
TAMKANG JOURNAL OF MATHEMATICS
Volume 44, Number 3, 279-288, Autumn 2013
doi:10.5556/j.tkjm.44.2013.1166

-
+

+

-

-
-

-
-

Available online at http://journals.math.tku.edu.tw/

SOME NEW INTEGRAL INEQUALITIES

LI YIN, DA-WEI NIU AND FENG QI

Abstract. In the paper, some new integral inequalities are presented by using analytic

methods.

1. Introduction

In [31] and its preprint [30], the following problem was posed by the third author.

Open Problem 1.1. Under what conditions does the inequality

∫b

a
[ f (x)]p dx ≥

[

∫b

a
f (x)dx

]p−1

(1.1)

hold for p > 1?

Since then, this problem has been stimulating much interest of many mathematicians. In

recent years, the third author has collected over forty articles devoted to answering and gen-

eralizing this open problem and to applying inequalities of this type. For potential availability

to interested readers, we list the collection in the list of references of this paper.

In [33] and its preprint [48], the following result was obtained.

Theorem 1.1 ([33]). Let f be a continuous function on [a,b]. If

∫b

a
f (x)dx ≥ (b −a)p−1 (1.2)

for some p > 1, then the inequality (1.1) is true.

Later in [32, p. 4, Theorem 1.1], an alternative condition for the inequality (1.1) to be valid

was procured.
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Theorem 1.2 ([32]). Let f (x) be continuous and not identically zero on [a,b] and differentiable

on (a,b) with f (a) = 0, and let α,β be positive real numbers such that α>β> 1. If

[

f (α−β)/(β−1)(x)
]′ R

(α−β)β1/(β−1)

α−1
(1.3)

for all x ∈ (a,b), then
∫b

a
[ f (x)]α dx R

[

∫b

a
f (x)dx

]β

. (1.4)

In [3, p. 124, Theorem C], a different form of the inequality (1.1) was established, which

can be reformulated as Theorem 1.3 below.

Theorem 1.3 ([3]). If f (x) is a continuous function on [a,b] such that f (a) ≥ 0 and f ′(x) ≥ p ≥
1 on (a,b), then

∫b

a
[ f (x)]p+2 dx ≥

1

(b −a)p−1

[

∫b

a
f (x)dx

]p+1

. (1.5)

The main purpose of this paper is to generalize the above-mentioned results and to present

some new integral inequalities.

2. Lemmas

For generalizing Theorems 1.1 to 1.3, we need the following lemmas.

Lemma 2.1. Let x1, x2, . . . , xn and y1, y2, . . . , yn be positive numbers. For p, q > 1 with 1
p + 1

q = 1,

we have
n
∑

k=1

x
p

k

y
p/q

k

≥
(

∑n
k=1

xk

)p

(

∑n
k=1

yk

)p/q
. (2.1)

The equality in (2.1) holds if and only if x1

y1
= x2

y2
= ·· · = xn

yn
.

Proof. Using Hölder’s inequality, we have

n
∑

i=1

xi =
n
∑

i=1

( xi

q
p

yi

q
p

yi

)

≤
[ n
∑

i=1

( xi

q
p

yi

)p
]1/p[ n

∑

i=1

(

q
p

yi

)q
]1/q

and
[ n
∑

i=1

(

q
p

yi

)q
]1/q

=
( n
∑

i=1

x
p

i

y
p/q

i

)1/p( n
∑

i=1

yi

)1/q

.

Combining the above inequality with the above equality yields (2.1). The proof of Lemma 2.1

is complete. ���

The integral form of Lemma 2.1 may be easily derived as follows.
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Lemma 2.2. Let f (x) and g (x) be positive and integrable functions on [a,b]. If p > 1 and the

functions f p (x) and g p−1(x) are integrable on [a,b], then

∫b

a

f p (x)

g p−1(x)
dx ≥

[∫b
a f (x)dx

]p

[∫b
a g (x)dx

]p−1
. (2.2)

The equality in (2.2) holds if and only if f (x) = k g (x).

Lemma 2.3. Let fk (x) and gk (x) for k = 1,2. . . ,n be positive and integrable functions on [a,b].

If 1 < p ≤ 2 and the functions f
p

k
(x) and g

p−1

k
(x) are integrable on [a,b], then

n
∑

k=1

∫b
a f

p

k
(x)dx

∫b
a g

p−1

k
(x)dx

≥
∫b

a

[

∑n
k=1

fk (x)
]p

dx
∫b

a

[

∑n
k=1

gk (x)
]p−1

dx
. (2.3)

Proof. We prove the inequality (2.3) by mathematical induction.

