ON NEW INEQUALITIES OF SIMPSON’S TYPE FOR QUASI-CONVEX FUNCTIONS WITH APPLICATIONS

ERHAN SET, M. EMIN ÖZDEMIR AND MEHMET ZEKI SARıKAYA

Abstract. In this paper, we introduce some inequalities of Simpson’s type based on quasi-convexity. Some applications for special means of real numbers are also given.

1. Introduction

The following inequality is well known in the literature as Simpson’s inequality.

Theorem 1. Let \(f : [a, b] \to \mathbb{R} \) be a four times continuously differentiable mapping on \((a, b)\) and \(\|f^{(4)}\|_\infty = \sup_{x \in (a, b)} |f^{(4)}(x)| < \infty \). Then, the following inequality holds:

\[
\left| \frac{1}{3} \left(\frac{f(a) + f(b)}{2} + 2f \left(\frac{a + b}{2} \right) \right) - \frac{1}{b - a} \int_a^b f(x)\,dx \right| \leq \frac{1}{2880} \|f^{(4)}\|_\infty (b - a)^4.
\]

For recent refinements, counterparts, generalizations and new Simpson’s type inequalities, see ([1],[2],[4]).

In [2], Dragomir, Agarwal and Cerone proved the following some recent developments on Simpson’s inequality for which the remainder is expressed in terms of lower derivatives than the fourth.

Theorem 2. Suppose \(f : [a, b] \to \mathbb{R} \) is a differentiable mapping whose derivative is continuous on \((a, b)\) and \(f' \in L[a, b] \). Then the following inequality

\[
\left| \frac{1}{3} \left(\frac{f(a) + f(b)}{2} + 2f \left(\frac{a + b}{2} \right) \right) - \frac{1}{b - a} \int_a^b f(x)\,dx \right| \leq \frac{b - a}{3} \|f'\|_1 \tag{1.1}
\]

holds, where \(\|f'\|_1 = \int_a^b |f'(x)|\,dx \).

The bound of (1.1) for L-Lipschitzian mapping was given in [2] by \(\frac{5}{36} L(b - a) \).

Also, the following inequality was obtained in [2].

Corresponding author: Erhan Set.
2010 Mathematics Subject Classification. 26D15, 26D10.
Key words and phrases. Simpson’s inequality, quasi-convex function.
Theorem 3. Suppose \(f : [a, b] \rightarrow \mathbb{R} \) is an absolutely continuous mapping on \([a, b]\) whose derivative belongs to \(L^p[a, b] \). Then the following inequality holds,

\[
\left| \frac{1}{3} \left[\frac{f(a) + f(b)}{2} + 2f \left(\frac{a + b}{2} \right) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{1}{6} \left[\frac{2q+1}{3(q+1)} \right]^{\frac{1}{q}} (b-a)^\frac{q}{3q+1} \|f'\|_p
\]

where \(\frac{1}{p} + \frac{1}{q} = 1 \).

We recall that the notion of quasi-convex functions generalized the notion of convex functions. More precisely, a function \(f : [a, b] \rightarrow \mathbb{R} \) is said to be quasi-convex on \([a, b]\) if

\[
f \left(tx + (1-t)y \right) \leq \max \{f(x), f(y)\}, \quad \forall x, y \in [a, b].
\]

Any convex function is a quasi-convex function but the reverse are not true. Because there exist quasi-convex functions which are not convex, (see for example [3])

The main aim of this paper is to establish new Simpson’s type inequalities for the class of functions whose derivatives in absolute value at certain powers are quasi-convex functions.

2. Simpson’s Type Inequalities for Quasi-Convex

In order to prove our main theorems, we need the following lemma, see [1].

Lemma 1. Let \(f : I \subset \mathbb{R} \rightarrow \mathbb{R} \) be an absolutely continuous mapping on \(I^\circ \) where \(a, b \in I \) with \(a < b \). Then the following equality holds:

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq (b-a) \int_0^1 p(t) f'(tb + (1-t)a) \, dt
\]

where

\[
p(t) = \begin{cases}
 t - \frac{1}{6}, & t \in \left[0, \frac{1}{2}\right), \\
 t - \frac{5}{6}, & t \in \left[\frac{1}{2}, 1\right].
\end{cases}
\]

A simple proof of this equality can be also done by integrating by parts in the right hand side. The details are left to the interested reader.

