A NOTE ON SIMPSON'S INEQUALITY FOR FUNCTIONS OF BOUNDED VARIATION

J. PEČARIĆ AND S. VAROŠANEC

Abstract. Inequalities of Simpson's type for functions whose n-th derivative, $n \in\{0,1,2,3\}$ is of bounded variation are given.

1. Introduction

One of fundamental results in numerical integration is Simpson's inequality which states if $f^{(4)}$ exists and is bounded on (a, b) then

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \frac{1}{2880}(b-a)^{5}\left\|f^{(4)}\right\|_{\infty} \tag{1}
\end{equation*}
$$

The disadvantage that this estimation can not be applied if the fourth derivate of f either does not exist on (a, b) or is not bounded there, was removed in result of Dragomir, [1]. Namely, in [1] the following result was proven.

Theorem A. Let $f:[a, b] \rightarrow \mathbf{R}$ be a mapping of bounded variation on $[a, b]$. Then

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq \frac{1}{3}(b-a) V_{a}^{b}(f) \tag{2}
\end{equation*}
$$

where $V_{a}^{b}(f)$ denotes the total variation of f on the interval $[a, b]$.
In the proof of the previous result the following identity is used:

$$
\begin{equation*}
-\int_{a}^{b} s(x) d f(x)=\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(a)+f(b)+4 f\left(\frac{a+b}{2}\right)\right] \tag{3}
\end{equation*}
$$

where

$$
s(x)= \begin{cases}x-\frac{5 a+b}{6} & x \in\left[a, \frac{a+b}{2}\right) \\ x-\frac{a+5 b}{6} & x \in\left[\frac{a+b}{2}, b\right]\end{cases}
$$

Received September 8, 1999.
2000 Mathematics Subject Classification. Primary 26D15, Secondary 41A55.
Key words and phrases. Simpson's inequality, function of bounded variation.

The right-hand side of (3) is denoted by $R(f)$. Similar identity can be found in the book [2, p.174] but for absolute continuous function f so that on the left-hand side of (3) we have $-\int_{a}^{b} s(x) f^{\prime}(x) d x$. In the same book some other identities in connection with Simpson's inequality are given. Here we give versions of those identities which are suitable for our purpose:

$$
\begin{align*}
& R(f)=\frac{1}{2} \int_{a}^{\frac{a+b}{2}}(x-a)\left(x-\frac{2 a+b}{3}\right) d f^{\prime}(x)+\frac{1}{2} \int_{\frac{a+b}{2}}^{b}(x-b)\left(x-\frac{a+2 b}{3}\right) d f^{\prime}(x) \tag{4}\\
& R(f)=-\frac{1}{6} \int_{a}^{\frac{a+b}{2}}(x-a)^{2}\left(x-\frac{a+b}{2}\right) d f^{\prime \prime}(x)-\frac{1}{6} \int_{\frac{a+b}{2}}^{b}(x-b)^{2}\left(x-\frac{a+b}{2}\right) d f^{\prime \prime}(x) \tag{5}\\
& R(f)=\frac{1}{24} \int_{a}^{\frac{a+b}{2}}(x-a)^{3}\left(x-\frac{a+2 b}{3}\right) d f^{\prime \prime \prime}(x)+\frac{1}{24} \int_{\frac{a+b}{2}}^{b}(x-b)^{3}\left(x-\frac{2 a+b}{3}\right) d f^{\prime \prime \prime}(x) \tag{6}
\end{align*}
$$

where f is a function such that $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ is of bounded variation, respectively. These identities are proven using integration by parts.

In [2], result related to (2) is given. Namely, using identity (6) it is proven that if $f^{\prime \prime \prime}$ is an absolutely continuous with total variation V_{3}, then

$$
\begin{equation*}
|R(f)| \leq \frac{1}{1152}(b-a)^{4} V_{3} \tag{7}
\end{equation*}
$$

Here, we state results related to inequalities (2) and (7) which give an error estimate of $R(f)$ expressed by total variation of either function f or its derivatives.

2. Main Results

Theorem 1. Let $n \in\{0,1,2,3\}$. Let f be a real function on $[a, b]$ such that $f^{(n)}$ is function of bounded varation. Then

$$
\left|\int_{a}^{b} f(x) d x-\frac{b-a}{6}\left[f(x)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]\right| \leq C_{n}(b-a)^{n+1} V_{a}^{b}\left(f^{(n)}\right)
$$

where

$$
C_{0}=\frac{1}{3}, C_{1}=\frac{1}{24}, C_{2}=\frac{1}{324}, C_{3}=\frac{1}{1152}
$$

and $V_{a}^{b}\left(f^{(n)}\right)$ is the total variation of function $f^{(n)}$.
Proof. For $n=0$ the proof is given in [1]. For $n=3$ the proof is similar to that one from [2].