When n = 1, the inequality (2.3) is trivial.

When n = 2, the inequality (2.3) may be rewritten as

∫b
a [ f1(x)+ f2(x)]p dx

∫b
a [g1(x)+ g2(x)]p−1 dx

≤
∫b

a f
p

1 (x)dx
∫b

a g
p−1
1 (x)dx

+
∫b

a f
p

2 (x)dx
∫b

a g
p−1
2 (x)dx

. (2.4)

Setting

A1 =‖ f1(x)‖p =
[

∫b

a
f

p
1 (x)dx

]1/p

,

A2 =‖ f2(x)‖p =
[

∫b

a
f

p
2 (x)dx

]1/p

,

B1 =‖g1(x)‖p−1 =
[

∫b

a
g

p−1
1 (x)dx

]1/(p−1)

,

B2 =‖g2(x)‖p−1 =
[

∫b

a
g

p−1
2 (x)dx

]1/(p−1)

.

Then, the inequality (2.4) becomes

A
p
1

B
p−1
1

+
A

p
2

B
p−1
2

≥
‖ f1(x)+ f2(x)‖p

p

‖g1(x)+ g2(x)‖p−1
p−1

. (2.5)

By Lemma 2.2, we obtain

A
p
1

B
p−1
1

+
A

p
2

B
p−1
2

≥
(A1 + A2)p

(B1 +B2)p−1
. (2.6)

So, in order to prove the inequality (2.5), it is sufficient to show

[

‖ f1(x)‖p +‖ f2(x)‖p

]p

[

‖g1(x)‖p−1 +‖g2(x)‖p−1

]p−1
≥

‖ f1(x)+ f2(x)‖p
p

‖g1(x)+ g2(x)‖p−1
p−1

. (2.7)
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Since 1 < p ≤ 2, then 0 < p −1 ≤ 1. Applying Minkowski’s inequality leads to

‖ f1(x)‖p +‖ f2(x)‖p ≥ ‖ f1(x)+ f2(x)‖p (2.8)

and

‖g1(x)‖p−1 +‖g2(x)‖p−1 ≤ ‖g1(x)+ g2(x)‖p−1. (2.9)

Considering the ratio between inequalities (2.8) and (2.9) results in (2.7).

Now assume that the inequality (2.3) is true for some n = m ∈N. Letting







pi (x) = fi (x)

pm(x) = fm(x)+ fm+1(x)
and







qi (x) = gi (x)

qm(x) = gm(x)+ gm+1(x),

where i = 1,2, . . . ,m −1. By the inductive hypothesis and the inequality (2.4), we obtain

∫b
a

[

∑m+1
k=1

fk (x)
]p

dx
∫b

a

[

∑m+1
k=1

gk (x)
]p−1

dx
=

∫b
a

[

∑m
k=1

pk (x)
]p

dx
∫b

a

[

∑m
k=1

qk (x)
]p−1

dx
≤

m
∑

k=1

∫b
a p

p

k
(x)dx

∫b
a q

p−1

k
(x)dx

=
m−1
∑

k=1

∫b
a f

p

k
(x)dx

∫b
a g

p−1

k
(x)dx

+
∫b

a

[

fm(x)+ fm+1(x)
]p

dx
∫b

a

[

gm(x)+ gm+1(x)
]p−1

dx
≤

m+1
∑

k=1

∫b
a f

p

k
(x)dx

∫b
a g

p−1

k
(x)dx

.

This means that the inequality (2.3) holds for n =m+1. Lemma 2.3 is thus proved inductively.

���

The discrete version of the inequality (2.3) in Lemma 2.3 may be stated as a corollary

below.

