ON NEW INEQUALITIES OF SIMPSON'S TYPE FOR QUASI-CONVEX FUNCTIONS WITH APPLICATIONS

ERHAN SET, M. EMIN ÖZDEMIR AND MEHMET ZEKI SARıKAYA

Abstract

In this paper, we introduce some inequalities of Simpson's type based on quasiconvexity. Some applications for special means of real numbers are also given.

1. Introduction

The following inequality is well known in the literature as Simpson's inequality.
Theorem 1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a four times continuously differentiable mapping on (a, b) and $\left\|f^{(4)}\right\|_{\infty}=\sup _{x \in(a, b)}\left|f^{(4)}(x)\right|<\infty$. Then, the following inequality holds:

$$
\left|\frac{1}{3}\left[\frac{f(a)+f(b)}{2}+2 f\left(\frac{a+b}{2}\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{1}{2880}\left\|f^{(4)}\right\|_{\infty}(b-a)^{4} .
$$

For recent refinements, counterparts, generalizations and new Simpson's type inequalities, see ([1],[2],[4]).

In [2], Dragomir, Agarwal and Cerone proved the following some recent developments on Simpson's inequality for which the remainder is expressed in terms of lower derivatives than the fourth.

Theorem 2. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a differentiable mapping whose derivative is continuous on (a, b) and $f^{\prime} \in L[a, b]$. Then the following inequality

$$
\begin{equation*}
\left|\frac{1}{3}\left[\frac{f(a)+f(b)}{2}+2 f\left(\frac{a+b}{2}\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{3}\left\|f^{\prime}\right\|_{1} \tag{1.1}
\end{equation*}
$$

holds, where $\left\|f^{\prime}\right\|_{1}=\int_{a}^{b}\left|f^{\prime}(x)\right| d x$.
The bound of (1.1) for L-Lipschitzian mapping was given in [2] by $\frac{5}{36} L(b-a)$.
Also, the following inequality was obtained in [2].

Theorem 3. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous mapping on $[a, b]$ whose derivative belongs to $L_{p}[a, b]$. Then the following inequality holds,

$$
\begin{align*}
& \left|\frac{1}{3}\left[\frac{f(a)+f(b)}{2}+2 f\left(\frac{a+b}{2}\right)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{1.2}\\
& \quad \leq \frac{1}{6}\left[\frac{2^{q+1}+1}{3(q+1)}\right]^{\frac{1}{q}}(b-a)^{\frac{1}{q}}\left\|f^{\prime}\right\|_{p}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
We recall that the notion of quasi-convex functions generalized the notion of convex functions. More precisely, a function $f:[a, b] \rightarrow \mathbb{R}$ is said to be quasi-convex on $[a, b]$ if

$$
f(t x+(1-t) y) \leq \max \{f(x), f(y)\}, \quad \forall x, y \in[a, b] .
$$

Any convex function is a quasi-convex function but the reverse are not true. Because there exist quasi-convex functions which are not convex, (see for example [3])

The main aim of this paper is to establish new Simpson's type inequalities for the class of functions whose derivatives in absolute value at certain powers are quasi-convex functions.

2. Simpson's Type Inequalities for Quasi-Convex

In order to prove our main theorems, we need the following lemma, see [1].
Lemma 1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be an absolutely continuous mapping on I° where $a, b \in I$ with $a<b$. Then the following equality holds:

$$
\begin{align*}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{2.1}\\
& \quad=(b-a) \int_{0}^{1} p(t) f^{\prime}(t b+(1-t) a) d t
\end{align*}
$$

where

$$
p(t)= \begin{cases}t-\frac{1}{6}, & t \in\left[0, \frac{1}{2}\right), \\ t-\frac{5}{6}, & t \in\left[\frac{1}{2}, 1\right] .\end{cases}
$$

A simple proof of this equality can be also done by integrating by parts in the right hand side. The details are left to the interested reader.

The next theorem gives a new result of the Simpson inequality for quasi-convex functions.

