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NONINFORMATIVE BAYESIAN P -VALUES FOR

TESTING MARGINAL HOMOGENEITY

IN 2 × 2 CONTINGENCY TABLES

LEE-SHEN CHEN AND MING-CHUNG YANG

Abstract. This article considers the problem of testing marginal homogeneity

in 2 × 2 contingency tables under the multinomial sampling scheme. From the

frequentist perspective, McNemar’s exact p-value (p
ME

) is the most commonly used

p-value in practice, but it can be conservative for small to moderate sample sizes. On

the other hand, from the Bayesian perspective, one can construct Bayesian p-values

by using the proper prior and posterior distributions, which are called the prior

predictive p-value (pprior) and the posterior predictive p-value (ppost), respectively.

Another Bayesian p-value is called the partial posterior predictive p-value (pppost),

first proposed by [2], which can avoid the double use of the data that occurs in

ppost. For the preceding problem, we derive pprior, ppost, and pppost based on the

noninformative uniform prior. Under the criterion of uniformity in the frequentist

sense, comparisons among pprior, p
ME

, ppost and pppost are given. Numerical results

show that pppost has the best performance for small to moderately large sample

sizes.

1. Introduction

Testing the null hypothesis or model having the equality of marginal proportions in

a 2 × 2 contingency table is frequently conducted in clinical studies and many practical
applications. The most commonly used measure of compatibility of the null model with
the observed data is the p-value defined by the appropriate test statistic. However, the

p-value has been criticized for a long time in the statistical literature. A brief summary
of the controversy about the p-value can be found in [12]. As noted in [12], the major
criticisms about the p-value have come from Bayesian viewpoints. For instance, the cal-

culation of the p-value involves averaging over sample values which have not occurred,
that is, a clear violation of the likelihood principle; see, for example, [14], [5], and [4].

In recent advances, [1], [2], and [20] gave thoughtful discussions about common misinter-
pretation of p-values from both Bayesian and frequentist perspectives. In [20], they also
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developed two procedures to calibrate p-values in testing precise null hypotheses, which

can be interpreted in either a Bayesian or a frequentist way. However, several leading

Bayesians, for example [9], [10], [7], and [19], have argued that the p-value, calculating a

tail-area probability of a statistic can be a useful tool, even for Bayesian analysts in moni-

toring the adequacy of a model. This has led to several formulations of Bayesian p-values

over past decades. [7] popularized the use of the prior distribution to construct the prior

predictive p-value (pprior). [19] used the posterior predictive distribution of a statistic to

calculate the tail-area probability corresponding to the observed value of the statistic.

This tail-area probability is called the posterior predictive p-value (ppost). However, the

drawback of pprior is that it can not be derived by using improper noninformative priors,

which are often considered by the objective analyst from the beginning. Although the

posterior (predictive) distribution is typically proper by using the improper noninforma-

tive prior, the main weakness of ppost is that its calculation involves double use of the

data. [2] first proposed the partial posterior predictive p-value (pppost) to modify ppost.

This improved Bayesian p-value can be derived from proper or improper priors and can

avoid the double use of data.

The rest of this article is organized as follows. In Section 2, we first introduce Mc-

Nemar’s exact p-value, which is the most commonly used p-value in practice. Then, we

consider the noninformative priors, from the objective Bayesian perspective, and take

the uniform prior on the null hypothesis to derive pprior, ppost, and pppost. Note that the

uniform prior is proper due to the null parameter space being bounded. In Section 3,

under the criterion of uniformity, comparisons among p
ME

, pprior, ppost, and pppost are

given. From the sense of frequentist, an appealing property for a random p-value is that

it has the U(0, 1) distribution under the null model for all values of parameters. [2] also

argued that if a p-value has uniformity under the null model in the frequentist sense,

then it has the strong Bayesian property, which is the marginal uniformity under any

proper prior. Hence, the uniformity can be adopted to evaluate Bayesian p-values in the

numerical study. Our numerical results show that pppost has the best performance for all

cases. The concluding remarks are given in Section 4.