The next theorem gives a new result of the Simpson inequality for quasi-convex functions.
Theorem 4. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(I^o \), such that \(f' \in L[a,b] \), where \(a, b \in I \) with \(a < b \). If \(|f'| \) is quasi-convex on \([a,b] \), then the following inequality holds:

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{5(b-a)}{36} \max \{|f'(a)|, |f'(b)|\}. \tag{2.2}
\]

Proof. From Lemma 1, and since \(|f'| \) is quasi-convex, we have

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right| = (b-a) \int_0^1 p(t) f' \left(tb + (1-t) a \right) \, dt \leq (b-a) \int_0^{1/2} \left| t - \frac{1}{6} \right| |f'(tb + (1-t) a)| \, dt + (b-a) \int_{1/2}^1 \left| t - \frac{5}{6} \right| |f'(tb + (1-t) a)| \, dt = (b-a) \int_0^{1/6} \left(\frac{1}{6} - t \right) \max \{|f'(a)|, |f'(b)|\} \, dt + (b-a) \int_{1/6}^{1/2} \left(t - \frac{1}{6} \right) \max \{|f'(a)|, |f'(b)|\} \, dt + (b-a) \int_{1/2}^{5/6} \left(\frac{5}{6} - t \right) \max \{|f'(a)|, |f'(b)|\} \, dt + (b-a) \int_{5/6}^1 \left(t - \frac{5}{6} \right) \max \{|f'(a)|, |f'(b)|\} \, dt = \frac{5(b-a)}{36} \max \{|f'(a)|, |f'(b)|\}
\]

which completes the proof. \(\square \)

Corollary 1. In Theorem 4, if \(f(a) = f \left(\frac{a+b}{2} \right) = f(b) \), then we have

\[
\left| \frac{1}{b-a} \int_a^b f(x) \, dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{5(b-a)}{36} \max \{|f'(a)|, |f'(b)|\}.
\]

A similar results is embodied in the following theorem.

Theorem 5. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(I^o \), such that \(f' \in L[a,b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \) is quasi-convex on \([a,b] \) and \(q > 1 \), then the following inequality
holds:

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
\leq \frac{1}{6} (b-a) \left(\frac{1+2^{p+1}}{3(p+1)} \right)^{\frac{1}{p}} \left\{ \max \{ |f'(a)|^q, |f'(b)|^q \} \right\}^{\frac{1}{q}}
\]

(2.3)

where \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof. From Lemma 1, using the well known Hölder integral inequality, we have

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
= (b-a) \left| \int_0^1 p(t) f'(tb + (1-t) a) \, dt \right|
\leq (b-a) \int_0^{1/2} \left| t - \frac{1}{6} \right| \left| f'(tb + (1-t) a) \right| \, dt
+ (b-a) \int_{1/2}^1 \left| t - \frac{5}{6} \right| \left| f'(tb + (1-t) a) \right| \, dt
\leq (b-a) \left(\int_0^{1/2} \left| t - \frac{1}{6} \right|^p \, dt \right)^{\frac{1}{p}} \left(\int_0^{1/2} \left| f'(tb + (1-t) a) \right|^q \, dt \right)^{\frac{1}{q}}
+ (b-a) \left(\int_{1/2}^1 \left| t - \frac{5}{6} \right|^p \, dt \right)^{\frac{1}{p}} \left(\int_{1/2}^1 \left| f'(tb + (1-t) a) \right|^q \, dt \right)^{\frac{1}{q}}
= (b-a) \left(\int_0^{1/6} \left(\frac{1}{6} - t \right)^p \, dt + \int_{1/6}^{1/2} \left(t - \frac{1}{6} \right)^p \, dt \right)^{\frac{1}{p}}
\times \left(\int_0^{1/2} \left| f'(tb + (1-t) a) \right|^q \, dt \right)^{\frac{1}{q}}
+ (b-a) \left(\int_{1/2}^{5/6} \left(\frac{5}{6} - t \right)^p \, dt + \int_{5/6}^1 \left(t - \frac{5}{6} \right)^p \, dt \right)^{\frac{1}{p}}
\times \left(\int_{1/2}^1 \left| f'(tb + (1-t) a) \right|^q \, dt \right)^{\frac{1}{q}}
\]

Since \(|f'|^q \) is quasi-convex, we have

\[
\left| f'(tb + (1-t) a) \right|^q \leq \max \{ |f'(b)|^q, |f'(a)|^q \}
\]

hence

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) \, dx \right|
\leq 2(b-a) \left(\frac{1+2^{p+1}}{6^{p+1}(p+1)} \right)^{\frac{1}{p}} \left(\frac{\max \{ |f'(a)|^q, |f'(b)|^q \} \right)^{\frac{1}{q}}
\]
\[\leq 2^\frac{1}{p} (b-a) \left(\frac{1+2^{p+1}}{6^{p+1}(p+1)} \right)^\frac{1}{p} \left(\max \{|f'(a)|^q, |f'(b)|^q \} \right)^\frac{1}{q} \]

where we use the fact that

\[\int_0^{1/6} \left(\frac{6}{1-t} \right)^p dt + \int_{1/6}^{1/2} \left(1 - \frac{t}{1} \right)^p dt = \int_{1/6}^{5/6} \left(\frac{6}{1-t} \right)^p dt + \int_{5/6}^1 \left(1 - \frac{5}{6} \right)^p dt = \frac{1+2^{p+1}}{6^{p+1}(p+1)} \]

which completes the proof. \(\square \)

