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PROPERTIES OF DOMAINLIKE RINGS

M. AXTELL, S. J. FORMAN AND J. STICKLES

Abstract. In this paper we will examine properties of and relationships between

rings that share some properties with integral domains, but whose definitions are

less restrictive. If R is a commutative ring with identity, we call R a domainlike

ring if all zero-divisors of R are nilpotent, which is equivalent to (0) being primary.

We exhibit properties of domainlike rings, and we compare them to présimplifiable

rings and (hereditarily) strongly associate rings. Further, we consider idealizations,

localizations, zero-divisor graphs, and ultraproducts of domainlike rings.

1. Introduction

Let R be a commutative ring with identity with total quotient ring T (R), group of

units U(R), set of zero-divisors Z(R), and Jacobson radical J(R). If A ⊆ R, we use A∗

to denote the nonzero elements of A. We call a ring R local if R is Noetherian and has
a unique maximal ideal, and R is quasi-local if R has a unique maximal ideal but is not

necessarily Noetherian.

For a, b ∈ R, we define three associate relations found in [2]. We say a and b are

associate, denoted a ∼ b, if a|b and b|a, or equivalently, if (a) = (b). We say a and b are

strongly associate, denoted a ≈ b, if there exists a u ∈ U(R) such that a = ub. We say
a and b are very strongly associate, denoted a ∼= b, if a ∼ b and either a = 0, or a = rb

implies r ∈ U(R). A ring R is a strongly associate ring if a ∼ b implies a ≈ b. A ring

R is a hereditarily strongly associate ring if every subring of R is a strongly associate

ring. The study of strongly associate rings was begun by Kaplansky in [24] and has been
further studied in [2], [4] and [30].

Recall that a ring R is called présimplifiable if xy = x for x, y ∈ R implies that either

x = 0 or y ∈ U(R). Présimplifiable rings were introduced by Bouvier in [13] - [17] and

later studied by D.D. Anderson et al. in [2], [4] and [5]. The following theorem shows

how the property of présimplifiable is related to the types of associate elements defined
above.
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Theorem 1. [2, Theorem 1] For a commutative ring R the following are equivalent.

(1) a ∼ b⇒ a ∼= b for all a, b ∈ R;

(2) a ≈ b⇒ a ∼= b for all a, b ∈ R;

(3) R is présimplifiable;

(4) Z(R) ⊆ J(R);

As an example, it is easy to check that Zn is présimplifiable if and only if n = pm,

where p is some prime. Hence, Zn is présimplifiable if and only if Zn is local. Also, if
a ring R is quasi-local, then R is présimplifiable, since J(R) = M, the unique maximal

ideal of R, and thus Z(R) ⊆M = J(R).

It is straightforward to show that if R is présimplifiable, then R is a strongly asso-

ciate ring. The converse is false, since a direct product of strongly associate rings is

strongly associate [2, Theorem 3], but a présimplifiable ring has no nontrivial idempo-

tents and hence is indecomposable. Also, any integral domain or any quasi-local ring is

présimplifiable and hence a strongly associate ring.

A présimplifiable ring R is defined in terms of a weakened cancellation property

and exhibits some of the same properties as an integral domain. The definition below,
introduced by Spellman et al. in [30] and explored by Anderson et al. in [2], is a type of

ring sharing more properties with integral domains than présimplifiable rings.

Definition 2. A ring R is domainlike if Z(R) ⊆ nil(R), the nilradical of R.

It is straightforward to verify that (0) is primary in R if and only if R is domainlike.

A classic and elementary result of commutative ring theory is that an ideal P is prime if

and only if R/P is an integral domain. The reader can quickly establish a parallel result
with domainlike rings; namely, an ideal Q is primary if and only if R/Q is domainlike.

By Theorem 1, if R is domainlike, then R is also présimplifiable. However, R being

présimplifiable does not imply that R is domainlike, as the following example shows.

Example 3. Let R = K [[x, y]] / (x) (x, y). Then R is local and hence is présimplifiable.

However, R is not domainlike, since Z(R) = (x, y) , while nil(R) = (x).

To summarize, we have the following implications.

R is quasi-local ⇒ R is présimplifiable ⇒ R is strongly associate

R is domainlike ⇒ R is présimplifiable ⇒ R is strongly associate

However, there is no implication between domainlike and quasi-local. Example 3

shows that a quasi-local (in fact, local) ring need not be domainlike. Further, Z is domain-

like, présimplifiable, and hereditarily strongly associate, but not quasi-local. It is also of

interest to note that a domainlike ring may be neither Noetherian nor quasi-local. For ex-

ample, R = Z[2X, 2X2, 2X3, . . . .] is domainlike, and R is not Noetherian, since the ideal
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P =
(

2X, 2X2, 2X3, . . .
)

cannot be finitely generated. Further,
(

2, 2X, 2X2, 2X3, . . .
)

is

maximal, as is
(

3, 2X, 2X2, 2X3, . . .
)

. Thus, R is domainlike, not quasi-local, and not

Noetherian.