Theorem 4. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, such that $f^{\prime} \in L[a, b]$, where $a, b \in I$ with $a<b$. If $\left|f^{\prime}\right|$ is quasi-convex on $[a, b]$, then the following inequality holds:

$$
\begin{align*}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \quad \leq \frac{5(b-a)}{36} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} . \tag{2.2}
\end{align*}
$$

Proof. From Lemma 1, and since $\left|f^{\prime}\right|$ is quasi-convex, we have

$$
\begin{aligned}
\left|\frac{1}{6}\right| & \left.f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \left.-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, \\
= & (b-a)\left|\int_{0}^{1} p(t) f^{\prime}(t b+(1-t) a) d t\right| \\
\leq & (b-a) \int_{0}^{1 / 2}\left|t-\frac{1}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right| d t \\
& +(b-a) \int_{1 / 2}^{1}\left|t-\frac{5}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right| d t \\
\leq & (b-a) \int_{0}^{1 / 2}\left|t-\frac{1}{6}\right| \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t \\
& +(b-a) \int_{1 / 2}^{1}\left|t-\frac{5}{6}\right| \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t \\
= & (b-a) \int_{0}^{1 / 6}\left(\frac{1}{6}-t\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t \\
& +(b-a) \int_{1 / 6}^{1 / 2}\left(t-\frac{1}{6}\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t \\
& +(b-a) \int_{1 / 2}^{5 / 6}\left(\frac{5}{6}-t\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t \\
& +(b-a) \int_{5 / 6}^{1}\left(t-\frac{5}{6}\right) \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} d t \\
= & \frac{5(b-a)}{36} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\}
\end{aligned}
$$

which completes the proof.
Corollary 1. In Theorem 4, if $f(a)=f\left(\frac{a+b}{2}\right)=f(b)$, then we have

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right| \leq \frac{5(b-a)}{36} \max \left\{\left|f^{\prime}(a)\right|,\left|f^{\prime}(b)\right|\right\} .
$$

A similar results is embodied in the following theorem.
Theorem 5. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, such that $f^{\prime} \in L[a, b]$, where $a, b \in I$ with $a<b$. If $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$ and $q>1$, then the following inequality
holds:

$$
\begin{align*}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \quad \leq \frac{1}{6}(b-a)\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}} \tag{2.3}
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proof. From Lemma 1, using the well known Hölder integral inequality, we have

$$
\begin{aligned}
\left\lvert\, \frac{1}{6}\right. & { \left.\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, } \\
= & (b-a)\left|\int_{0}^{1} p(t) f^{\prime}(t b+(1-t) a) d t\right| \\
\leq & (b-a) \int_{0}^{1 / 2}\left|t-\frac{1}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right| d t \\
& +(b-a) \int_{1 / 2}^{1}\left|t-\frac{5}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right| d t \\
\leq & (b-a)\left(\int_{0}^{1 / 2}\left|t-\frac{1}{6}\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1 / 2}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}} \\
& +(b-a)\left(\int_{1 / 2}^{1}\left|t-\frac{5}{6}\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{1 / 2}^{1}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}} \\
= & (b-a)\left(\int_{0}^{1 / 6}\left(\frac{1}{6}-t\right)^{p} d t+\int_{1 / 6}^{1 / 2}\left(t-\frac{1}{6}\right)^{p} d t\right)^{\frac{1}{p}} \\
& \times\left(\int_{0}^{1 / 2}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}} \\
& +(b-a)\left(\int_{1 / 2}^{5 / 6}\left(\frac{5}{6}-t\right)^{p} d t+\int_{5 / 6}^{1}\left(t-\frac{5}{6}\right)^{p} d t\right)^{\frac{1}{p}} \\
& \times\left(\int_{1 / 2}^{1}\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}} .
\end{aligned}
$$

Since $\left|f^{\prime}\right|^{q}$ is quasi-convex, we have

$$
\left|f^{\prime}(t b+(1-t) a)\right|^{q} \leq \max \left\{\left|f^{\prime}(b)\right|^{q},\left|f^{\prime}(a)\right|^{q}\right\}
$$

hence

$$
\begin{aligned}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \\
& \quad \leq 2 .(b-a)\left(\frac{1+2^{p+1}}{6^{p+1}(p+1)}\right)^{\frac{1}{p}}\left(\frac{\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}}{2}\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\leq 2^{\frac{1}{p}}(b-a)\left(\frac{1+2^{p+1}}{6^{p+1}(p+1)}\right)^{\frac{1}{p}}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
$$

where we use the fact that

$$
\begin{aligned}
\int_{0}^{1 / 6}\left(\frac{1}{6}-t\right)^{p} d t+\int_{1 / 6}^{1 / 2}\left(t-\frac{1}{6}\right)^{p} d t & =\int_{1 / 2}^{5 / 6}\left(\frac{5}{6}-t\right)^{p} d t+\int_{5 / 6}^{1}\left(t-\frac{5}{6}\right)^{p} d t \\
& =\frac{1+2^{p+1}}{6^{p+1}(p+1)}
\end{aligned}
$$

which completes the proof.
Corollary 2. In Theorem 5, if $f(a)=f\left(\frac{a+b}{2}\right)=f(b)$, then we have