Corollary 2. In Theorem 5, if \(f(a) = f\left(\frac{a+b}{2}\right) = f(b) \), then we have

\[\left| \frac{1}{b-a} \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) \right| \leq \frac{1}{6} (b-a) \left(\frac{1+2^{p+1}}{3(p+1)} \right)^\frac{1}{p} \left(\max \{|f'(a)|^q, |f'(b)|^q \} \right)^\frac{1}{q}. \]

Corollary 3. In Theorem 5, if \(f(a) = f\left(\frac{a+b}{2}\right) = f(b) \) and \(p = 2 \), then we have

\[\left| \frac{1}{b-a} \int_a^b f(x) dx - f\left(\frac{a+b}{2}\right) \right| \leq \frac{b-a}{6} \max \{|f'(a)|^2, |f'(b)|^2 \}. \]

A more general inequality is given using Lemma 1, as follows.

Theorem 6. Let \(f : I \subset \mathbb{R} \to \mathbb{R} \) be a differentiable mapping on \(I^p \), such that \(f' \in L[a,b] \), where \(a,b \in I \) with \(a < b \). If \(|f'|^q \) is quasi-convex on \(|a,b| \) and \(q \geq 1 \), then the following inequality holds:

\[\left| \frac{1}{6} \left[f(a) + 4 f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) dx \right| \leq \frac{5(b-a)}{36} \left(\max \{|f'(a)|^q, |f'(b)|^q \} \right)^\frac{1}{q}. \]

Proof. Suppose that \(q \geq 1 \). From Lemma 1 and using the well known power mean inequality, we have

\[\left| \frac{1}{6} \left[f(a) + 4 f \left(\frac{a+b}{2} \right) + f(b) \right] - \frac{1}{b-a} \int_a^b f(x) dx \right| \]

\[= (b-a) \left| \int_0^1 p(t) f'(tb+(1-t)a) dt \right| \]

\[\leq (b-a) \int_0^{1/2} \left| t - \frac{1}{6} \right| f'(tb+(1-t)a) dt \]

\[+ (b-a) \int_{1/2}^1 \left| t - \frac{5}{6} \right| f'(tb+(1-t)a) dt \]

\[\leq (b-a) \left(\int_0^{1/2} \left| t - \frac{1}{6} \right| dt \right)^{-\frac{1}{q}} \left(\int_0^{1/2} \left| t - \frac{1}{6} \right| \left| f'(tb+(1-t)a) \right|^q dt \right)^\frac{1}{q} \]
\[+ (b - a) \left(\int_{1/2}^{1} \left| t - \frac{5}{6} \right| dt \right)^{\frac{1}{q}} \left(\int_{1/2}^{1} \left| f'(tb + (1 - t)a) \right|^{q} dt \right)^{\frac{1}{q}}. \]

Since \(|f'|^q \) is quasi-convex, we have

\[
\left| \frac{1}{6} \left[f(a) + 4f \left(\frac{a + b}{2} \right) + f(b) \right] - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \\
\leq 2 (b - a) \left(\frac{5}{72} \right)^{\frac{1}{q}} \left(\frac{5}{72} \max \{|f'(a)|^q, |f'(b)|^q\} \right)^{\frac{1}{q}} \\
= \frac{5(b - a)}{36} \left(\max \{|f'(a)|^q, |f'(b)|^q\} \right)^{\frac{1}{q}}.
\]

Also, we note that

\[
\int_{0}^{1/2} \left| t - \frac{1}{6} \right| dt = \int_{1/2}^{1} \left| t - \frac{5}{6} \right| dt = \frac{5}{72}.
\]

Therefore, the proof is completed. \(\square \)

Remark 1. Theorem 6 is equal to Theorem 4 for \(q = 1 \).

Remark 2. In Theorem 5, since

\[
\lim_{p \to \infty} \left(\frac{1 + 2^{p+1}}{3(p + 1)} \right)^{\frac{1}{p}} = 2 \quad \text{and} \quad \lim_{p \to 1^+} \left(\frac{1 + 2^{p+1}}{3(p + 1)} \right)^{\frac{1}{p}} = \frac{5}{6}
\]

we have

\[
\frac{5}{6} < \left(\frac{1 + 2^{p+1}}{3(p + 1)} \right)^{\frac{1}{p}} < 2 \quad p \in (1, \infty),
\]

so for \(q > 1 \), Theorem 6 is an improvement of Theorem 5.