Corollary 2.4. Let xk ,i for k = 1,2, . . . ,m and i = 1,2, . . . ,n be positive numbers. If 1 < p ≤ 2,

then
n
∑

i=1

∑m
k=1

x
p

k ,i
∑m

k=1
y

p−1

k ,i

≥
∑m

k=1

(

∑n
i=1

xk ,i

)p

∑m
k=1

(

∑n
i=1

yk ,i

)p−1
. (2.10)

Lemma 2.5. Let ak for k = 1,2, . . . ,n be nonnegative numbers. If p ≥ 1, then

( n
∑

k=1

ak

)p

≤np−1
n
∑

k=1

a
p

k
. (2.11)

Proof. This follows from the convexity of the function f (x) = xp for p ≥ 1 and the well known

Jensen’s inequality. ���

3. Main results

Now we are in a position to generalize Theorems 1.1 to 1.3.
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Theorem 3.1. Let fk (x) for k = 1,2, . . . ,n be positive integrable functions on [a,b]. If 1 < p ≤ 2

and
n
∑

k=1

∫b

a
fk (x)dx ≥ [n(b −a)]p−1, (3.1)

then
n
∑

k=1

∫b

a
f

p

k
(x)dx ≥

[ n
∑

k=1

∫b

a
fk (x) dx

]p−1

. (3.2)

Proof. Letting gk (x) = 1 in Lemma 2.3 results in

n
∑

k=1

∫b
a f

p

k
(x)dx

∫b
a 1p−1 dx

≥
∫b

a

[

∑n
k=1

fk (x)
]p

dx
∫b

a

(

∑n
k=1

1
)p−1

dx
.

Furthermore, by Lemma 2.2 and the condition (3.1), we have

n
∑

k=1

∫b

a
f

p

k
(x)dx ≥

1

np−1

∫b

a

[ n
∑

k=1

fk (x)

]p

dx =
1

np−1

∫b

a

[

∑n
k=1

fk (x)
]p

1p−1
dx

≥
1

np−1

[∫b
a

∑n
k=1

fk (x) dx
]p

(∫b
a 1dx

)p−1
≥

[
∫b

a

n
∑

k=1

fk (x)dx

]p−1

.

The proof is completed. ���

Remark 3.1. If n = 1, Theorem 3.1 generalizes Theorem 1.1 in relatively strong condition.

Theorem 3.2. Let fk (x) for k = 1,2, . . . ,n be nonnegative continuous functions on [a,b]. If
∑n

k=1
fk (x) is increasing on [a,b] and

n
∑

k=1

fk (x) ≥ (p −1)(b −a)p−2np−1, (3.3)

then the inequality (3.2) holds true for all p > 1.

Proof. For all x ∈ [a,b], let

H (x)=
n
∑

k=1

∫x

a
f

p

k
(t )dt −

[
∫x

a

n
∑

k=1

fk (t )dt

]p−1

.

A simple computation yields

H ′(x) =
n
∑

k=1

f
p

k
(x)− (p −1)

[
∫x

a

n
∑

k=1

fk (t )dt

]p−2 n
∑

k=1

fk (x).

Since
∑n

k=1
fk (x) is increasing on [a,b], then

0 ≤
∫x

a

n
∑

k=1

fk (t )dt ≤ (b −a)
n
∑

k=1

fk (x). (3.4)
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Further by Lemma 2.5, we have

H ′(x) ≥
n
∑

k=1

f
p

k
(x)− (p −1)(b −a)p−2

[ n
∑

k=1

fk (x)

]p−1

≥
1

np−1

[ n
∑

k=1

fk (x)

]p

− (p −1)(b −a)p−2

[ n
∑

k=1

fk (x)

]p−1

=
[ n

∑

k=1

fk (x)

]p−1
∑n

k=1
fk (x)− (p −1)np−1(b −a)p−2

np−1

≥ 0.

Thus, the function H (x) is increasing on [a,b]. In particular, H (b)≥ H (a)= 0, which gives the

desired inequality (3.2). ���

Theorem 3.3. Let fk (x) for k = 1,2, . . . ,n be nonnegative continuous on [a,b] and differentiable

on (a,b), such that
n
∑

k=1

fk (a)≥ 0 and
n
∑

k=1

f ′
k (x) ≥ p. (3.5)

Then we have
n
∑

k=1

∫b

a
f

p+2

k
(x)dx ≥

1

np+1(b −a)p−1

[ n
∑

k=1

∫b

a
fk (x)dx

]p+1

(3.6)

for all p > 1.

