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ASYMPTOTIC ANALYSIS OF A MONOSTABLE EQUATION

IN PERIODIC MEDIA

MATTHIEU ALFARO AND THOMAS GILETTI

Abstract. We consider a multidimensional monostable reaction-diffusion equation whose

nonlinearity involves periodic heterogeneity. This serves as a model of invasion for a pop-

ulation facing spatial heterogeneities. As a rescaling parameter tends to zero, we prove

the convergence to a limit interface, whose motion is governed by the minimal speed (in

each direction) of the underlying pulsating fronts. This dependance of the speed on the

(moving) normal direction is in contrast with the homogeneous case and makes the anal-

ysis quite involved. Key ingredients are the recent improvement [4] of the well-known

spreading properties [32], [9], and the solution of a Hamilton-Jacobi equation.

1. Introduction

We consider the Cauchy problem

(Pε)





∂t uε = ε∆uε+
1

ε
f

(x

ε
,uε

)
in (0,∞)×R

N

uε(0, x) = g (x) in R
N ,

where u will typically denote a population density, and the nonlinearity f (x,u) is periodic in

x ∈R
N and of the monostable type. The parameter ε> 0 measures the thickness of the diffuse

interfacial layer, which will account for the invasion front of the population. Our goal is to

study the asymptotic behavior — or the singular limit, or the sharp interface limit — of (Pε)

as ε→ 0.

The reaction-diffusion equation in problem (Pε) arises from the hyperbolic space-time

rescaling uε(t , x) := u
(

t
ε , x

ε

)
of the heterogeneous equation

∂t u =∆u + f (x,u). (1)
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Let us emphasize that the understanding of the long time behavior of (1) is not equivalent to

that of the sharp interface limit of (Pε). Roughly speaking, the former one deals with the sta-

bilization of the interface into a predetermined shape after a long time, whereas the latter one

keeps the memory of the shape of the initial data. In other words, the singular limit procedure

describes some transient states, during which geometry is quite relevant.

Let us now state the assumptions on the nonlinearity f (x,u). Let L1,. . . ,LN be given pos-

itive constants. A function h :RN →R is said to be periodic if

h(x1, . . . , xk +Lk , . . . , xN ) =h(x1, . . . , xN ),

for all 1 ≤ k ≤ N , all (x1, . . . , xN ) ∈ R
N . In such case, (0,L1)× ·· · × (0,LN ) is called the cell of

periodicity. Throughout this work, we assume that

for all u ∈R+, f (·,u) : RN →R is periodic. (2)

Our second main assumption on the nonlinearity f is the following.

Assumption 1.1 (Monostable nonlinearity). The function f : RN ×R+ → R is of class C 1,α in

(x,u) and C 2 in u, and nonnegative on R
N × [0,1]. Concerning the steady states of the periodic

equation (1), we assume that

(i) the constants 0 and 1 are steady states (that is, f (·,0) ≡ f (·,1) ≡ 0 in R
N );

(ii) ∀u ∈ (0,1), ∃x ∈R
N , f (x,u) > 0.

(iii) there exists some ρ > 0 such that f (x,u) is nonincreasing with respect to u in the set RN ×
(1−ρ,1].

Notice that, if 0 ≤ p(x) ≤ 1 is a periodic stationary state, then p ≡ 0 or p ≡ 1. Indeed, since

f (x, p) ≥ 0, the strong maximum principle enforces p to be identically equal to its minimum,

thus constant and, by (i i ), the constant has to be 0 or 1. Hence, under the above hypotheses,

equation (1) is often referred to as the monostable equation. Typical examples are of the form

f (x,u) = p(x) f̃ (u), where p(x) is positive and periodic, and f̃ is a homogeneous nonlinearity

possibly of the following types: f̃1(u) =u(1−u) (Fisher-KPP), f̃2(u)= ur (1−u) with r > 1 (weak

Allee effect), f̃3(u) = e−1/u(1−u) (Arrhenius nonlinearity), or f̃4(u) = u(e1−u −1) (Nicholson’s

blowflies equation).