If R is hereditarily strongly associate, then R need not be présimplifiable, domain-
like, nor quasi-local. For example, the reader can easily verify that Z × Z is hered-

itarily strongly associate. However, a direct product of présimplifiable rings is never

présimplifiable, and a direct product of domainlike rings is never domainlike. In addi-

tion, being hereditarily strongly associate is not preserved by direct products or subdirect

products [30, Remark 2].
The diagram below offers a summary of the results mentioned above, as well as results

from [2].

R hered.

d-like
→

R hered.

pré.

6←
→

R hered.

str. assoc.
l 6↑ ↓ 6↑ ↓

R [[X ]]

d-like

R
Noetherian
←
→
6←

R d-like
6←
→

R pré.
6←
→

R str.

assoc.

l 6ց 6տ
R quasi-

local

6ւ ր l ↑ 6↓

(0) primary
R very

str. assoc.

R [X ] str.

assoc.

l l
R [X ] d-like Z(R) ⊆ J(R)

l l
R [X ] pré. Z(R) ⊆ 1− U(R)

l
R [[X ]]
pré.

Here are some remaining questions concerning the above diagram.

(1) If R is strongly associate, is R[[X ]] strongly associate? [2, Question 21].

(2) If R[X ] is strongly associate, is R[X ] présimplifiable?

(3) If R is hereditarily présimplifiable (every subring of R is présimplifiable), is R
domainlike?

In Section 2 we will focus on domainlike rings and compare them to présimplifiable

rings and (hereditarily) strongly associate rings. In Section 3 we will explore idealiza-

tions and localizations of domainlike rings. We then consider zero-divisor graphs and

ultraproducts of domainlike rings in Sections 4 and 5.
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2. Domainlike properties and Présimplifiable rings

It is of interest to note that if R is domainlike, then so is the total quotient ring
T (R). To see this, assume R is domainlike. Let r1

s1

, r2

s2

∈ T (R) with r1

s1

6= 0 and assume
r1

s1

· r2

s2

= 0
1
. There exists an s ∈ reg(R) such that s(r1r2 − 0) = 0. Thus, r1r2 = 0. If

r1 6= 0, then rn
2 = 0 for some n, since (0) is primary in R. Hence, ( r2

s2

)n = 0
1
, and so (0)

is primary in T (R).
It is also straightforward to see that if R is domainlike, then R/nil(R) is an integral

domain. The converse however is false. As in Example 3, take R = K [[x, y]] / (x) (x, y).
We see R is not domainlike, but nil(R) = (x) is prime.

The following result is another interesting property of domainlike rings.

Lemma 4. If R is domainlike, then Z(R) is the unique minimal prime ideal of R.

Proof. This follows when R is domainlike, since if P is a prime ideal, then nil(R) ⊆ P .

In particular, the above lemma provides an alternate proof of the fact that if R

is domainlike, then R/nil(R) is an integral domain. In general, a domainlike ring is
not necessarily an integral domain, but as the next result shows for rings of the form
R/rad(I), where I is an ideal of R and rad(I) = {r ∈ R | rn ∈ I for some n > 0}, the

two concepts are equivalent.

Lemma 5. For a ring R and an ideal I of R, R/rad(I) is domainlike if and only

if R/rad(I) is an integral domain. In particular, R/nil(R) is domainlike if and only if

R/nil(R) is an integral domain.

Proof. (⇐) Clear.
(⇒) Suppose ab = 0 in R/rad(I) with a 6= 0. Then ab ∈ rad(I), but a /∈ rad(I).

Since R/rad(I) is domainlike, rad(I) is primary. Therefore, bn ∈ rad(I) for some n > 0,
which implies (bn)l ∈ I for some l > 0. Thus, b ∈ rad(I), b = 0, and R/rad(I) is an
integral domain.

Given the above result, it is natural to consider when R/nil(R) is présimplifiable.

Theorem 6. Given a ring R, R/nil(R) is présimplifiable if and only if whenever

xy = x and x /∈ nil(R), then y ∈ U(R).