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right| \leq \frac{1}{6}(b-a)\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
$$

Corollary 3. In Theorem 5, if $f(a)=f\left(\frac{a+b}{2}\right)=f(b)$ and $p=2$, then we have

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right| \leq \frac{(b-a)}{6} \sqrt{\max \left\{\left|f^{\prime}(a)\right|^{2},\left|f^{\prime}(b)\right|^{2}\right\}} .
$$

A more general inequality is given using Lemma 1, as follows.
Theorem 6. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I°, such that $f^{\prime} \in L[a, b]$, where $a, b \in I$ with $a<b$. If $\left|f^{\prime}\right|^{q}$ is quasi-convex on $[a, b]$ and $q \geq 1$, then the following inequality holds:

$$
\begin{align*}
& \left|\frac{1}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \tag{2.4}\\
& \quad \leq \frac{5(b-a)}{36}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{align*}
$$

Proof. Suppose that $q \geq 1$. From Lemma 1 and using the well known power mean inequality, we have

$$
\begin{aligned}
&\left|\frac{1}{6}\right| { \left.\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, } \\
& \quad=(b-a)\left|\int_{0}^{1} p(t) f^{\prime}(t b+(1-t) a) d t\right| \\
& \leq(b-a) \int_{0}^{1 / 2}\left|t-\frac{1}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right| d t \\
&+(b-a) \int_{1 / 2}^{1}\left|t-\frac{5}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right| d t \\
& \quad \leq(b-a)\left(\int_{0}^{1 / 2}\left|t-\frac{1}{6}\right| d t\right)^{1-\frac{1}{q}}\left(\int_{0}^{1 / 2}\left|t-\frac{1}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
+(b-a)\left(\int_{1 / 2}^{1}\left|t-\frac{5}{6}\right| d t\right)^{1-\frac{1}{q}}\left(\int_{1 / 2}^{1}\left|t-\frac{5}{6}\right|\left|f^{\prime}(t b+(1-t) a)\right|^{q} d t\right)^{\frac{1}{q}}
$$

Since $\left|f^{\prime}\right|^{q}$ is quasi-convex, we have

$$
\begin{aligned}
& \left\lvert\, \frac{1}{6}\right. { \left.\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]-\frac{1}{b-a} \int_{a}^{b} f(x) d x \right\rvert\, } \\
& \quad \leq 2(b-a)\left(\frac{5}{72}\right)^{1-\frac{1}{q}}\left(\frac{5}{72} \max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}} \\
&=\frac{5(b-a)}{36}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

Also, we note that

$$
\int_{0}^{1 / 2}\left|t-\frac{1}{6}\right| d t=\int_{1 / 2}^{1}\left|t-\frac{5}{6}\right| d t=\frac{5}{72}
$$

Therefore, te proof is completed.
Remark 1. Theorem 6 is equal to Theorem 4 for $q=1$.
Remark 2. In Theorem 5, since

$$
\lim _{p \rightarrow \infty}\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}=2 \quad \text { and } \quad \lim _{p \rightarrow 1^{+}}\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}=\frac{5}{6}
$$

we have

$$
\frac{5}{6}<\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}<2 \quad p \in(1, \infty)
$$

so for $q>1$, Theorem 6 is an improvement of Theorem 5.
Corollary 4. In Theorem 6 , if $f(a)=f\left(\frac{a+b}{2}\right)=f(b)$, then we have

$$
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right| \leq \frac{5(b-a)}{36}\left(\max \left\{\left|f^{\prime}(a)\right|^{q},\left|f^{\prime}(b)\right|^{q}\right\}\right)^{\frac{1}{a}} .
$$

3. Applications to Special Means

We now consider the applications of above Theorems to the following special means:
(a) The arithmetic mean: $A=A(a, b):=\frac{a+b}{2}, a, b \geq 0$,
(b) The harmonic mean:

$$
H=H(a, b):=\frac{2 a b}{a+b}, a, b>0
$$

(c) The logarithmic mean:

$$
L=L(a, b):=\left\{\begin{array}{c}
a \quad \text { if } a=b \\
\frac{b-a}{\ln b-\ln a} \text { if } a \neq b
\end{array}, \quad a, b>0,\right.
$$