The monostable problem (1) arises in various fields of physics and the life sciences, and

especially in population dynamics models where propagation phenomena are involved. In-

deed, a particular feature of this equation is the formation of traveling fronts, that is partic-

ular solutions describing the transition at a constant speed from one stationary solution to

another one. Such solutions have proved in numerous situations their utility in describing

the dynamics of a population modelled by a reaction-diffusion equation.
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Equation (1) is a heterogeneous version of the reaction-diffusion equation

∂t u =∆u + f (u), (3)

with f of the monostable type. Among monostable nonlinearities, one can distinguish those

satisfying the Fisher-KPP assumption, namely u 7→ f (u)
u is maximal at 0, the most famous ex-

ample f (u)= f̃1(u) = u(1−u) being introduced by Fisher [14] and Kolmogorov, Petrovsky and

Piskunov [24] to model the spreading of advantageous genetic features in a population. The

KPP assumption means that the growth is only slowed down by the intra-specific competi-

tion, so that the growth per capita is maximal at small densities. Due for instance to the lack

of genetic diversity at low density, this assumption may be unrealistic. To take into account

such a weak Allee effect, one may use the growth function f (u) = f̃2(u) = ur (1−u), r > 1.

The nonlinearity f (u) = f̃4(u) = u(e1−u −1) is commonly used [19] to explain oscillations of

a population of Australian sheep blowflies, Lucilia Cuprina, described by Nicholson [29]. Let

us notice that our work stands in the class of monostable nonlinearities, and therefore cov-

ers all these examples coming from population dynamics models, and the Arrhenius case

f (u)= f̃3(u) = e−1/u(1−u) which comes from combustion models.

Nevertheless, the environment is rarely homogeneous and may depend in a non trivial

way on the position in space (patches, periodic media, or more general heterogeneity. . .), so

that one should take into account heterogeneities. We refer to the seminal book of Shigesada

and Kawasaki [30], and the enlightening introduction in [10] where the reader can find very

precise and various references. For example such heterogeneities are very relevant in some

epidemiology models, where different treatments (antibiotics or insecticides) are tested, aim-

ing at finding an optimal combination.

In the periodic framework of equation (3), traveling fronts from the homogeneous equa-

tion (1) are replaced by the so-called pulsating traveling fronts. As far as the rescaled equation

in (Pε) is concerned, fronts become sharper as ε→ 0, and we therefore have to deal with the

so-called interfaces. Also, as explained above, the singular limit analysis of (1) describes a

transient state where the geometry of the initial habitat of the population is an insightful in-

formation.

In this paper, we aim at looking at the way those interfaces are generated and propa-

gate, hence providing some accurate connection between the behavior of solutions uε(t , x)

in the fast reaction and low diffusion regime and some free boundary problem. One of the

originality of this work is that we allow the equation to be spatially heterogeneous, which as

recalled above is essential in realistic biological models. More precisely, we restrict ourselves

to the spatially periodic case, which provides insightful information on the role and influence

of the heterogeneity on the propagation, as well as a slightly more common mathematical

framework.
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We will describe in subsection 2.1 what is known as far as front-like solutions of (1) are

concerned. In particular, we will see that the outcome of the heterogeneity is some new dy-

namics, that do not appear in the homogeneous case, where the speed of the propagation

depends on its direction. This feature is the origin of new technical difficulties when retriev-

ing the interface motion.

As far as initial data g (x) appearing in (Pε) are concerned, we make the following hy-

potheses.

Assumption 1.2 (Structure of initial data).

(i) Let Ω0 be a nonempty, open and bounded set of RN . Let g̃ : Ω0 → [0,1) be a map of the

class C 2 on Ω0, positive on Ω0 and such that g̃ (x) = 0 for all x ∈ ∂Ω0. Define the map

g : RN →R by

g (x) =





g̃ (x) if x ∈Ω0

0 if x ∉Ω0 .

(ii) We assume that Ω0 is convex and has a smooth boundary Γ0 := ∂Ω0.

Notice that the assumption g (x) < 1 becomes unnecessary if one assumes further that

there is no steady state for (1) above 1. Also, rather than compactly supported initial data, one

may allow g (x) to have tails that are “consistent" with those of the pulsating fronts (see [2] for

the homogeneous case with “tails"). For the sake of simplicity, we do not consider here such

cases. The convexity assumption (i i ) will allow to describe explicitly the limit interface (ob-

tained via a Hamilton-Jacobi approach) in Proposition 2.5 and then to use a family of planar

supersolutions in Section 7.