Proof. (⇐) Suppose xy = x and x 6= 0. Thus, x /∈ nil(R) and x− xy ∈ nil(R). This

implies [x(1 − y)]n = xn(1 − y)n = 0. Therefore xn[1 − y ·
∑n

i=1(−1)i−1
(

n
i

)

yi−1] = 0,
or xn = xny ·

∑n

i=1(−1)i−1
(

n

i

)

yi−1. Since x /∈ nil(R), we have xn 6= 0 and so y ·
∑n

i=1(−1)i−1
(

n
i

)

yi−1 ∈ U(R). Hence, y ∈ U(R) and y ∈ U(R/nil(R)).

(⇒) Suppose xy = x and x /∈ nil(R). Then xy = x and x 6= 0. This implies
y ∈ U(R/nil(R)), and after a calculation similar to one above, we obtain y ∈ U(R).

Thus, if R is présimplifiable, then R/nil(R) is présimplifiable and hence strongly

associate. However, as Example 11 will show, R/nil(R) being présimplifiable does not



PROPERTIES OF DOMAINLIKE RINGS 155

imply that R is présimplifiable or that R is strongly associate. In addition, it is interesting

to note that if R is strongly associate, then R/nil(R) need not be présimplifiable. For

example, R = Z3×Z3 is strongly associate and (1, 0) (1, 0) = (1, 0), where (1, 0)
n 6= (0, 0)

and (1, 0) /∈ U(R).

We have previously seen that domainlike rings are always présimplifiable and that

the converse is not true in general. In fact, if we have a présimplifiable ring that is not

domainlike, then we can say that it has a certain degree of complexity within its prime

spectrum.

Lemma 7. If R is présimplifiable and (0) is not primary, then dim(R) ≥ 1.

Proof. Since (0) is not primary, there exists x, y ∈ R such that xy = 0 where y 6= 0

and xn 6= 0 for all n. So, x ∈ Z(R) ⊆ J(R) by Theorem 1, and hence x is contained

in every maximal ideal of R. Now, S = {xn}∞n=1 is a multiplicatively closed set and

x /∈ nil(R). Thus, nil(R) is an ideal disjoint from S. Using Zorn’s Lemma, expand nil(R)

to a prime ideal P disjoint from S. Then x /∈ P, and so P is not a maximal ideal. Thus

P ( M for some maximal ideal M of R, which implies dim(R) ≥ 1.

It follows directly from Lemma 7 that if R is présimplifiable and dim(R) = 0, then

(0) must be primary and hence R is domainlike.

Theorem 8. For a ring R, the following are equivalent.

(1) R is présimplifiable with dim(R) = 0;

(2) R has a unique prime ideal, i.e. R is primary;

(3) R is domainlike and all nonunits are zero-divisors.

Proof. (1) ⇒ (2) Since dim(R) = 0, all prime ideals are maximal. By Lemma

7, since R is présimplifiable and dim(R) = 0, we must have nil(R) is prime and hence

maximal. Since nil(R) is maximal and is the intersection of all prime ideals of R, we

have nil(R) as the only prime ideal in R. Hence, R is primary.

(2)⇒ (3) By Lemma 4.

(3)⇒ (1) If R is domainlike, then R is présimplifiable. Also, if R is domainlike, then

Z(R) is the unique minimal prime ideal of R. Since all non-units are zero-divisors, we

have that Z(R) is the unique prime ideal.

Now, consider a domainlike ring R with dim(R) = 0. By Lemma 4, R has a unique

minimal prime, namely nil(R). The nilradical is contained in every prime ideal, and since

dim(R) = 0, we see that R has a unique prime ideal and hence is quasi-local. However, R

need not be Noetherian. Consider the classic example R = K[x1, x2, . . .]/(x2
2, x

3
3, . . .) for

some field K. The only prime ideal is the image of (x1, x2, x3, . . .), and hence dim(R) = 0.

Since Z(R) is always a union of prime ideals, we see that Z(R) = (x2, x3, . . .) = nil(R),
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and thus R is domainlike. However, this ideal is not finitely generated, so R is not

Noetherian.

Note that if R has a unique minimal prime ideal (for example if R is domainlike)

and R is Artinian, then we have dim(R) = 0, R is Noetherian, R is local, and nil(R) is

nilpotent.

It has been shown in [2] and [30] that if R is domainlike, then every subring of R is also

domainlike (i.e. domainlike implies hereditarily domainlike), and R[X ] is domainlike. If R

is domainlike and Noetherian, then R[[X ]] is also domainlike, as the following proposition

shows.

Proposition 9. Let R be a Noetherian ring. Then R is domainlike if and only if

R[[X ]] is domainlike.

Proof. (⇐) Suppose ab = 0 in R with b 6= 0. Then ab = 0 in R[[X ]], and an = 0 for

some n.