2. McNemar’s p-value and Bayesian p-values

For matched-pairs binary data, one shall consider the 2 × 2 contingency table with

random cell counts Xij , i = 1, 2, j = 1, 2, satisfying the multinomial distribution having

total sample size n and cell proportions θij , i = 1, 2, j = 1, 2, as layed out as follows:

Row total
X11 X12 X1+ θ11 θ12

X21 X22 X2+ θ21 θ22

Column total X+1 X2+
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Let X = (X11, X12, X21, X22), θ = (θ11, θ12, θ21, θ22), and
2
∑

i=1

2
∑

j=1

Xij = n. The joint

probability mass function or joint pmf of X is

f(x; θ) =
n!

x11!x12!x21!x22!
θx11

11 θx12

12 θx21

21 θx22

22 (2.1)

where the vector of cell counts x = (x11, x12, x21, x22) satisfying
2
∑

i=1

2
∑

j=1

xij = n and

2
∑

i=1

2
∑

j=1

θij = 1. Testing marginal homogeneity, which is θ11+θ12 = θ11+θ21, is equivalent

to testing θ12 = θ21, and hence the interesting hypotheses to be tested is one sided setting
as follows:

H0 : θ12 = θ21 vs H1 : θ12 > θ21 . (2.2)

Since the null hypothesis in (2.2) contains one parameter θ = θ12 = θ12, the data can

be condensed as three cell counts (X12, X21, n − X12 − X21) where n − X12 − X21 =

X11 + X22 denotes the number concordant pairs, which is fixed if both X12 and X12

are given. For simplicity, the notation X = (X11, X12, n − X21 − X22) is replaced by

X = (X1, X2, n − X1 − X2). Now, the preceding pmf in (2.1) under the null hypothesis
in (2.2) can be simplified as

f(x; θ) =
n!

x1!x2!(n − x1 − x2)!
θx1+x2(1 − 2θ)n−x1−x2 (2.3)

where 0 ≤ x1, x2 ≤ n, x1 + x2 ≤ n, and 0 ≤ θ ≤ 1/2. Obviously, the joint pmf in (2.3)

is degenerate when θ = 0.

2.1. McNemar’s p-value

The most commonly used approach, from the frequentist perspective, to eliminate
the nuisance parameters is to condition on their sufficient statistics. In our case, the

sufficient statistic for θ in the null hypothesis (2.2) is S = X1 + X2. Conditioning on

S = X1 + X2, the conditional distribution for X under H0 in (2.2) is

f(x|S = s) =
f(x; θ)

f(s; θ)

=

(

s

x1

) (

1

2

)x1
(

1

2

)s−x1

(2.4)

where s = x1 + x2. Hence, given S = s, the conditional distribution of X does not

contain the nuisance parameter. One can choose T (X) = X1 as a test statistic since the

large value of X1 indicates less compatibility of the null model. In fact, the one-sided

testing problem in (2.2) was first treated by [17], who proposed an conditional asymptotic
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method, which is based on only S, the number of discordant pairs. Given the discordant
pairs S = s, the distribution X1 follows the binomial distribution. Then McNemar’s test
statistic is defined as

W = (X1 − X2)/
√

X1 + X2 = (2 X1 − s)/
√

s (2.5)

and the large value of W indicates the null hypothesis H0 is unlikely. For one-sided
hypotheses (2.2), the p-value is defined as

P (W ≥ w) (2.6)

where w = (x1 − x2)/
√

s = (2x1 − s)/
√

s denotes the realization of W . Since the
null conditional distribution of W converges to the standard normal if the sample size
is moderately large, one can use the asymptotic null distribution, the standard normal,
to compute McNemar’s asymptotic p-value. However, this p-value in (2.6) can also
be derived from the sense of uniformly most powerful (UMP) unbiased test because
McNemar’s test statistic W in (2.5) is obtained as the test statistic in the UMP unbiased
test; see [15] on page 169. From (2.3), the nonrandomized p-value corresponding to the
UMP unbiased test for the hypotheses (2.2) can be expressed as

p
ME

(x1) = P
(

X1 ≥ x1

∣

∣

∣
X1 + X2 = s

)

= P (B ≥ x1) (2.7)

where x1 is the realization of X1 and B represents the random variable having the
symmetric binomial probability mass function

g(c) =

(

s

c

) (

1

2

)s

, 0 ≤ c ≤ s . (2.8)

The p-value in (2.7) is referred to as the exact conditional p-value, and is called McNe-

mar’s exact p-value. Here the term “exact” means the use of an exact conditional null
distribution to calculate the p-value.