Before stating our results, let us now comment on related works. First, there is a large

literature on the singular limit of (generalizations of)

∂t uε = ε∆uε+
1

ε
f

(
x,uε

)
. (4)

Observe that (4) arises after a hyperbolic rescaling of

∂t u =∆u + f (εx,u),

whereas Problem (Pε) under consideration follows from (1). First results are due to Freidlin

[15, 16] using probabilistic methods. Later, Evans and Souganidis [13] used PDE technics,

Hamilton-Jacobi framework to be more precise, to study (4). In this context, we also refer to

[6], [7] and, for an overview, to [31]. Let us also mention the related work [27] which is linked

with homogenization processes [25]. As far as (generalizations of) the considered problem

(Pε) is concerned, we refer to [26, Section 9] where Hamilton-Jacobi and homogenization
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technics are combined. Nevertheless, notice that all these results hold under the KPP as-

sumption, that is f (x,u) ≤ fu(x,0)u, whereas we stand in the larger class of monostable non-

linearities.

In the homogeneous case f (x,u)= f (u), the sharp interface limit of (4) has been recently

revisited using specific reaction-diffusion tools, such as the comparison principle and trav-

eling wave solutions, which allows to capture accurate convergence rates [1, 2]. Hence, the

introduction of a delay effect has been handled in [3], via such methods.

Our analysis of the introduction of heterogeneity in (Pε) stands mainly in this latter

framework. It relies on accurate “local" subsolutions combined with improved spreading

speeds properties [4], and on a family of planar supersolutions whose envelop solves the limit

Hamilton-Jacobi equation.

2. Some known results

Before stating our main results in Section 3, we need to say a few words on monostable

pulsating fronts and spreading speeds (in subsection 2.1), and on the limit free boundary

problem (P 0
H J ) (in subsection 2.2), which is expected to describe the motion of the transition

layers of the solutions uε(t , x) of (Pε), as ε→ 0.

2.1. Monostable pulsating fronts and spreading properties

The definition of the so-called pulsating traveling wave was introduced by Xin [33] in

the framework of flame propagation. It is the natural extension, in the periodic framework, of

classical traveling waves. Due to the interest of taking into account the role of the heterogene-

ity of the medium on the propagation of solutions, a lot of attention was later drawn on this

subject. As far as monostable pulsating fronts are concerned, we refer to the seminal works of

Weinberger [32], Berestycki and Hamel [9]. Let us also mention [11], [20], [21], [28] for related

results.

For the sake of completeness, let us first recall the definition of a pulsating traveling wave

for the monostable equation (1), as stated in [9].

Definition 2.1 (Pulsating traveling wave). A pulsating traveling wave solution, with speed c >
0 in the direction n ∈S

N−1, is an entire solution u(t , x) — t ∈R, x ∈R
N — of (1) satisfying

∀k ∈
N∏

i=1

LiZ, u(t , x)= u

(
t +

k ·n

c
, x +k

)
,

for any t ∈R and x ∈R
N , along with the asymptotics

u(−∞, ·) = 0 < u(·, ·) < u(+∞, ·) = 1,
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where the convergences in ±∞ are understood to hold locally uniformly in the space variable.

One can easily check that, for any c > 0 and n ∈S
N−1, u(t , x) is a pulsating traveling wave

with speed c in the direction n if and only if it can be written in the form

u(t , x)=U (x ·n −ct , x),

where U (z, x) — z ∈R, x ∈R
N — satisfies

for all z ∈R, U (z, ·) :RN →R is periodic,

U (−∞, ·) = 1 <U (·, ·) <U (+∞, ·) = 0 uniformly w.r.t. the space variable,

along with the following equation

(∂zz +∆x )U +2∇x∂zU ·n +c∂zU + f (x,U ) = 0 on R×R
N . (5)

We can now recall the result of [9], [32], on existence of pulsating traveling waves for the

spatially periodic monostable equations: in any direction there is a minimal speed c∗(n) > 0

which allows existence. Precisely, the following holds.

Theorem 2.2 (Monostable pulsating fronts, [9], [32]). Assume that f is of the spatially periodic

monostable type, i.e. f satisfies (2) and Assumption 1.1.