(⇒) Let f =
∑

aixi ∈ Z(R[[X ]])∗. Since R is Noetherian, there exists an r ∈ R∗

such that rf = 0. Hence, rai = 0 for all i. Since R is domainlike and ai ∈ Z(R), we have

ai ∈ nil(R) for all i. Thus, f ∈ nil(R[[X ]]), since R is Noetherian.

Note that the Noetherian condition is not necessary to prove that R is domainlike

whenever R[[X ]] is domainlike. However, the following example shows that the converse

is false in general if R is not Noetherian.

Example 10. Let R = Z[x1, x2, . . .]/(x2
1, x

3
2, x

4
3, . . . , x1x2, . . . , x1xk, . . .). Let f ∈ R.

If f has no constant term, it will be nilpotent. If f has a constant term, it cannot be a

zero-divisor. Hence, Z(R) ⊆ nil(R), and so R is domainlike. Let g = x2 + x3Y + x4Y
2 +

x5Y
3+ · · · ∈ R[[Y ]]. Then x1g = 0, but g is not nilpotent. Thus, Z(R[[Y ]]) * nil(R[[Y ]]),

and R[[Y ]] is not domainlike.

A final observation is that the domainlike property is not preserved under direct or

subdirect products, since présimplifiable rings have no nontrivial idempotents.

3. Idealizations and localizations

Given a unitary R-module M , the idealization of M in R, denoted by R(+)M , is the

set {(r, m) | r ∈ R, m ∈M}, with addition defined componentwise and (r1, m1) (r2, m2) =

(r1r2, r1m2 + r2m1). In R(+)M , it is straightforward to check that U(R(+)M) =

{(r, m) | r ∈ U(R)}, and by [10, Proposition 1.1] we have Z(R(+)M)∗ = {(0, m) |
m ∈ M∗} ∪ {(a, n) | a ∈ R∗, n ∈ M and for some m ∈ M∗, am = 0} ∪ {(a, n) | a ∈
Z(R)∗, n ∈M}. We start with an example referred to in the previous section.

Example 11. Consider the idealization R = Z(+)Z8. By Theorems 14 and 15

of [2], R is not a strongly associate (and hence not a présimplifiable) ring. We have

nil(R) = {(0, b) | b ∈ Z8}. Using Theorem 6, suppose that (a, b) (y1, y2) = (a, b) and
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(a, b) /∈ nil(R), i.e. a 6= 0. Then (ay1, ay2 + by1) = (a, b), which implies ay1 = a. So,
y1 = 1, and (y1, y2) ∈ U(R). Thus, R/nil(R) is présimplifiable. So, R/nil(R) being
présimplifiable does not imply that R is présimplifiable.

Definition 12. An R-module M preserves Z(R) if rm = 0 with m 6= 0 implies
r ∈ Z(R).

Given the definition above, we find a characterization of when an idealization is
domainlike.

Theorem 13. Let R be a ring and let M be an R-module. Then R(+)M is domainlike

if and only if R is domainlike and M preserves Z(R).

Proof. (⇒) Let a, b ∈ R with ab = 0 and a 6= 0. Then (a, 0)(b, 0) = (0, 0) with (a, 0) 6=
(0, 0). Since R(+)M is domainlike, we have (b, 0)n = (0, 0) for some n > 0. This implies
that bn = 0. Thus, (0) is primary in R and hence R is domainlike. Now, assume that
for some m ∈ M∗ and some r ∈ R∗ we have rm = 0. Therefore, (r, 0) (0, m) = (0, 0)
and (0, m) 6= (0, 0). Since R(+)M is domainlike, it follows that (r, 0)

n
= (0, 0) for some

n > 0. So rn = 0, and hence r ∈ Z(R).
(⇐) Let (a, l) (b, m) = (0, 0) with (a, l) 6= (0, 0). If a 6= 0, then bn = 0 for some n > 0

because R is domainlike. Hence, (b, m)
2n

= (b, m)
n

(b, m)
n

= (0, k) (0, k) = (0, 0). If
a = 0, then bl = 0 and l 6= 0. So, b ∈ Z(R). Hence, bn = 0 for some n > 0. Again,
(b, m)2n = (0, 0). Thus, R(+)M is domainlike.

Though Theorem 13 shows that if R(+)M is domainlike then R is domainlike, the
converse is not true in general.

Example 14. Let R = Z and consider Z(+)Z2. Clearly Z is domainlike. However,
Z(+)Z2 is not domainlike, since (0, 1) (2, 1) = (0, 0) and (0, 1) 6= (0, 0), yet (2, 1) is not
nilpotent.

The next theorem is a classical result stated in terms of the domainlike property.

Theorem 15. Any localization of a domainlike ring is domainlike.

The converse is clearly false, since the ring Z2 × Z2 is not domainlike, yet every
localization is a domain and hence domainlike. Theorem 15 can be strengthened with
the introduction of a curious property.