2.2. Bayesian p-values

It is well-known that Bayesian school has a natural way, which is to integrate the
nuisance parameters out, to eliminate the nuisance parameters. In this subsection, we
use a noninformative but proper prior distribution for θ and choose the McNemar’s
test statistics in (2.5) or (2.7), T (X) = X1, as the departure statistic to derive several
Bayesian p-values. We consider the noninformative uniform prior distribution for θ

π(θ) =

{

2 , 0 ≤ θ ≤ 1
2

0 , otherwise
. (2.9)

Then, the marginal distribution for X is as follows:

m(x) =

∫ 1/2

0

f(x; θ)π(θ)dθ

=
1

n + 1

(

x1 + x2

x1

)

2−(x1+x2), 0 ≤ x1, x2 ≤ n, 0 ≤ x1 + x2 ≤ n. (2.10)
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The prior predictive p-value (pprior) based on the prior in (2.9) and the observed data
xobs = (xo

1, x
o
2) and m(x) is then defined as

pprior(xobs) = Pm(·)
r (X1 ≥ xo

1)

=
1

n + 1

n
∑

x1=xo

1

n−x1
∑

x2=0

(

x1 + x2

x1

)

2−(x1+x2), xo
1 = 0, 1, 2, . . . , n. (2.11)

The derivation of m(x) in (2.10) is provided in A.1 of the Appendix. The weakness
of pprior in (2.11) is that its performance heavily depends on the prior π(θ). [11] and
[19] proposed to use the marginal distribution of X, m1(x|xobs), which can be obtained
by integrating f(x; θ) with respect to the posterior distribution π(θ|xobs), instead of
the π(θ) in (2.9). Then one can define the posterior predictive p-value (ppost) based on
m1(x|xobs) as

ppost(xobs) = Pm1(·|xobs)
r (X1 ≥ xo

1), xo
1 = 0, . . . , n (2.12)

where

m1(x|xobs) =

∫ 1/2

0

f(x; θ)π(θ|xobs)dθ

=
(n + 1)!

x1!x2!(n − x1 − x2)!

(

n

xo
1 + xo

2

)

(1/2)x1+x2

× B(xo
1 + xo

2 + x1 + x2 + 1, 2n − (xo
1 + xo

2 + x1 + x2) + 1).

Here B(α, β) denotes the beta function with parameters α and β for which B(α, β) =
∫ 1

0 θα−1(1 − θ)β−1dθ. The derivation of m(x|xobs) is also given in A.2 of the Appendix.
Generally, the ppost is much more heavily influenced by the model than by the prior.
Another drawback of ppost is that it involves “double use” of the data, which we first use
the data to obtain the posterior distribution π(θ|xobs) for deriving m(x|xobs) and use
the data again to compute the p-value in (2.7). The double use of the data can induce
unnatural behavior for ppost; see, for example, [2]. To avoid the double use of the data,
[2] first proposed the partial posterior predictive p-value to improve ppost. The partial
posterior predictive p-value (pppost) is defined as

pppost(xobs) = Pm2(·|xobs\tobs)
r (T ≥ tobs)

= 1 − c(xo
1, x

o
2)

xo

1
−1

∑

x1=0

(

n

x1

) xo

1
−x1

∑

k=0

(1/2)xo

1
+xo

2
−k+1(−1)xo

1
−x1−k

(

xo
1 − x1

k

)

× B(xo
1 + xo

2 − k + 1, n− xo
1 − xo

2 + 1) (2.13)
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where T = T (X) = X1 and tobs = t(xobs) = xo
1 = 0, . . . , n. In order to obtain pppost, we

compute

m2(x1|xobs\tobs) =

∫ 1/2

0

f(x1|θ)π (θ|xobs\tobs)dθ

= c(xo
1, x

o
2)

(

n

x1

) xo

1
−x1

∑

k=0

(1/2)xo

1
+xo

2
−k+1(−1)xo

1
−x1−k

(

xo
1 − x1

k

)