Then for any n ∈ S
N−1, there exists c∗(n) > 0 such that traveling waves with speed c in

the n-direction exist if and only if c ≥ c∗(n). Furthermore, any pulsating traveling wave is

increasing in time.

In the Fisher-KPP case the continuity of the velocity map n 7→ c∗(n), even if not explicitly

stated, seems to follow from the characterization of c∗(n) (see [32], [9]). In the more general

monostable case, such a property was recently proved.

Theorem 2.3 (Continuity of minimal speeds, [4]). The mapping n ∈S
N−1 7→ c∗(n) is continu-

ous.

The introduction of these pulsating traveling waves was motivated by their expected role

in describing the large time behavior of solutions of (1) for a large class of initial data. In this

context, let us recall the seminal result of [32]: for any planar-like initial data in some direction

n, the associated solution of (1) spreads in the n direction with speed c∗(n). Actually, for our

singular limit analysis, it turns out that we need the stronger property that this spreading is

uniform with respect to the direction n. This was the purpose of our previous work [4].
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Theorem 2.4 (Uniform spreading, [4]). Assume that f is of the spatially periodic monostable

type, i.e. f satisfies (2) and Assumption 1.1. Let a family of nonnegative initial data (u0,n)n∈SN−1

be such that

∃C > 0, ∀n ∈S
N−1, x ·n ≥C =⇒ u0,n(x) = 0,

∃µ> 0, ∃K > 0, inf
n∈SN−1, x·n≤−K

u0,n(x)≥µ,

inf
n∈SN−1

inf
x∈RN

1−u0,n(x) > 0.

We denote by (un)n∈SN−1 the associated family of solutions of (1).

Let α> 0 and η> 0 be given. Then, there exists τ> 0 such that for all t ≥ τ,

sup
n∈SN−1

sup
x·n≤(c∗(n)−α)t

|1−un(t , x)| ≤ η, (6)

sup
n∈SN−1

sup
x·n≥(c∗(n)+α)t

un(t , x) ≤ η. (7)

Let us notice that, under suitable assumptions such as those in [9], [4], the above results

are also available for more general spatially periodic and monostable equations which in-

clude heterogeneous diffusion and advection terms. We restrict ourselves to Problem (Pε) to

simplify the presentation, but our argument easily extends to such a framework.

2.2. On limit free boundary problems

We recall that we aim at investigating the ε→ 0 limit of uε(t , x) the solution of (Pε). Then

the limit solution ũε(t , x) will be a step function, taking the value 1 on one side of a moving

interface which we will denote by Γt , and 0 on the other side. This sharp interface, if smooth,

obeys the law of motion

(P 0)





Vn = c∗(n) on Γt

Γt |t=0 = Γ0,

where Vn denotes the normal velocity of Γt in the exterior direction n, the unit outer normal of

Γt at each point x ∈ Γt . Here c∗(n) denotes the minimal speed of the underlying monostable

pulsating wave traveling in the n-direction.

As we only know the mapping n 7→ c∗(n) to be continuous, the smoothness of the inter-

face, and hence the well posedness of (P 0), is not guaranteed even for small positive times.

A classical way to overcome the lack of smoothness is to define the limit interface via the

level sets of the viscosity solution of a Hamilton-Jacobi problem

(P 0
H J )





∂t w +|∇w |c∗
(
∇w
|∇w |

)
= 0 in (0,∞)×R

N

w (0, x)= w0(x) in R
N .
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Here w0 :RN →R is any uniformly continuous function such that

Ω0 = {x : w0(x) < 0}, Γ0 = {x : w0(x) = 0}. (8)

Thanks to the continuity of c∗(n) with respect to n ∈S
N−1, namely Theorem 2.3, the Hamilton-

Jacobi problem admits a unique viscosity solution w ∈C ((0,∞)×R
N ), and

Ωt := {x : w (t , x)< 0}, Γt := {x : w (t , x)= 0}

do not depend on the choice of w0 as above (see Theorems 4.3.5 and 4.3.6 in [17]). As long

as (P 0) admits a smooth solution, both motions coincide, which is why we still denote it by

Γt . However, the Hamilton-Jacobi approach does not require smoothness as (P 0) does, and

therefore enables to define the zero level set Γt as the limit interface for all t ≥ 0.