If $n=1$, using identity (4) under notation

$$
s_{1}(x)= \begin{cases}\frac{1}{2}(x-a)\left(x-\frac{2 a+b}{3}\right), & x \in\left[a, \frac{a+b}{2}\right) \\ \frac{1}{2}(x-b)\left(x-\frac{2 b+a}{3}\right), & x \in\left[\frac{a+b}{2}, b\right]\end{cases}
$$

we have

$$
|R(f)|=\left|\int_{a}^{b} s_{1}(x) d f^{\prime}(x)\right| \leq \max _{x \in[a, b]}\left|s_{1}(x)\right| V_{a}^{b}\left(f^{\prime}\right)
$$

Maximum of function $\left|\frac{1}{2}(x-a)\left(x-\frac{2 a+b}{3}\right)\right|$ on interval $\left[a, \frac{a+b}{2}\right]$ is $\frac{(b-a)^{2}}{24}$, and the same value is maximum of function $\left|\frac{1}{2}(x-b)\left(x-\frac{2 a+b}{3}\right)\right|$ on interval $\left[\frac{a+b}{2}, b\right]$. So, $\max _{x \in[a, b]}\left|s_{1}(x)\right|$ $=\frac{(b-a)^{2}}{24}$ and

$$
|R(f)| \leq \frac{(b-a)^{2}}{24} V_{a}^{b}\left(f^{\prime}\right)
$$

If $n=2$ using identity (5) we have

$$
|R(f)|=\left|\int_{a}^{b} s_{2}(x) d f^{\prime \prime}\right| \leq \max _{x \in[a, b]}\left|s_{2}(x)\right| V_{a}^{b}\left(f^{\prime \prime}\right)
$$

where

$$
s_{2}(x)= \begin{cases}-\frac{1}{6}(x-a)^{2}\left(x-\frac{a+b}{2}\right), & x \in\left[a, \frac{a+b}{2}\right) \\ -\frac{1}{6}(x-b)^{2}\left(x-\frac{a+b}{2}\right), & x \in\left[\frac{a+b}{2}, b\right]\end{cases}
$$

Global maximum investigation gives that $\max _{x \in\left[a, \frac{a+b}{2}\right]}\left|-\frac{1}{6}(x-a)^{2}\left(x-\frac{a+b}{2}\right)\right|=$ $\max _{x \in\left[\frac{a+b}{2}, b\right]}\left|-\frac{1}{6}(x-b)^{2}\left(x-\frac{a+b}{2}\right)\right|=\frac{(b-a)^{3}}{324}$.

So, the following holds

$$
|R(f)| \leq \frac{1}{324}(b-a)^{3} V_{a}^{b}\left(f^{\prime \prime}\right)
$$

As a simple consequence of the previous theorem we have the following corollary.
Corollary 1. If f is a function on $[a, b]$ such that $f^{\prime \prime \prime}$ is of bounded variation then

$$
|R(f)| \leq \min _{n \in\{0,1,2,3\}}\left\{C_{n}(b-a)^{n+1} V_{a}^{b}\left(f^{(n)}\right)\right\}
$$

Corollary 2. Let $n \in\{0,1,2,3\}$. If f is a function such that $f^{(n)}$ is an absolute continuous function, then

$$
|R(f)| \leq C_{n}(b-a)^{n+1}\left\|f^{(n+1)}\right\|_{1}
$$

where $\|g\|_{1}=\int_{a}^{b}|g(x)| d x . C_{n}, n=0,1,2,3$, are constants defined in Theorem 1.
Using inequalities of Simpson's type from Theorem 1 we can obtain the following estimation of remainder term $R\left(f, \sigma_{n}\right)$ in Simpson's quadrature formula

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=A\left(f, \sigma_{n}\right)+R\left(f, \sigma_{n}\right) \tag{8}
\end{equation*}
$$

where σ_{n} is a partition of the interval $[a, b]$, i.e.

$$
\sigma_{n}=\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{m}=b ; a<x_{1}<\cdots<x_{m-1}<b\right\}
$$

and $A\left(f, \sigma_{n}\right)$ is equal to

$$
\frac{1}{6} \sum_{i=0}^{m-1}\left[f\left(x_{i}\right)+f\left(x_{i+1}\right)\right] h_{i}+\frac{2}{3} \sum_{i=0}^{m-1} f\left(\frac{x_{i}+x_{i+1}}{2}\right) h_{i} .
$$

We have the following estimations for $R\left(f, \sigma_{n}\right)$.
Corollary 3. Let $n \in\{0,1,2,3\}$. Let f be a function on $[a, b]$ such that $f^{(n)}$ is a function of bounded variation and σ_{n} be a partition of $[a, b]$. Then the remainder term $R\left(f, \sigma_{n}\right)$ in Simpson's quadrature formula (8) satisfies:

$$
\left|R\left(f, \sigma_{n}\right)\right| \leq C_{n} V_{a}^{b}\left(f^{(n)}\right) \cdot \max \left\{h_{i}^{n+1}: i=0, \ldots, n-1\right\}
$$

where $h_{i}=x_{i+1}-x_{i}, i=0,1, \ldots, m-1$, and C_{n} are defined as in Theorem 1.
Remark 1. Similary we can improve results related to special means given in [1].

References

[1] S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30(1999), 53-58.
[2] A. Ghizzetti and A. Ossicini, Quadrature formulae, International series of numerical mathematics, Vol. 13, Birkhäuser Verlag Basel-Stuttgart, 1970.

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
E-mail: pecaric@mahazu.hazu.hr
Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia.
E-mail: varosans@math.hr