(d) The p-logarithmic mean:

$$
L_{p}=L_{p}(a, b):=\left\{\begin{array}{cc}
{\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{\frac{1}{p}}} & \text { if } a \neq b \\
a & \text { if } a=b
\end{array}, p \in \mathbb{R} \backslash\{-1,0\} ; a, b>0 .\right.
$$

It is well known that L_{p} is monotonic nondecreasing over $p \in \mathbb{R}$ with $L_{-1}:=L$ and $L_{0}:=I$. In particular, we have the following inequalities

$$
H \leq L \leq A
$$

Now, using the results of Section 2, some new inequalities is derived for the above means.
Proposition 7. Let $a, b \in \mathbb{R}, 0<a<b$ and $n \in \mathbb{N}, n \geq 2$. Then, we have

$$
\left|\frac{1}{3} A\left(a^{n}, b^{n}\right)+\frac{2}{3} A^{n}(a, b)-L_{n}^{n}(a, b)\right| \leq n \frac{5(b-a)}{36} \max \left\{a^{n-1}, b^{n-1}\right\} .
$$

Proof. The assertion follows from Theorem 4 applied to the quasi-convex mapping $f(x)=$ $x^{n}, x \in[a, b]$ and $n \in \mathbb{N}$.

Proposition 8. Let $a, b \in \mathbb{R}, 0<a<b$. Then, for all $p>1$, we have

$$
\left|\frac{1}{3} H^{-1}(a, b)+\frac{2}{3} A^{-1}(a, b)-L^{-1}(a, b)\right| \leq \frac{1}{6}(b-a)\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}\left(\max \left\{a^{-2 q}, b^{-2 q}\right\}\right)^{\frac{1}{q}} .
$$

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping $f(x)=$ $1 / x, x \in[a, b]$.

Proposition 9. Let $a, b \in \mathbb{R}, 0<a<b$ and $n \in \mathbb{N}, n \geq 2$. Then, we have

$$
\left|\frac{1}{3} A\left(a^{n}, b^{n}\right)+\frac{2}{3} A^{n}(a, b)-L_{n}^{n}(a, b)\right| \leq n \frac{(b-a)}{6}\left(\frac{1+2^{p+1}}{3(p+1)}\right)^{\frac{1}{p}}\left(\max \left\{a^{q(n-1)}, b^{q(n-1)}\right\}\right)^{\frac{1}{q}} .
$$

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping $f(x)=$ $x^{n}, x \in[a, b]$ and $n \in \mathbb{N}$.

Proposition 10. Let $a, b \in \mathbb{R}, 0<a<b$ and $n \in \mathbb{N}, n \geq 2$. Then, for all $q>1$, we have

$$
\left|\frac{1}{3} A\left(a^{n}, b^{n}\right)+\frac{2}{3} A^{n}(a, b)-L_{n}^{n}(a, b)\right| \leq n \frac{5(b-a)}{36}\left(\max \left\{a^{q(n-1)}, b^{q(n-1)}\right\}\right)^{\frac{1}{q}} .
$$

Proof. The assertion follows from Theorem 6 applied to the quasi-convex mapping $f(x)=$ $x^{n}, x \in[a, b]$ and $n \in \mathbb{N}$.

Remark 3. Proposition 10 is equal to Proposition 7 for $q=1$.
Remark 4. Because of Remark 2, Proposition 10 is an improvement of Proposition 9 for $q=1$.

References

[1] M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Simpson's type for sconvex functions with applications, RGMIA Res. Rep. Coll., 12 (4) (2009), Article 9. [Online:http://www.staff.vu.edu.au/RGMIA/v12n4.asp]
[2] S. S. Dragomir, R. P. Agarwal and P. Cerone, On Simpson's inequality and applications, J. of Inequal. Appl., 5(2000), 533-579.
[3] D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova Math. Comp. Sci. Ser., 34 (2007), 82-87.
[4] Z. Liu, An inequality of Simpson type, Proc. R. Soc. London. Ser A, 461 (2005), 2155-2158.
[5] J. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Ordering and Statistical Applications, Academic Press, New York, 1991.

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey.
E-mail: erhanset@yahoo.com
Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey.
E-mail: emos@atauni.edu.tr
Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey.
E-mail: sarikayamz@gmail.com