× B(xo
1 + xo

2 − k + 1, n− xo
1 − xo

2 + 1) (2.14)

where

π(θ|xobs\tobs) ∝ f(xobs|tobs; θ)π (θ) ∝ f(xobs; θ)π(θ)

f(tobs; θ)
. (2.15)

The derivations of m2(t|xobs\tobs) and pppost(xobs) can be found in A.3 of the Appendix.
Since the contribution of tobs = xo

1 to the posterior is “removed” in (2.15) before elimi-

nating the θ by integration, obviously pppost avoids the double use of the data that occurs

in ppost. To indicate this, the notation “xobs\tobs” is used for the marginal distribution

of T = X1 in (2.14) and the partial posterior in (2.15).

3. Numerical Study

From the frequentist viewpoint to evaluate p-values, one appealing property for a ran-

dom p-value is that it has U(0, 1) distribution for all parameters in the null model. This

uniformity property can be used to judge a proposed p-value whether to be conservative
or anticonservative in a frequentist sense. For a Bayesian, the uniformity property is also

adopted to evaluate Bayesian p-values as mentioned in Section 1; also see [18], [2], [3],

and [16]. However, the distributions of p-values would not be U(0, 1) in our cases due to
the discrete sample space. Therefore, we may compute the absolute distances (AD) to

U(0, 1) of the p-values. Given a p-value p(X), the absolute distance between U(0, 1) and

p(X) is defined as
∫ 1

0

∣

∣

∣
Fθ(α) − U(α)

∣

∣

∣
dα (3.1)

where Fθ is the distribution function of p(X) with the parameter θ and U denotes the
distribution function of U(0, 1). It is also interesting in measuring the “local” uniformity

of p-values by specifying the range of nominal levels and computing the “local” absolute

distance (LAD) between U(0, 1) and the p-value p(X) as

∫ α2

α1

∣

∣

∣
Fθ(α) − U(α)

∣

∣

∣
dα
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where Fθ and U are both defined in (3.1) and 0 ≤ α1 < α2 ≤ 1. For instance, in a
frequentist sense, the commonly used nominal level α varies from 0.01 to 0.1 for testing
the null model.

In the following calculations, we consider various θ values and sample sizes n to
calculate ADs in the table 1 and LADs in the table 2 for p

ME
, pprior, ppost, and pppost.

In Table 1, we observe that for any selected θ value, the AD decreases when the
sample size increases. For any selected sample size, Table 1 also shows that all the four
p-values have the largest AD when θ = 0.05 and p

ME
, ppost, and pppost have the smallest

AD when θ = 0.45; except the case of n = 5, pprior has the smallest AD when θ = 0.25.
Moreover, from Table 1 we find that pppost has the smallest AD for all cases, and hence
pppost has remarkable best performance. It indicates that the distribution of pppost is
closest to U(0, 1) than those of other three p-values, and pppost substantially improves
ppost for all cases.

In Table 2, α1 = 0.01 and α2 = 0.1 are taken to calculate LADs. For any selected
sample size, Table 2 shows that p

ME
, ppost, and pppost have the largest LAD when θ = 0.05.

On the other hand, p
ME

and ppost have the smallest LAD when θ = 0.45 while pprior and
pppost have the smallest LAD when θ = 0.35. As expected, we also find that pppost has
the smallest LAD for all cases in Table 2, and it is the best one among the four p-values.
It is worth noting that for n = 10, the LAD of ppost is larger than that of p

ME
for any

selected θ value. This result demonstrates the impact of the double use of the data, and
the performance of ppost is even worse than the classical (frequentist) p-value, p

ME
, which

is conservative in small sample cases.

4. Concluding Remarks

Testing the equality of marginal proportions for matched-pairs binary data, p
ME

is the
most commonly used p-value in many practical applications, but it can be conservative for
small to moderate sample sizes due to its discreteness of distribution; see, for example,
[21], [6], and [8]. It is worth to note that using the mid p-value can reduce the high
discreteness of distribution occurred in p

ME
, and the optimality of the mid p-value can

also be found in [13]. Here, we do not attempt to study the mid p-value from the Bayesian
viewpoint. In contrast to McNemar’s exact p-value, p

ME
, from the frequentist perspective,

we are interested in the performance of the Bayesian p-value from the objective Bayesian
perspective. The main goal of this article is to investigate the behavior of Bayesian p-
values using the noninformative uniform prior on the parameter space of null hypothesis.
In Section 2, we derive three Bayesian p-values, including pprior, ppost, and pppost.

