A contraction theorem in menger space

B. D. Pant, Sunny Chauhan

Abstract


The main purpose of this paper is to prove common fixed point theorem satisfying a new contraction type condition in Menger space.


Keywords


triangle function (t-norm), menger space, common fixed point,compatible maps, weakly compatible maps.

Full Text:

PDF

References


S. S. Chang, Y. J. Cho and S.M. Kang,NonlinearOperator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Huntington,USA, 2001.

G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. & Math. Sci., 9 (1986), 771–773.

G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), 227–238.

K.Menger, Statistical metric, Proc. Nat. Acad. (USA) 28 (1942), 535–537.

S. N. Mishra, Common fixed points of compatible mappings in probabilistic metric spaces, Math. Japon., 36 (1991), 283–289.

D. O’Regan, R. Saadati, Nonlinear contraction theorems in probabilistic spaces, Appl. Math. Comput., 195 (2008), 86–93.

B. D. Pant and S. Chauhan, A contraction theoreminMenger space using weak compatibility, Int. J.Math. Sci. & Engg. Appls., 4 (2010), 177–186.

B. Schweizer and A. Sklar, Statisticalmetric spaces, Pacific J.Math., 10 (1960), 313–334.

B. Schweizer and A. Sklar, ProbabilisticMetric Spaces, Elsevier, North-Holland,New York, 1983.

V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mappings on probabilistic metric spaces, Math. SystemTheory, 6 (1972), 97–102.

S. Shakeri, A contraction theorem in Menger probabilistic metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 189–193.

B. Singh and S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl., 301 (2005), 439–448.




DOI: http://dx.doi.org/10.5556/j.tkjm.42.2011.610

Sponsored by Tamkang University | ISSN 0049-2930 (Print), ISSN 2073-9826 (Online) | Powered by MathJax