation

of males who use mixed harassment strategy depending on h∗ with female patch use at an

intermediate frequency (cf. Table 1). Some recent experiments [20, 21] provide evidence for

evolutionarily stable moderate aggression phenotype in artificially structured populations of

A. remigis. In these studies, the overall mating activity of groups declined with the proportion

of hyper-aggressive males they contained. Consequently, groups with less aggressive males

produced more offspring than those with hyper-aggressive males [20].

In reality, female dispersal reduces the fitness of nearby males regardless of their aggres-

sion level. Thus, non-aggressive males may respond in kind by dispersing away from overly

aggressive individuals (i.e., to improve their mating prospects) [6, 20, 21]. We can capture this

dynamic in (2.3) by allowing males to access the refuge patch, but with additional mortality

associated with their harassment strategy. This is plausible if males face predation risk trade-

offs while mating/foraging in the refuge [19]. Clearly, in this scenario, the equilibrium IFD

female strategies will depend both on the sex ratio and the distribution of male harassment

strategies between patches. Thus, we may find the emergence of different kinds of asymp-

totic behavior driven by coexisting ESSs and/or limit cycles, as is the norm for similarly styled

predator-prey games (cf. [15]).

Furthermore, because population structure can emerge from females (and males) dis-

persing away from low quality social/resource environments and assorting in high quality

ones [22], multi-level selection may favor the evolution of tapered male aggression [6, 20, 21].

Thus, expanding the current model to multiple patches of varying accessibility may yield in-

sights on the evolutionary trajectory of male aggression in a realistic population.

In summary, we showed that the Bokides et al. [1] model only exhibits equilibrium be-

havior. We also proved that any existing equilibrium strategy would be globally asymptotically

stable, improving on their results. Finally, we concluded that due to the asymptotic conver-

gence of these equilibria (even in degenerate cases), the implied male harassment and female
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patch use strategies would be evolutionarily stable. Future work on this model should incor-

porate male movement within the current framework. This work might provide further in-

sights into how conditional dispersal and assortment can influence selection for costly mate

coercion strategies in a realistic population.

Appendix

A: Constructing a Locally Invariant Region

Consider the following region:

Ω=

{

( f1,mr ) :
c

2bN f
≤ f1 ≤

c

bN f
, 0 ≤mr ≤ 1

}

. (3.8)

Note thatΩ⊂S and contains the degenerate monomorphic equilibrium:

E∗
= ( f ∗

1 ,m∗
r ) =

(

c

bN f

,0

)

(3.9)

where males use an intermediate harassment level

h∗
=

(bN f −c)ν1

ν2(c +bNm)Nm
.

Proof of the Lemma 3.2.1. Since hr < hi = h∗, from (2.3) we have

ḟ1 =
d f1

d t
= f1(1− f1)

[

ν1

( f1N f +Nm)h∗Nmµ f

−
ν2

(1− f1)N f µ f

]

(3.10)

After some direct calculations, we obtain

d f1

d t
≥

f1

µ f

·

[

ν1(1− f1)

( f1N f +Nm)h∗Nm
−

(bN f −c)ν1

(c +bNm)h∗Nm N f

]

=
f1

f1N f +Nm
·

ν1(N f +Nm)

h∗Nmµ f (c +bNm)
·

(

c

bN f

− f1

)

.

(3.11)

Since c
2bN f

< f1 <
c

bN f
, we have

f1

f1N f +Nm
≥

c

2N f (c +bNm)
.

Therefore, we conclude that:

d f1

d t
≥

c

2N f (c +bNm)
·

ν1(N f +Nm)

h∗Nmµ f (c +bNm)
·

(

c

bN f

− f1

)

=C1

(

c

bN f

− f1

)

, (3.12)

where C1 is a positive constant independent of ( f1,mr )∈Ω. ���
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Proof of the Lemma 3.2.2. From (2.3), we have

ṁr =
dmr

d t
=mr

(

c

bN f
− f1

)

(1−mr )(h∗−hr )ν1N f

( f1N f +Nm)[(hr −h∗)mr +h∗]Nmµm
. (3.13)

Since ( f1,mr ) ∈Ω, we obtain

0< 1−mr < 1, f1N f +Nm ≥
c

2b
+Nm , (hr −h∗)mr +h∗ ≥ hr .