In comparisons of Bayesian p-values and frequentist p-values, one can take the crite-
rion of uniformity, which will be acceptable for (objective) Bayesians and (conditional)
frequentists. Then the absolute distance (AD) and local absolute distance (LAD) of p-
values can be calculated to make comparisons among the preceding four p-values. Our
numerical calculations show that pppost with respect to the uniform prior has the smallest
AD and LAD for any selected sample size and θ value. Furthermore, numerical results
indicate that pppost is closest to U(0, 1) than the other p-values for all cases. It is not
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Table 1. The AD between the p-value and U(0, 1) with sample size n and
parameter θ.

n θ p
ME

p
Prior

ppost pppost

5 0.05 0.39282 0.41881◦ 0.38938 0.36951
0.15 0.26610◦ 0.26246 0.23799 0.20025
0.25 0.20929◦ 0.12451 0.14745 0.10782
0.35 0.17297◦ 0.07244 0.09028 0.05880
0.45 0.13566 0.14086◦ 0.05330 0.04346

10 0.05 0.32086 0.40913◦ 0.32056 0.29418
0.15 0.18777 0.23057◦ 0.15904 0.12320
0.25 0.13819◦ 0.08993 0.09433 0.06055
0.35 0.11670◦ 0.10706 0.05722 0.03167
0.45 0.09523 0.22936◦ 0.02937 0.02252

15 0.05 0.28962 0.40628◦ 0.27074 0.24293
0.15 0.15664 0.22119◦ 0.12373 0.09241
0.25 0.11751◦ 0.09821 0.07538 0.04477
0.35 0.09403 0.13743◦ 0.04736 0.02286
0.45 0.08643 0.27050◦ 0.02376 0.01716

20 0.05 0.24807 0.40477◦ 0.23397 0.20675
0.15 0.13176 0.21804◦ 0.10451 0.07642
0.25 0.09728 0.11104◦ 0.06798 0.36690
0.35 0.08304 0.15605◦ 0.04394 0.01845
0.45 0.07406 0.29467◦ 0.02144 0.01419

25 0.05 0.21822 0.40385◦ 0.20631 0.18048
0.15 0.11546 0.21892◦ 0.09357 0.06649
0.25 0.08653 0.12241◦ 0.06448 0.03167
0.35 0.07387 0.16873◦ 0.04230 0.01574
0.45 0.06051 0.31086◦ 0.02012 0.01233

30 0.05 0.19508 0.40323◦ 0.18511 0.16088
0.15 0.10486 0.22103◦ 0.08768 0.05960
0.25 0.08035 0.13120◦ 0.06242 0.02821
0.35 0.06763 0.17808◦ 0.04133 0.01388
0.45 0.05804 0.32259◦ 0.01926 0.01101

40 0.05 0.16348 0.40244◦ 0.15532 0.13411
0.15 0.08942 0.22663◦ 0.08174 0.05045
0.25 0.06873 0.14498◦ 0.06011 0.02365
0.35 0.05717 0.19122◦ 0.04022 0.01149
0.45 0.05090 0.33864◦ 0.01815 0.00930

50 0.05 0.14285 0.40196◦ 0.13573 0.11692
0.15 0.07916 0.23082◦ 0.07856 0.04450
0.25 0.06095 0.15508◦ 0.05882 0.02073
0.35 0.05139 0.20037◦ 0.03958 0.00998
0.45 0.04437 0.34923◦ 0.01749 0.00818

Note: The smallest AD among p-values is bolded, and the largest AD

is marked by ” ◦ ”.

surprising that ppost performs worse than McNemar’s exact p-value for some of small

sample sizes. This is because ppost involves the double use of the data. The final remark

here is that, from either the Bayesian or frequentist viewpoint, the p-values should be
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Table 2. The LAD between the p-value and U(0, 1) with sample size n and
parameter θ.