Proposition 16. Let R be a ring, and let a, b ∈ R∗. Assume that whenever ab = 0
there exists a proper ideal I containing ann(a) and ann(bi) for all i > 0. Then R is

domainlike if and only if RP is domainlike for every prime ideal P .

Proof. (⇒) Theorem 15.
(⇐) Assume RP is domainlike for every prime ideal P . Suppose ab = 0 with a 6= 0.

Let P be a prime ideal containing ann(a) and ann(bi) for all i > 0. In RP we have
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a
1
· b

1
= 0

1
with a

1
6= 0

1
, since there is no s ∈ R\P such that sa = 0. Since RP is

domainlike, we have ( b
1
)n = bn

1
= 0

1
for some n. Then bn = 0, since there is no t ∈ R\P

such that tbn = 0. Thus, R is domainlike.

Though Proposition 16 features an odd condition, it is worth noting that any ring in
which Z(R) is contained in a proper ideal (for example, if R is quasilocal) will satisfy

this condition.

4. Zero-divisor graphs of domainlike rings

The concept of the graph of the zero-divisors of a ring was first introduced by Beck
in [12] when discussing the coloring of a commutative ring. In his work, all elements of

the ring were vertices of the graph. D.D. Anderson and Naseer used this same concept
in [3]. We adopt the approach used by D.F. Anderson and Livingston in [8] and consider
only the nonzero zero-divisors as vertices of the graph.

For the sake of completeness, we state some definitions and notations. The zero-
divisor graph of R, denoted Γ(R), is the graph whose set of vertices is Z(R)∗, and for

distinct r, s ∈ Z(R)∗, there is an edge connecting r and s if and only if rs = 0. We
represent this edge by r− s. For two distinct vertices a and b in a graph Γ, the distance

between a and b, denoted d(a, b), is the length of the shortest path connecting a and b,
if such a path exists; otherwise, d(a, b) = ∞. The diameter of a graph Γ is diam(Γ) =
sup {d(a, b) | a and b are distinct vertices of Γ}. The girth of a graph Γ, denoted g(Γ), is

the length of the shortest cycle in Γ, provided Γ contains a cycle; otherwise, g(Γ) =∞. A
graph is said to be connected if there exists a path between any two distinct vertices, and

a graph is complete if it is connected with diameter one. A singleton graph is connected
and has diameter zero.

D.F. Anderson and Livingston in [8], Mulay in [27], and DeMeyer and Schneider in
[20] examined, among other things, the diameter and girth of the zero-divisor graph of a

commutative ring. For instance, Anderson and Livingston showed the zero-divisor graph
of a commutative ring is connected with diameter less than or equal to three [8, Theorem
2.3]. In addition, they showed that the girth is either infinite or less than or equal to four

when R is Artinian and conjectured this would hold in general. DeMeyer and Schneider,
and Mulay proved this conjecture independently, and a short proof can be found in [9].

The area of zero-divisor graphs has received a great deal of attention during the past
few years. Many of the papers focus on the behavior of zero-divisor graphs of specific

algebraic structures, or on the zero-divisor graphs of rings with particular properties.
For example, the zero-divisor graphs of the rings of polynomials and power series over

commutative rings were examined in [9], while the zero-divisor graphs of idealizations
and direct products of rings were discussed in [10] and [11], respectively. In [7] and [25],
the graphs of Von Neumann regular rings were studied, while the behavior of the zero-

divisor graph of abelian regular rings was covered in [26]. A directed zero-divisor graph
for noncommutative rings has been studied extensively in [1], [28], and [29], and zero-

divisor graphs have been applied to the more general settings of nearrings and semigroups
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in [19] and [18]. In this section we examine the structure of the zero-divisor graphs of

domainlike rings.

An examination of the zero-divisor graph of some domainlike rings quickly reveals

that both the girth and the diameter are even more restricted than the already restrictive

bounds presented above. In this section, we will assume that all domainlike rings being

considered are not integral domains.

Theorem 17. For a domainlike ring R, diam(Γ(R)) ≤ 2.

Proof. Let a, b ∈ Z(R)∗ with d(a, b) > 1. Since a and b are nilpotent, let m and n

be the least positive integers such that am = 0 = bn. Let i and j be positive integers

such that aibj 6= 0, but ai+1bj = 0 and aibj+1 = 0. Clearly, a − aibj − b, and hence

d(a, b) = 2.

When the diameter of Γ(R) is 0 or 1 for a domainlike ring R, we see that Z(R)2 = 0

by [8, Theorem 2.8]. A domainlike ring with diam(Γ(R)) = 2 need not exhibit any

such property. For example, diam(Γ(K[x1, x2, . . .]/(x2
1, x

3
2, . . .))) for any field K, while

Z(K[x1, x2, . . .]/(x2
1, x

3
2, . . .))

n 6= 0 for all n.