The literature on this level set approach via viscosity solutions of Hamilton-Jacobi equa-

tions is rather large. The reader may consult [12] or the book of Giga [17] and the references

therein.

Thanks to the convexity of the initial set Ω0, a so-called Hopf formula [23] is actually

available and provides an explicit depiction of the motion, as stated in the following result.

Proposition 2.5 (The limit interface explicitly). Let Assumption 1.2 (ii) hold. Let the limit

interface Γt be defined via the Hamilton-Jacobi problem (P 0
H J ) as above.

Then, for all time t ≥ 0, the set Γt is the zero level set of the convex function

v(t , x) := max
y∈Γ0

(x − y) ·ny −c∗(ny )t ,

where ny denotes the outward unit normal vector of Γ0 at point y. In particular, for all time

t ≥ 0, the set Γt remains sharp, in the sense that it does not develop an interior, and the bounded

domain Ωt delimited by Γt remains convex.

Roughly speaking, this proposition means that the motion can be described by first look-

ing at Γ0 as the envelop of some half-spaces, and by then letting each of those half-spaces

move at the speed c∗(n) corresponding to its normal direction. We refer to [5] where the

Hopf formula was revisited in the context of viscosity solutions, and obtained using the more

general theory of differential games. We propose a direct proof of Proposition 2.5 in subsec-

tion 4.1.

3. Main result

We are now in the position to state our main result of convergence of (Pε) to the interface

motion defined via the level sets of solutions of (P 0
H J ). Together with Proposition 2.5, the

theorem below provides a precise depiction of the shape of solutions or, in other words, of the

expansion of the habitat of the population.
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Theorem 3.1 (Convergence to a propagating interface). Let the nonlinearity f be of the spa-

tially periodic monostable type, i.e. f satisfies (2) and Assumption 1.1, and let the initial data

g in Problem (Pε) satisfy Assumption 1.2. For any ε> 0, let uε : [0,∞)×R
N →R be the solution

of (Pε). Let Γt and Ωt be defined via the Hamilton-Jacobi problem (P 0
H J ) as in subsection 2.2.

Then, the following convergence results hold.

(i) For any 0 < τ≤T <+∞ and small β> 0, we have

sup
τ≤t≤T

sup
{x:d(t ,x)≤−β}

∣∣1−uε(t , x)
∣∣→ 0 as ε→ 0;

(ii) For any 0 < T <+∞ and small β> 0, we have

sup
0≤t≤T

sup
{x:d(t ,x)≥β}

|uε(t , x)|→ 0 as ε→ 0.

Here d (t , ·) denotes the signed distance to the set Γt , which is chosen to be negative in Ωt and

positive in R
N \ (Γt ∪Ωt ).

The rest of the paper is devoted to the proof of Theorem 3.1 and is organized as follows.

We start, in Section 4, by some results on the motion of the limit interface which are

crucial to our analysis of the parabolic problem (Pε), but are also of independent interest

for the Hamilton-Jacobi problem (P 0
H J ). On the one hand, we prove Proposition 2.5, hence

providing an explicit description of the limit interface. On the other hand, we approximate

the motion defined via (P 0
H J ) by a smooth motion, which preserves all its essential geometric

properties.

To prove the control from below (i ) of Theorem 3.1, we distinguish two regimes. First,

we prove in Section 5 the emergence of transition layers for uε(t , x) in very small times. The

propagation of the layers (from below) that occurs in later times is then studied in Section 6.

The heterogeneity rises some technical difficulties since pulsating fronts depend non trivially

on the direction of propagation. Roughly speaking, we construct “local" subsolutions and

combine the uniform spreading properties of Theorem 2.4 with an iteration procedure. The

construction of such subsolutions requires smoothness of the interface, which insures that

the motion is locally governed by the planar dynamics of the rescaled equation (1). Hence, we

actually apply the above procedure to the smooth approximated motion defined in Section 4.

Last, in Section 7, to prove the control from above (i i ) of Theorem 3.1, we construct a

family of planar supersolutions — whose envelop coincides with the explicit characterization

of Proposition 2.5 — and use again the uniform spreading properties of Theorem 2.4.
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4. Some results on the motion of the limit interface

In this section, we are only concerned with the limit interface motion (P 0
H J ). We first

prove the explicit description of Proposition 2.5, and then proceed to an approximation of the

motion (P 0
H J ) by a smooth motion. As mentioned before, smoothness will play an essential

role in the convergence of solutions of (Pε), and more specifically in Section 6.

