Sturm-Liouville differential operators with deviating argument

Vjacheslav Anatoljevich Yurko, Sergey Alexandrovich Buterin, Milenko Pikula

Abstract


Non-selfadjoint second-order differential operators with a constant delay are studied. We establish properties of the spectral characteristics and investigate the inverse problem of recovering operators from their spectra. For this inverse problem the uniqueness theorem is proved.

Keywords


differential operators; deviating argument; spectral properties; inverse spectral problems

Full Text:

PDF

References


V. A. Marchenko, Sturm-Liouville Operators and Their Applications. Naukova Dumka, Kiev, 1977; English transl., Birkhauser, 1986.

B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow, 1984 (Russian); English transl., VNU Sci.Press, Utrecht, 1987.

G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and Their Applications. NOVA Science Publishers, New York, 2001.

V. A. Yurko, Introduction to the Theory of Inverse Spectral Problems, Moscow, Fizmatlit, 2007.

V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2002.

V. A. Yurko, Inverse Spectral Problems for Differential Operators and Their Applications, Gordon and Breach Science Publishers, Amsterdam, 2000.

R. Beals, P. Deift and C. Tomei, Direct and Inverse Scattering on the Line, Mathematica Surveys and Monographs, 28. AMS, Providence, RI, 1988.

V. A. Yurko, An inverse problem for integral operators, Mat. Zametki, 37(1985), no.5, 690--701; English transl. in Math. Notes 37 (1985) no 5-6, 378--385.

M. S. Eremin, An inverse problem for a second-order integro-differential equation with a singularity, Diff. Uravn., 24(1988), no.2, 350--351.

M. Pikula, Determination of a Sturm-Liouville-type differential operator with delay argument from two spectra, Mat. Vesnik, 43(1991), no.3-4, 159--171 (Russian).

V. A. Yurko, An inverse problem for integro-differential operators, Matem. Zametki, 50(1991),no.5, 134--146 (Russian); English transl. in Math. Notes, 50(1991), no.5-6, 1188--1197.

K. V. Kravchenko, On differential operators with nonlocal boundary conditions, Diff. Uravn., 36(2000), no. 4, 464--469; English transl. in Diff. Eqns., 36(2000), no.4, 517--523.

S. A. Buterin, The inverse problem of recovering the Volterra convolution operator from the incomplete spectrum of its rank-one perturbation, Inverse Problems, 22(2006), 2223--2236.

S. A. Buterin, Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator, Matem. Zametki, 80(2006), no.5, 668--682 (Russian); English transl. in Math. Notes, 80(2006), no.5, 631--644.

S. A. Buterin, On an inverse spectral problem for a convolution integro-differential operator, Results in Math., 50(2007), no.3-4, 173--181.

Yu. V. Kuryshova, The inverse spectral problem for integro-differential operators, Matem. Zametki, 81(2007), no. 6, 855--866 (Russian); English translation in Math. Notes, 81(2007), no. 5-6,767--777.

S. A. Buterin, On the reconstruction of a convolution perturbation of the Sturm-Liouville operator from the spectrum, Diff. Uravn., 46(2010), 146--149 (Russian); English transl. in Diff. Eqns., 46(2010), 150--154.

G. Freiling and V. A. Yurko, Inverse problems for Sturm-Liouville differential operators with a constant delay, Appl. Math. Lett., 25(2012), 1999--2004.

V. A. Yurko, An inverse spectral problems for integro-differential operators, Far East J. Math. Sci., 92(2014), no.2, 247--261.

S. A. Buterin and A. E. Choque Rivero, On inverse problem for a convolution integro-differential operator with Robin boundary conditions, Appl. Math. Lett., 48(2015), 150--155.

N. P. Bondarenko and S. A. Buterin, On recovering the Dirac operator with an integral delay from the spectrum, Res. Math. (2016), DOI 10.1007/s00025-016-0568-1.

A. D. Myshkis, Linear Differential Equations with a Delay Argument, Moscow, Nauka, 1951.

R. Bellman and K. L. Cooke, Differential-Difference Equations, The RAND Corp. R-374-PR, 1963.

S. B. Norkin, Second Order Differential Equations with a Delay Argument, Moscow, Nauka, 1965.

J. Hale, Theory of Functional-Differential Equations, Springer-Verlag, New York, 1977.

V. V. Vlasov, On the solvability and properties of solutions of functional-differential equations in a Hilbert space, Mat. Sb., 186(1995), no.8, 67--92 (Russian); English transl. in Sb. Math., 186 (1995), no. 8, 1147--1172.

J. B. Conway, Functions of One Complex Variable, 2nd ed., vol.I, Springer-Verlag, New York, 1995.




DOI: http://dx.doi.org/10.5556/j.tkjm.48.2017.2264

Sponsored by Tamkang University | ISSN 0049-2930 (Print), ISSN 2073-9826 (Online) | Powered by MathJax