In terms of the girth of a zero-divisor graph, domainlike rings show almost complete

uniformity in assuming the minimum possible girth of 3. In fact, there are only three

domainlike rings whose zero-divisor graphs contain three or more vertices and do not

contain a cycle. Additionly, there are only four domainlike rings whose zero-divisor

graphs contain fewer than three vertices and hence contains no cycles.

Lemma 18. [31, Lemma 4.2] Let Γ(R) be a zero-divisor graph with vertices a and b

such that a− b and a2 = 0 = b2. If diam(Γ(R)) > 1, then g(Γ(R)) = 3.

Proof. Assume that a, b ∈ Z(R)∗ with a − b, diam(Γ(R)) > 1 and a2 = b2 = 0.

Assume that there is no 3-cycle in Γ(R). Since diam(Γ(R)) > 1 there exists some

c ∈ Z(R)∗ \ {a, b} such that (without loss of generality) ac = 0 6= bc. Since a (a + b) =

0 = b (a + b) and c (a + b) 6= 0, we see that a + b ∈ Z(R)∗. Therefore a− b− (a + b)− a

is a 3-cycle, a contradiction.

Lemma 19. Let Γ(R) be a zero-divisor graph with vertices a and b such that a− b,

a3 = 0 = b3, and a2, b2 6= 0. Then g(Γ(R)) = 3.

Proof. Suppose a − b, a3 = 0 = b3, and a2, b2 6= 0. Then ab2 = 0, and b2 6= a, lest

b4 = 0 = a2. Clearly, b2 6= b or 0. Thus, we get the 3-cycle b−a−b2−b, and g(Γ(R)) = 3.

Lemma 20. If there exists an a ∈ Z(R)∗ with an = 0 and an−1 6= 0 for some n ≥ 4,

then g(Γ(R)) = 3.

Proof. If there exists some a ∈ Z(R)∗ with an = 0 and an−1 6= 0 for some n ≥ 5,

then an−3 − an−2 − an−1 − an−3, and hence g(Γ(R)) = 3.
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If there exists some a ∈ Z(R)∗ with a4 = 0 and a3 6= 0, then consider the element

a2 +a3. We have that a2 +a3 6= a2, a3. If a2 +a3 = 0, then a2 = −a3, which implies a3 =

a·a2 = a(̇−a3) = −a4 = 0, a contradiction. Thus, we get the cycle a2−a3−(a2+a3)−a2.

Thus, g(Γ(R)) = 3.

Theorem 21. Let R be a domainlike ring that is not an integral domain. Then either

g(Γ(R)) = 3 or ∞. Moreover, g(Γ(R)) =∞ if and only if R is isomorphic to one of the

following rings: Z2[x]/(x2), Z4, Z9, Z3[x]/(x2), Z8, Z2[x]/(x3), or Z4[x]/(2x, x2 − 2).

Proof. By Theorem 17, diam(Γ(R)) ≤ 2 for domainlike rings. If diam(Γ(R)) =

0, then by [6, Example 2.1] we have R ∼= Z2[x]/(x2) or Z4, and g(Γ(R)) = ∞. If

diam(Γ(R)) = 1, then g(Γ(R)) = 3 if and only if |Z(R)∗| ≥ 3. Again, by [6, Example

2.1] Z9 and Z3[x]/(x2) are the only domainlike rings whose zero-divisor graphs have a

diameter of 1 on fewer than three vertices.

For the remainder of the proof we will assume that diam(Γ(R)) = 2. If |Z(R)∗| =
3, then by [6, Example 2.1] we have R ∼= Z2[x]/(x3), Z4[x]/(2x, x2 − 2), or Z8, and

g(Γ(R)) =∞.

So, assume |Z(R)∗| ≥ 4 and let a ∈ Z(R)∗. Since Z(R) ⊆ nil(R), there exists an n

such that an = 0, but an−1 6= 0. If n ≥ 4, then by Lemma 20 g(Γ(R)) = 3.

Now suppose that for all a ∈ Z(R)∗ we have a3 = 0. Choose a, b ∈ Z(R)∗ with

d(a, b) = 2. Then there exists a c ∈ Z(R)∗ such that a − c − b is a path. If a2 = 0 and

b2 6= 0, then either a− c and c2 = 0, or c− b and c2 6= 0, and hence by Lemmas 18 and 19

we get g(Γ(R)) = 3. If a2 = b2 = 0 and c2 = 0, then again Lemma 18 gives g(Γ(R)) = 3.