4.1. Characterization of the motion

We begin by recalling that

v(t , x) := max
y∈Γ0

{(x − y) ·ny −c∗(ny )t },

where ny is the outward unit normal of Γ0 at point y . The zero level sets of v(t , x) are obtained

by “intersecting all the half-planes arising from y ∈ Γ0 and propagating with speed c∗(ny ) in

direction ny ". We will prove that, at least for its level sets lying above some small −δ < 0,

the function v is a viscosity solution of the Hamilton-Jacobi problem (P 0
H J

). As the motion of

interface is defined by the zero level set of the viscosity solution, this will be enough to infer

that its zero level set defines the appropriate interface Γt , that is Proposition 2.5.

Remark 4.1. Write v(t , x)= maxy∈Γ0
ψ(t , x, y) where

ψ : (t , x, y)∈ (0,∞)×R
N ×Γ0 7→ (x − y) ·ny −c∗(ny )t ,

is continuous with respect to y ∈ Γ0, smooth and convex (since linear) with respect to t > 0

and x ∈ R
N . For a given (t , x) ∈ (0,∞)×R

N , let us denote by Y (t , x) the set of y ∈ Γ0 that

maximize ψ(t , x, ·), that is

Y (t , x) = {y ∈Γ0 : v(t , x)=ψ(t , x, y)}.

If, for a given (t0, x0), the set Y (t0, x0) reduces to a singleton y0 then it follows from classical

results of convex analysis (see [22, Corollary 4.4.5]) that v is differentiable at (t0, x0), and

∂t v(t0, x0) = ∂tψ(t0, x0, y0) =−c∗(ny0
), ∇x v(t0, x0) =∇xψ(t0, x0, y0) =ny0

,

so that v satisfies the Hamilton-Jacobi equation ∂t v + |∇v |c∗
(
∇v
|∇v |

)
= 0 in the classical sense

at (t0, x0). However, we have to deal with the case where Y (t0, x0) is not a singleton. As we will

see, this can be performed in the set {v ≥ −δ} for some small enough δ > 0, and requires to

cut-off the set {v <−δ}.

We prove the following proposition, of which Proposition 2.5 is an immediate corollary.
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Proposition 4.2 (A solution of the Hamilton-Jacobi problem). For any small enough δ> 0, the

function

vδ(t , x) := max(−δ; v(t , x)),

is a (viscosity) solution of the equation of the limit problem (P 0
H J ), that is

∂t vδ+|∇vδ|c∗
( ∇vδ

|∇vδ|

)
= 0, in (0,∞)×R

N , (9)

and, by convexity, vδ(0, x) is an admissible initial datum for (P 0
H J ) in the sense of (8).

Proof. Recall that at time t = 0, Γ0 is a smooth hypersurface, and that the bounded set Ω0 de-

limited by Γ0 is convex. Hence, for δ> 0 small enough, one can define a smooth hypersurface

Γ
−δ
0 as

Γ
−δ
0 := {x ∈R

N : d (0, x) =−δ} = {y −δny : y ∈Γ0},

where d (0, ·) denotes the signed distance to Γ0, which is negative in the bounded set Ω0, and

positive in R
N \Ω0. Notice also that, when x ∈Ω0, we can write v(0, x) =−miny∈Γ0

di st (x, Hy),

where Hy is the hyperplane going through y and with normal vector ny . As a result, the con-

vexity assumption yields

Γ
−δ
0 = {x ∈R

N : v(0, x) =−δ}.

In particular, since the function v is convex with respect to x, the bounded set Ω−δ
0 delimited

by Γ
−δ
0 is still convex. Moreover, as we have chosen δ small enough so that Γ−δ

0 is smooth, it is

straightforward that the outward unit normal vector of Γ−δ
0 at y −δny is also ny . Therefore, by

some slight abuse of notation, when y ∈ Γ
−δ
0 , ny will denote the outward unit normal vector

of Γ−δ
0 at point y . Then

vδ(t , x) = max{−δ,max
y∈Γ0

{(x − y) ·ny −c∗(ny )t }}

= max{−δ,max
y∈Γ0

{(x − (y −δny )) ·ny −c∗(ny )t −δ}}

= max{0, max
y∈Γ−δ

0

{(x − y) ·ny −c∗(ny )t }}−δ.