Proof. Set

G(x) =
n
∑

k=1

∫x

a
f

p+2

k
(t )dt −

1

np+1(b −a)p−1

[
∫x

a

n
∑

k=1

fk (t )dt

]p+1

for all x ∈ [a,b]. Simple computations and utilization of Lemma 2.5 and (3.4) yield

G ′(x) =
n
∑

k=1

f
p+2

k
(x)−

p +1

np+1(b −a)p−1

[
∫x

a

n
∑

k=1

fk (t )dt

]p n
∑

k=1

fk (x)

≥
1

np+1

[ n
∑

k=1

fk (x)

]p+2

−
p +1

np+1(b −a)p−1

[
∫x

a

n
∑

k=1

fk (t )dt

]p n
∑

k=1

fk (x)

=
∑n

k=1
fk (x)

np+1
h(x)

and

h′(x) = (p +1)

[ n
∑

k=1

fk (x)

]p n
∑

k=1

f ′
k (x)−

(p +1)p

(b −a)p−1

[
∫x

a

n
∑

k=1

fk (t )dt

]p−1 n
∑

k=1

fk (x)

≥ (p +1)

[ n
∑

k=1

fk (x)

]p[ n
∑

k=1

f ′
k (x)−p

]

≥ 0.

Since h(x) is increasing on [a,b] and h(a) =
[

∑n
k=1

fk (a)
]p+1 ≥ 0, the function G(x) is also

increasing on [a,b]. Especially, G(b) ≥G(a) = 0, which gives the desired inequality (3.6). ���
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Remark 3.2. If n = 1, Theorem 3.3 is just Theorem 1.3.

Corollary 3.4. Under conditions of Theorem 3.3, when [a,b]= [0,1], we have

n
∑

k=1

∫1

0
f

p+2

k
(x)dx ≥

1

np+1p

[ n
∑

k=1

∫1

0
fk (x)dx

]p+1

. (3.7)

Proof. This follows from respectively replacing fk (x) by p fk (x) and [a,b] by [0,1] in Theo-

rem 3.3. ���

Remark 3.3. If n = 1, Corollary 3.4 becomes [3, p. 124, Corollary 3.1].

By the similar method as above, we may prove following Theorem 3.5.

Theorem 3.5. Let fk (x) for k = 1,2, . . . ,n be nonnegative and continuous on [a,b] and be dif-

ferentiable on (a,b), such that

n
∑

k=1

fk (a)≥ 0 and
n
∑

k=1

f ′
k (x) ≥

2n2p

p +1
. (3.8)

Then
n
∑

k=1

∫b

a
f

2p+1

k
(x)dx ≥

{
∫b

a

[ n
∑

k=1

fk (x)

]p

dx

}2

(3.9)

for all p > 1.

Remark 3.4. If n = 1, Theorem 3.5 is the same as [3, p. 124, Proposition 1.1].

Theorem 3.6. Let fk (x) for k = 1,2, . . . ,n be nonnegative, continuous, and not identically zero

on [a,b] with fk (a)= 0, and let α,β be positive real numbers such that α>β> 1. If

{[ n
∑

k=1

fk (x)

](α−β)/(β−1)}′
≥

(α−β)
(

nα−1β
)1/(β−1)

α−1
(3.10)

for all x ∈ (a,b), then
n
∑

k=1

∫b

a
f α

k (x)dx ≥
[ n

∑

k=1

∫b

a
fk (x) dx

]β

. (3.11)

Proof. Utilizing Lemma 2.5 and Cauchy’s mean value theorem consecutively yields

[∫b
a

∑n
k=1

fk (x)dx
]β

∑n
k=1

∫b
a f α

k
(x)dx

=
β
[∫ξ

a

∑n
k=1

fk (x) dx
]β−1 ∑n

k=1
fk (ξ)

∑n
k=1

f α
k

(ξ)

≤
βnα−1

[∫ξ
a

∑n
k=1

fk (x) dx
]β−1

[

∑n
k=1

fk (ξ)
]α−1
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=
{

(

βnα−1
)1/(β−1) ∫ξ

a

∑n
k=1

fk (x)dx
[

∑n
k=1

fk (ξ)
](α−1)/(β−1)

}β−1

=
{

(

βnα−1
)1/(β−1) ∑n

k=1
fk (θ)

α−1
β−1

[

∑n
k=1

fk (θ)
]

α−β
β−1

∑n
k=1

f ′
k

(θ)

}β−1

=











α−β
α−1

(

βnα−1
)1/(β−1)

[

(

∑n
k=1

fk (θ)
)(α−β)/(β−1)

]′











β−1

≤ 1.

Thus, the inequality (3.11) follows. ���

Remark 3.5. If n = 1, Theorem 3.6 is reduced to [32, p. 7, Theorem 1.1].
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