Hence,

dmr

d t
≤ mr

(

c

bN f
− f1

)

(h∗−hr )ν1N f

[c/(2b)+Nm]hr Nmµm
:=C2mr

(

c

bN f
− f1

)

,

where C2 is a positive constant independent of ( f1,mr ) ∈Ω. ���

Proof of the Lemma 3.2.3. This result follows from Lemmas 3.2.1−3.2.2 immediately since

C3 =
C2

C1
which is independent of ( f1,mr ) ∈Ω . ���

Proof of the Lemma 3.2.4. Given any ε > 0, consider the following line segment in ( f1,mr )

plane, denoted by L , which is given by

L =

{

( f1,mr ) : mr = f1 −

(

c

bN f

−ε

)

,
c

bN f

−ε≤ f1 ≤
c

bN f

}

.

Note that the slope of L is equal to 1, and L connects points (c/(bN f )−ε,0) with (c/(bN f ),ε).

Without loss of generality, we choose ε≤ min
{

c
2bN f

, 1
2C3

}

. Note that L is contained in Ω

since ε≤ c
2bN f

. Also note that 0 ≤ mr ≤ ε for any ( f1,mr ) ∈L . Then by Lemma 3.2.3, for any

( f1,mr )∈L ,
dmr

dt

d f1

dt

≤C3mr ≤C3ε≤
1

2
, (3.14)

where the last inequality follows form our choice of ε. ���

B: Ruling out Closed Orbits

Bendixson-Dulac Criterion

Let ẋ = f (x) be a continuously differentiable vector field defined on a simply connected subset

R of the plane. If there exists a continuously differentiable, real-valued function β(x) such that

▽·β(ẋ) has only one sign throughout R, then there are no closed orbits lying entirely in R.

A proof of this result is given in on p. 202 in Strogatz [15]. It is easy to see that system (2.3)

satisfies the hypothesis of the Bendixson-Dulac theorem since it is continuously differentiable

in the interior of the unit square S :

S =
{

( f1,mr ) : 0≤ f1 ≤ 1,0 ≤mr ≤ 1
}

.
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We will now show for system (2.3) that:

β( f1,mr ) =

[

( f1N f +Nm)((hr −hi )mr +hi )Nmµm

f1(1− f1)(1−mr )mr

]

satisfies the Bendixson-Dulac theorem. First, we define the following functions over interior

of S :

K1(mr ) =
ν1

mr (1−mr )Nmµ f

K2(mr ) =
ν2((hr −hi )mr +hi )

mr (1−mr )N f µ f

K3( f1) =
ν1(bN f −c)(hr −hi )

f1(1− f1)Nmµm
.

(3.15)

Then,

▽·β(ẋ) =
∂

d f1
(β · ḟ1)+

∂

d f1
(β ·ṁr ) =−

(

N f +Nm

(1− f1)2

)

·K2 < 0. (3.16)

Since ▽·β(ẋ) holds ∀ ( f1,mr ) ∈
◦

S , we conclude that there are no closed orbits lying entirely

in S .

C: Globally stable

Poincare-Bendixson Theorem

Let R be a closed, bounded subset of the plane and let ẋ = f (x) be a continuously differentiable

vector field defined on an open set containing R. If R does not contain any fixed points; and

there exists a trajectory C that remains confined in R for all time, then either C is a closed orbit

or it spirals toward a closed orbit as t →∞.

A proof of this result is given in on p. 203 in Strogatz [15]. Again, system (2.3) satisfies

the hypothesis of the Poincare-Bendixson theorem since it is continuously differentiable and

bounded in the unit square S. Moreover, because there can be no closed orbit solution lying

entirely in S, any equilibrium of (2.3) that exists uniquely in S and is locally asymptotically

stable must also be globally stable.
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