Therefore, vδ(t , x) is a solution of (P 0
H J ) if and only if

v̄δ(t , x) := max{0, max
y∈Γ−δ

0

{(x − y) ·ny −c∗(ny )t }}

is. For convenience, denote

ψδ : (t , x, y)∈ (0,∞)×R
N ×Γ

−δ
0 7→ (x − y) ·ny −c∗(ny )t ,
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which is continuous with respect to y ∈ Γ
−δ
0 , smooth and linear with respect to t > 0 and

x ∈R
N , and introduce also

wδ(t , x) := max
y∈Γ−δ

0

ψδ(t , x, y),

so that v̄δ(t , x)= max(0, wδ(t , x)).

Let us now prove that v̄δ is a solution of (9). First, the null function and each function

(t , x) 7→ ψδ(t , x, y) solve (9) so that v̄δ(t , x) — as a supremum of solutions — is a viscosity

subsolution of (9).

To prove that v̄δ(t , x) is also a supersolution, let ϕ be a smooth test function such that

v̄δ−ϕ has a zero local minimum at some point (t0, x0) ∈ (0,∞)×R
N . We need to prove that

∂tϕ(t0, x0)+|∇ϕ(t0, x0)|c∗
( ∇ϕ(t0, x0)

|∇ϕ(t0, x0)|

)
≥ 0. (10)

If wδ(t0, x0) < 0, then v̄δ ≡ 0 in a neighborhood of (t0, x0) and (10) is clear. Let us now assume

0 ≤ wδ(t0, x0) = v̄δ(t0, x0). Since v̄δ−ϕ has a zero local minimum at (t0, x0), the time-space

gradient of ϕ at (t0, x0) must belong to the time-space subdifferential of v̄δ at (t0, x0), which is

given by

∂v̄δ(t0, x0) =




∂wδ(t0, x0) if wδ(t0, x0) > 0

Co {(0R,0RN )∪∂wδ(t0, x0)} if wδ(t0, x0) = 0,

where Co A denotes the convex hull of the set A. It also follows from [22, Theorem 4.4.2] that

∂wδ(t0, x0) =Co {(∂tψ
δ(t0, x0, y),∇xψ

δ(t0, x0, y))= (−c∗(ny ),ny ) ∈R×R
N : y ∈ Y (t0, x0)},

where Y (t0, x0) is the set of y ∈ Γ
−δ
0 that maximize ψδ(t0, x0, ·). Hence, in any case, one can

write

∂tϕ(t0, x0) =
p∑

i=1

−λi c∗(ni ), ∇ϕ(t0, x0) =
p∑

i=1

λi ni ,

for some y1,. . . ,yp in Y (t0, x0), and ni the outward unit normal of Γ−δ
0 at point yi , and some

nonnegative λ1,. . . ,λp such that
∑p

i=1
λi ≤ 1. Therefore our goal (10) is recast as

c∗
( ∑p

i=1
λi ni

|
∑p

i=1
λi ni |

)
≥

∑p

i=1
λi c∗(ni )

|
∑p

i=1
λi ni |

. (11)

Let us define

n0 :=
∑p

i=1
λi ni

|
∑p

i=1
λi ni |

∈S
N−1,

and pick a y0 ∈Γ
−δ
0 such that ny0

= n0. Note that such a y0 necessarily exists from the smooth-

ness of the bounded hypersurface Γ
−δ
0 . One must then have

ψδ(t0, x0, y0)= (x0 − y0) ·n0 −c∗(n0)t0 ≤ wδ(t0, x0),
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so that

c∗(n0)t0 ≥ (x0 − y0) ·n0 −wδ(t0, x0)

=
∑p

i=1
λi (x0 − y0) ·ni

|
∑p

i=1
λi ni |

−wδ(t0, x0)

≥
∑p

i=1
λi (x0 − yi ) ·ni

|
∑p

i=1
λi ni |

−wδ(t0, x0).