If a2 = b2 = 0 and c2 6= 0, it cannot be the case that c2 = a and c2 = b, since a and b

are distinct vertices of Γ(R). So, we have either c− c2 − a− c or c− c2 − b− c is a cycle,

and g(Γ(R)) = 3.

Suppose a2, b2 6= 0. If c2 6= 0, then Lemma 19 gives g(Γ(R)) = 3. So, assume c2 = 0.

If there exists an x ∈ Z(R)∗ such that c 6= x, x2 = 0, and x− a− c or x− b− c, then by

an identical argument as the above paragraph, we have g(Γ(R)) = 3. Since Z(R) is an

ideal, we have that c + c ∈ Z(R). We have (c + c)2 = 0 and c + c 6= c; if c + c 6= 0, let

x = c + c, and we get g(Γ(R)) = 3.

Now suppose c + c = 0. If either a2 or b2 is not equal to c, let x = a2 (or b2), and

again we get g(Γ(R)) = 3. Then, suppose a2 = c = b2. By assumption, |Z(R)∗| ≥ 4,

diam(Γ(R)) = 2, and x3 = 0 for all x ∈ Z(R)∗. There exists a d ∈ Z(R)∗ with d−a, d−b,

or d− c. If d− a, if d− b, if d− c and d2 = 0, or if d− c and d2 6= c, then we can appeal

to previous cases to obtain g(Γ(R)) = 3. Now suppose d− c and d2 = c. By assumption,

ab 6= 0, and since R is présimplifiable, ab 6= a, b. Further, (ab)2 = a2b2 = c2 = 0. Thus,

ab = c, for otherwise we would let x = ab above and have g(Γ(R)) = 3. Similarly,

ad = bd = c. So, a(b − d) = 0. If b − d 6= c, we again have g(Γ(R)) = 3. So, suppose

b = d + c. Similarly, b (d− a) = 0. Again, if d− a 6= c, we will have g(Γ(R)) = 3. Now,

if d = a + c, we have b = d + c = a + c + c = a + 0 = a, which is a contradiction. Thus,

every case leads to g(Γ(R)) = 3.
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An interesting way of viewing this result is that there are only three domainlike rings

whose zero-divisor graphs have sufficient vertices to form a cycle but do not, namely Z8,
Z2[x]/(x3), and Z4[x]/(2x, x2 − 2). The zero-divisor graphs of all other domainlike rings
with sufficiently many zero-divisors contain 3-cycles.

5. Ultraproducts of domainlike rings

We begin this section by recalling some of the basic definitions involved in the con-

struction of ultraproducts. Let I be a nonempty set and let P (I) = {A | A ⊆ I}. We
say D is a filter on I if D ⊆ P (I) and

(1) ∅ /∈ D and D 6= ∅,

(2) A, B ∈ D implies A ∩B ∈ D, and

(3) A ∈ D and A ⊆ B implies B ∈ D.

A filter D on I is an ultrafilter if and only if for every A ⊆ I either A ∈ D or I\A ∈ D,
and not both by (1) and (2) above. Now, let {Rα}α∈I be a collection of commutative
rings. Let F be an ultrafilter on I. The ultraproduct of the Rα’s modulo F ,

∏

α∈I Rα/F ,
is defined as

∏

α∈I Rα/ ∼ where (ai) ∼ (bi) if {i ∈ I | ai = bi} ∈ F .

Theorem 22. Let I be an indexing set. For each i ∈ I, let Ri be a ring from the

set {R1, R2, . . . , Rm}. Let F be any ultrafilter on I, and assume that either |I| < ∞ or

|Ri| <∞ for each i. If Ri is domainlike for every i ∈ I, then
∏

α∈I Ri/F is domainlike.

Proof. Suppose (ai) (bi) = (0) in
∏

α∈I Ri/F . So, {i | aibi = 0} ∈ F . If (ai) 6= (0) ,
then {i | ai = 0} /∈ F. Thus {i | ai 6= 0} ∈ F, since F is an ultrafilter. Now, aibi = 0 and
ai 6= 0 implies there exists ni ∈ N such that bni

i = 0 in Ri. Therefore {i | ai 6= 0} ⊆ {i |
bni

i = 0 for some ni} ∈ F . Let n = max {ni}
m

i=1. Then (bi)
n = 0, since {i | bni

i = 0 for
some ni} ⊆ {i | bn

i = 0 } ∈ F .

By considering Ri = Z[x1, x2, . . .]/(x2
1, x

3
2, . . . , x1x2, x1x3,...) and I = {1, 2, 3, . . .}, we

see that the conditions on |I| and |Ri| for each i are necessary. Additionally, the converse
to the above theorem is not necessarily true.