n θ p
ME

p
Prior

ppost pppost

5 0.05 0.00495◦ 0.00495◦ 0.00495◦ 0.00490
0.15 0.00488 0.00482 0.00489◦ 0.00407
0.25 0.00452 0.00401 0.00458◦ 0.00226
0.35 0.00374 0.00179 0.00384◦ 0.00078
0.45 0.00291 0.00383◦ 0.00281 0.00194

10 0.05 0.00492 0.00495◦ 0.00495◦ 0.00478
0.15 0.00420 0.00491 0.00492◦ 0.00306
0.25 0.00339 0.00433 0.00460◦ 0.00130
0.35 0.00313 0.00174 0.00366◦ 0.00039
0.45 0.00248 0.00648◦ 0.00197 0.00077

15 0.05 0.00482 0.00495◦ 0.00495◦ 0.00467
0.15 0.00350 0.00494◦ 0.00490 0.00241
0.25 0.00279 0.00468◦ 0.00453 0.00098
0.35 0.00232 0.00230 0.00355◦ 0.00028
0.45 0.00204 0.00723◦ 0.00176 0.00061

20 0.05 0.00465 0.00495◦ 0.00495◦ 0.00454
0.15 0.00308 0.00495◦ 0.00487 0.00201
0.25 0.00240 0.00478◦ 0.00444 0.00080
0.35 0.00205 0.00232 0.00346◦ 0.00023
0.45 0.00182 0.00924◦ 0.00169 0.00044

25 0.05 0.00443 0.00495◦ 0.00495◦ 0.00426
0.15 0.00274 0.00495◦ 0.00485 0.00173
0.25 0.00216 0.00484◦ 0.00440 0.00072
0.35 0.00187 0.00252 0.00343◦ 0.00016
0.45 0.00170 0.01051◦ 0.00164 0.00034

30 0.05 0.00419 0.00495◦ 0.00495◦ 0.00397
0.15 0.00252 0.00495◦ 0.00483 0.00156
0.25 0.00200 0.00489◦ 0.00439 0.00066
0.35 0.00174 0.00285 0.00343◦ 0.00016
0.45 0.00155 0.01113◦ 0.00157 0.00034

40 0.05 0.00372 0.00495◦ 0.00495◦ 0.00345
0.15 0.00221 0.00495◦ 0.00480 0.00136
0.25 0.00178 0.00493◦ 0.00432 0.00057
0.35 0.00155 0.00343◦ 0.00336 0.00013
0.45 0.00138 0.01198◦ 0.00153 0.00026

50 0.05 0.00333 0.00495◦ 0.00495◦ 0.00306
0.15 0.00201 0.00495◦ 0.00476 0.00122
0.25 0.00162 0.00494◦ 0.00428 0.00050
0.35 0.00140 0.00376◦ 0.00331 0.00010
0.45 0.00125 0.01285◦ 0.00150 0.00021

Note: The smallest LAD among p-values is bolded, and the largest

LAD is marked by ” ◦ ”.

interpreted carefully to avoid misuse.
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Appendix

A.1 Derive m(x) in (2.10) used to compute pprior in (2.11).

m(x) =

∫ 1/2

0

f(x; θ)π(θ)dθ

=
2(n!)

x1!x2!(n − x1 − x2)!

∫ 1/2

0

θx1+x2(1 − 2θ)n−x1−x2dθ

=
n!

(2x1+x2)x1!x2!(n − x1 − x2)!

∫ 1

0

yx1+x2(1 − y)n−x1−x2dy,

=
n!

(2x1+x2)x1!x2!(n − x1 − x2)!
B(x1 + x2 + 1, n − x1 − x2 + 1)

=
1

n + 1

(

x1 + x2

x1

)

2−(x1+x2), 0 ≤ x1, x2 ≤ n, 0 ≤ x1 + x2 ≤ n.

Here B(α, β) denotes the beta function with parameters α and β for which B(α, β) =
∫ 1

0 θα−1(1 − θ)β−1dθ. Now,

pprior(xobs) = P m(·)
r (X1 ≥ xo

1)

=
1

n + 1

n
∑

x1=xo

1

n−x1
∑

x2=0

(

x1 + x2

x1

)

2−(x1+x2), xo
1 = 0, 1, 2, . . . , n.

