Higher order optimality and duality in fractional vector optimization over cones

Muskan Kapoor, Surjeet Kaur Suneja, Meetu Bhatia Grover

Abstract


In this paper we give higher order sufficient optimality conditions for a fractional vector optimization problem over cones, using higher order cone-convex functions. A higher order Schaible type dual program is formulated over cones.Weak, strong and converse duality results are established by using the higher order cone convex and other related functions.

Keywords


Fractional Programming ; Vector Optimization ; Higher Order Convex ; Cones ; Optimality ; Duality.

Full Text:

PDF

References


A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Nav. Res. Logist. Quart., 9(1962), 181--186.

W.Dinkelbach, On nonlinear fractional programming, Manag. Sci., 13(1967), 492--497.

S. Schaible, Fractional programming I, Duality, Manag. Sci., 22(1976), 858--867.

S. Schaible, Fractional programming II, On Dinkelbach's Algorithm, Manag. Sci., 22 (1976), 868--873.

S. Schaible and T. Ibaraki, Fractional programming, European J. Oper. Res., 12 (1983), 325--338.

Z. A. Liang, H. X. Huang and P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, J. Optim. Theory Appl., 110 (2001), 611--619.

Z. A. Liang, H. X. Huang and P. M. Pardalos, Efficiency conditions and duality for a class of multiobjective fractional programming problems, J. Global. Optim., 27(2003), 447--471.

T. Antczak, A modified objective function method for solving multiobjective fractional programming problems, J. Math. Anal. Appl., 322(2006), 971--989.

A. Jayswal, R. Kumar and D. Kumar, Multiobjective fractional programming problems involving $(p,r)$-$rho$-$(eta,theta)$-invex function, J. Appl. Math. Comput., 39(2012), 35--51.

O. L. Mangasarian, Second and higher duality in nonlinear programming, Journal of Mathematical Analysis and Applications, 51(1975), 607--620.

X. Chen, Higher order symmetric duality in non-differentiable multiobjective programming problems, Journal of Mathematical Analysis and Applications, 290 (2004), 423--435.

X. M. Yang, K. L. Teo and X. Q. Yang, Higher order generalized convexity and duality in nondifferentiable multiobjective mathematical programming, Journal of Mathematical Analysis and Applications, 297(2004), 48--55.

S. K. Mishra and N. G. Rueda, Higher order generalized invexity and duality in non-differentiable mathematical programming, Journal of Mathematical Analysis and Applications, 272(2002), 496--506.

J. Zhang, Higher Order Convexity and Duality in Multiobjective Programming, in: A. Aberhard, R. Hill, D. Ralph and B.M. Glover(eds.), Progress in Optimization, Contributions from Australisia, Applied Optimization, 30, Kluwer Academic Publishers, Dordrecht (1989), 101--116.

M. Bhatia, Higher order duality in vector optimization over cones, Optimization Letters, 6(1)(2012), 17--20.

S. K. Suneja, P. Louhan and M. Bhatia, Higher-order cone-pseudoconvex, quasiconvex and other related functions in vector optimization, Optimization Letters, 7(4) (2013), 647--664.

S. K. Suneja, M. K. Srivastava and M. Bhatia, Higher order duality in ultiobjective fractional programming with support functions, Journal of Mathematical Analysis and Applications, 347(2008), 8--17.

D. S. Kim, Multiobjective fractional programming with a modified objective function, Commun. Korean Math. Soc., 20(2005), 837--847.

D. S. Kim, Nonsmooth multiobjective fractional programming with generalized invexity, Taiwan. J. Math., 10(2008), 467--478.

J. W. Chen, Y. J. Cho, J. K. Kim and J. Li, Multiobjective optimization problems with modified objective functions and cone constraints and applications, J. Glob. Optim., 49(2011), 137--147.

S. K. Suneja, S. Agarwal and S. Davar, Multiobjective symmetric duality involving cones, Eur. J. Oper. Res., 141(2002), 471--479.




DOI: http://dx.doi.org/10.5556/j.tkjm.48.2017.2311

Sponsored by Tamkang University | ISSN 0049-2930 (Print), ISSN 2073-9826 (Online) | Powered by MathJax