Corollary 4. In Theorem 6, if \(f(a) = f \left(\frac{a + b}{2} \right) = f(b) \), then we have

\[
\left| \frac{1}{b - a} \int_{a}^{b} f(x) dx - f \left(\frac{a + b}{2} \right) \right| \leq \frac{5(b - a)}{36} \left(\max \{|f'(a)|^q, |f'(b)|^q\} \right)^{\frac{1}{q}}.
\]

3. Applications to Special Means

We now consider the applications of above Theorems to the following special means:

(a) The arithmetic mean: \(A = A(a, b) := \frac{a + b}{2} \), \(a, b \geq 0 \),

(b) The harmonic mean:

\[H = H(a, b) := \frac{2ab}{a + b}, \quad a, b > 0, \]

(c) The logarithmic mean:

\[L = L(a, b) := \begin{cases}
 a & \text{if } a = b \\
 \frac{b - a}{\ln b - \ln a} & \text{if } a \neq b
\end{cases}, \quad a, b > 0, \]
(d) The \(p \)-logarithmic mean:

\[
L_p = L_p(a, b) := \begin{cases}
\left[\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right]^\frac{1}{p} & \text{if } a \neq b \\
\frac{a}{p} & \text{if } a = b
\end{cases} \quad , \quad p \in \mathbb{R} \setminus \{-1, 0\}; \ a, b > 0.
\]

It is well known that \(L_p \) is monotonic nondecreasing over \(p \in \mathbb{R} \) with \(L_{-1} := L \) and \(L_0 := I \). In particular, we have the following inequalities

\[
H \leq L \leq A.
\]

Now, using the results of Section 2, some new inequalities is derived for the above means.

Proposition 7. Let \(a, b \in \mathbb{R}, 0 < a < b \) and \(n \in \mathbb{N}, n \geq 2 \). Then, we have

\[
\left| \frac{1}{3} A(a^n, b^n) + \frac{2}{3} A^n(a, b) - L_n^n(a, b) \right| \leq n \frac{(b-a)}{36} \max \{ a^{n-1}, b^{n-1} \}.
\]

Proof. The assertion follows from Theorem 4 applied to the quasi-convex mapping \(f(x) = x^n \), \(x \in [a, b] \) and \(n \in \mathbb{N} \). \(\square \)

Proposition 8. Let \(a, b \in \mathbb{R}, 0 < a < b \). Then, for all \(p > 1 \), we have

\[
\left| \frac{1}{3} H^{-1}(a, b) + \frac{2}{3} A^{-1}(a, b) - L^{-1}(a, b) \right| \leq \frac{1}{6} (b-a) \left(\frac{1+2p+1}{3(p+1)} \right)^{\frac{1}{p}} \left(\max \{ a^{-2q}, b^{-2q} \} \right)^{\frac{1}{q}}.
\]

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping \(f(x) = 1/x, x \in [a, b] \). \(\square \)

Proposition 9. Let \(a, b \in \mathbb{R}, 0 < a < b \) and \(n \in \mathbb{N}, n \geq 2 \). Then, we have

\[
\left| \frac{1}{3} A(a^n, b^n) + \frac{2}{3} A^n(a, b) - L_n^n(a, b) \right| \leq n \frac{(b-a)}{6} \left(\frac{1+2p+1}{3(p+1)} \right)^{\frac{1}{p}} \left(\max \{ a^{q(n-1)}, b^{q(n-1)} \} \right)^{\frac{1}{q}}.
\]

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping \(f(x) = x^n, x \in [a, b] \) and \(n \in \mathbb{N} \). \(\square \)

Proposition 10. Let \(a, b \in \mathbb{R}, 0 < a < b \) and \(n \in \mathbb{N}, n \geq 2 \). Then, for all \(q > 1 \), we have

\[
\left| \frac{1}{3} A(a^n, b^n) + \frac{2}{3} A^n(a, b) - L_n^n(a, b) \right| \leq n \frac{5(b-a)}{36} \left(\max \{ a^{q(n-1)}, b^{q(n-1)} \} \right)^{\frac{1}{q}}.
\]

Proof. The assertion follows from Theorem 6 applied to the quasi-convex mapping \(f(x) = x^n, x \in [a, b] \) and \(n \in \mathbb{N} \). \(\square \)

Remark 3. Proposition 10 is equal to Proposition 7 for \(q = 1 \).

Remark 4. Because of Remark 2, Proposition 10 is an improvement of Proposition 9 for \(q = 1 \).
References

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey.
E-mail: erhanset@yahoo.com

Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey.
E-mail: emos@atauni.edu.tr

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey.
E-mail: sarikayamz@gmail.com