A.2 Derive m1(x|xobs) used to compute ppost in (2.12).

To compute the posterior predictive p-value, we have to derive the posterior distri-

bution of θ.

π(θ|xobs) = f(xobs|θ)π(θ)/m(xobs)

=
n!

xo
1!x

o
2!(n − xo

1 − xo
2)!

θxo

1
+xo

2(1 − 2θ)n−xo

1
−xo

2

2(n + 1)2xo

1
+xo

2

(

xo

1
+xo

2

xo

1

)

= 2(n + 1)

(

n

xo
1 + xo

2

)

(2θ)xo

1
+xo

2(1 − 2θ)n−xo

1
−xo

2 .
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f(xobs|θ)π(θ)/m(xobs)

=
(n + 1)!

x1!x2!(n − x1 − x2)!

(

n

xo
1 + xo

2

)

(1/2)x1+x2−1(2θ)xo

1
+xo

2
+x1+x2(1 − 2θ)2n−xo

1
−xo

2
−x1−x2 .

Therefore,

m1(x|xobs) =

∫ 1/2

0

f(x|θ)π(θ|xobs)dθ

=
(n + 1)!

x1!x2!(n − x1 − x2)!

(

n

xo
1 + xo

2

)

(1/2)x1+x2 ×

B(xo
1 + xo

2 + x1 + x2 + 1, 2n− (xo
1 + xo

2 + x1 + x2) + 1).

ppost(xobs) = P
m1(·|xobs)

r (X1 ≥ xo
1), xo

1 = 0, . . . , n.

A.3 Derive m2(t|xobs\tobs) in (2.14) used to compute pppost in (2.13).

The partial posterior π(θ|xobs\tobs) in (2.11) under H0 based on xobs = (xo
1, x

o
2) and

tobs = t(xobs) = xo
1 is proportional to f(xobs; θ)π(θ)/f(tobs; θ). Thus, one has

π(θ|xobs\tobs) = c(xo
1, x

o
2)θ

xo

2(1 − 2θ)n−xo

1
−xo

2(1 − θ)xo

1
−n

where c(xo
1, x

o
2) = (

∫ 1/2

0
θxo

2(1 − 2θ)n−xo

1
−xo

2(1 − θ)xo

1
−ndθ)−1. Then,

m2(x1|xobs\tobs) =

∫ 1/2

0

f(x1|θ)π(θ|x\tobs)dθ

= c(xo
1, x

o
2)

∫ 1/2

0

(

n

x1

)

θx1(1 − θ)xo

1
−x1θxo

2(1 − 2θ)n−xo

1
−xo

2dθ.

Suppose xo
1 > x1, and (1 − θ)xo

1
−x1 can be expressed as

xo

1
−x1

∑

k=0

(

xo
1 − x1

k

)

(−1)xo

1
−x1−kθxo

1
−x1−k.
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Now, for tobs = xo
1 > x1,

m2(x1|xobs\tobs)

= c(xo
1, x

o
2)

(

n

x1

) xo

1
−x1

∑

k=0

(−1)xo

1
−x1−k

(

xo
1 − x1

k

)
∫ 1/2

0

θxo

1
+xo

2
−k(1 − 2θ)n−xo

1
−xo

2dθ

= c(xo
1, x

o
2)

(

n

x1

) xo

1
−x1

∑

k=0

(1/2)xo

1
+xo

2
−k+1(−1)xo

1
−x1−k

(

xo
1 − x1

k

)

× B(xo
1 + xo

2 − k + 1, n − xo
1 − xo

2 + 1).

Then,

pppost(xobs) = Pm2(·|xobs\tobs)
r (X1 ≥ xo

1)

= 1 − Pm2(·|xobs\tobs)
r (X1 < xo

1)

= 1 − c(xo
1, x

o
2)

xo

1
−1

∑

x1=0

(

n

x1

) xo

1
−x1

∑

k=0

(1/2)xo

1
+xo

2
−k+1(−1)xo

1
−x1−k

(

xo
1 − x1

k

)

× B(xo
1 + xo

2 − k + 1, n − xo
1 − xo

2 + 1).
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