Example 23. Let I = {1, 2} with ultrafilter F = {{1} , {1, 2}}, let R1 = Z4, and
let R2 = Z6. Observe that

∏

α∈I Ri/F is domainlike, since the nonzero zero-divisors
of

∏

α∈I Ri/F are of the form (a, b) , where a ∈ Z (R1)
∗
. Any such (a, b) is nilpotent

because R1 is domainlike, yet R2 is not domainlike.

It is also interesting to note an arbitrary ultraproduct of domainlike rings need not

be domainlike.

Example 24. Let Ri = Z [x] /
(

xi
)

for i ∈ I = {2, 3, 4, 5, . . .}. Since Z (Ri) =
{

xp (x) +
(

xi
)}

⊆ nil (Ri), Ri is domainlike. Let F = {{n, n + 1, n + 2, . . .} | n ≥ 2}.
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Now, (x, x, x, . . .)
(

x, x2, x3, . . .
)

= (0) and
(

x, x2, x3, . . .
)

6= (0). However, for all n ∈ N,

(x, x, x, . . .)
n 6= (0). Thus,

∏

α∈I Ri/F is not domainlike.

Recall that a filter D on I is called principal if for some A ⊆ I, D = {B | A ⊆ B ⊆ I}.
We call A the generator of the filter. If A = {i} for some i ∈ I, then we call i the base

element of the principal filter. It is straightforward to verify that if the set I is finite,

then any ultrafilter F on I is principal and has a base element.

Theorem 25. Let I be an indexing set. Let F be any principal ultrafilter on I with

a base element. Then
∏

α∈I Ri/F is hereditarily strongly associate if and only if Rj is

hereditarily strongly associate, where j is the base element of the ultrafilter F .

Proof. Without loss of generality, let j = 1 be the base element of our ultrafilter F .

(⇒) Let S1 be a subring of R1. Consider the subring of
∏

α∈I Ri/F given by A =
{

(a) ∈
∏

α∈I Ri/F | the R1-component is from S1

}

. Since this is a subring of the direct

product
∏

α∈I Ri, its image is also a subring of the ultraproduct
∏

α∈I Ri/F . Thus, A, is

associate. Let a ∼ b in S1. Now, (a, 1, 1, . . .) ∼ (b, 1, 1, . . .) in A, and since A is associate,

there exists (u) ∈ U(A) such that (a, 1, 1, . . .) (u) = (b, 1, 1, . . .). Then there exists

(v) ∈ U (A) such that (u) (v) = (1) = (1, 1, . . .) in A. Therefore, C = {i | uivi = 1Ri
} ∈ F .

If 1 /∈ C, then {1} ∩ C = ∅ ∈ F , a contradiction. Hence, any unit of A contains a unit

of S1 in its first component. So, (a, 1, 1, . . .) ∼ (b, 1, 1, . . .) in A, and A associate implies

there exists u1 ∈ U (S1) ⊆ U (R1) such that au1 = b. Thus, R1 is hereditarily strongly

associate.

(⇐) Assume R1 is hereditarily strongly associate. Let S be a subring of
∏

α∈I Ri/F,

and let (a) and (b) be associate elements of S. Let S1 = {a1 ∈ R1 | a1 is the first

component of some element of S}. Since 1 is the base element of our ultrafilter, we see

that S1 is a subring of R1 and is hence associate. Again, since 1 is the base element

of our ultrafilter, (a) ∼ (b) implies a1 ∼ b1 in S1. Since S1 associate, there exists

some u1 ∈ U (S1) ⊆ U (R1) such that a1u1 = b1. Observe that in our ultraproduct

(u1, 0, 0, . . .) ∈ U(S) and (a) (u1, 0, 0, . . .) = (b).

The proof of Theorem 25 can be easily generalized to show the following result.

Corollary 26. Let F be a principal ultrafilter whose generator A is a set of fi-

nite cardinality. Then
∏

α∈I Ri/F is hereditarily strongly associate if and only if Rj is

hereditarily strongly associate for every j ∈ A.

As Theorem 25 suggests, even if we consider more general ultrafilters than principal

ultrafilters, we see that an ultraproduct being hereditarily strongly associate does not

imply that each constituent ring need be hereditarily strongly associate. The following

example illustrates this.

Example 27. Let I = N and let our ultrafilter F on I be the ultrafilter containing

the filter D = {{n, n + 1, n + 2, . . .} | n ∈ N}. Let R1 be any non-hereditarily strongly

associate ring, and let Ri be any non-trivial field for i 6= 1. It can be observed that
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∏

α∈I Ri/F is hereditarily strongly associate, since every element of F is of infinite car-
dinality.
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