Here we used the convexity of Ω−δ
0 , so that (yi − y0) ·ni ≥ 0 for all 1 ≤ i ≤ p . Next, as each yi

belongs to Y (t0, x0), we have wδ(t0, x0) = (x0 − yi ) ·ni −c∗(ni )t0, so that

c∗(n0)t0 ≥
∑p

i=1
λi c∗(ni )

|
∑p

i=1
λi ni |

t0 +wδ(t0, x0)

( ∑p

i=1
λi

|
∑p

i=1
λi ni |

−1

)
≥

∑p

i=1
λi c∗(ni )

|
∑p

i=1
λi ni |

t0,

since wδ(t0, x0) ≥ 0 (notice that this is where it fails if no cut-off is performed). This proves (11)

and concludes the proof of Proposition 4.2. ���

4.2. Regularization of the motion

We now construct, by the vanishing viscosity method, a smooth hypersurface Γ
α
t which

approximates the interface Γt as α → 0. Moreover, the motion of this smooth hypersurface

is always “slower” than that of the original interface Γt : this will allow us, in Section 6, to

construct subsolutions of (Pε) which fully cover the bounded set delimited by Γ
α
t .

Proposition 4.3 (Approximated smooth motion). Fix α0 > 0 small enough and, for any 0 <
α≤α0, let Fα : RN →R be a smooth function such that

0 ≤ Fα(p)≤ |p|(c∗(p/|p|)−α), for all p ∈R
N ,

and, as α→ 0,

Fα(p)→|p|c∗(p/|p|), locally uniformly in R
N .

Let vα
0 (x) be a smooth and strictly convex function such that

‖∇vα
0 ‖∞ ≤ 1, vδ(0, ·)+α≤ vα

0 ≤ vδ(0, ·)+2α,

where vδ is the explicit viscosity solution of (P 0
H J ) with initial datum vδ(0, x), as defined in

Proposition 4.2.

Then, the solution vα of the parabolic equation





∂t vα+Fα(∇vα)−α∆vα = 0 in (0,∞)×R
N

vα(0, x) = vα
0 (x) in R

N ,
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is smooth, convex w.r.t. space, and converges locally uniformly to vδ as α→ 0. In particular,

for any T > 0 and up to reducing α, the zero level set Γα
t := {x ∈ R

N : vα(t , x) = 0} is a smooth

hypersurface for any 0 ≤ t ≤ T , and is such that

sup
0≤t≤T

dH (Γα
t ,Γt ) → 0 as α→ 0, (12)

where dH (A,B ) := max{supa∈A di st (a,B ), supb∈B di st (b, A)} denotes the Hausdorff distance

between two compact sets A and B. Last, vα satisfies

∂t vα+|∇vα|
(

c∗
( ∇vα

|∇vα|

)
−α

)
≥ 0 in (0,∞)×R

N . (13)

Proof. One can differentiate (in any direction) the parabolic equation satisfied by vα and,

using ‖∇vα
0 ‖∞ ≤ 1 for any 0 <α≤α0, deduce from the comparison principle that

‖∇vα(t , ·)‖∞ ≤ 1, for all 0 <α≤α0 and t > 0.

In other words, the family (vα(t , ·))0<α≤α0,t≥0 is uniformly Lipschitz-continuous. As confirmed

by [18], the proof of Theorem 4.6.3 in [17] still applies thanks to the above estimate, even

though the solutions we consider are unbounded. Therefore, one can conclude that the fam-

ily of functions vα converges locally uniformly to the unique viscosity solution of (P 0
H J ) with

initial datum vδ(0, x), namely vδ.

We now proceed by noting that, for each 0 < α ≤ α0, the smoothness of vα follows from

standard parabolic estimates. One can then differentiate the parabolic equation twice in any

given direction e ∈S
N−1 and deduce from the comparison principle (recall that vα

0 is convex)

that vα(t , ·) is convex for any positive time. In particular, we have ∆vα(t , x) ≥ 0 for all t ≥ 0

and x ∈R
N , which proves (13).

Let us now turn to the convergence of the zero level set Γα
t of vα to Γt . The proof again

follows the steps of [17] (see the proof of Theorem 4.6.4 in the particular case of geometric mo-

tions). We fix any β> 0 and T > 0 and show that, for small enough α, sup0≤t≤T dH (Γα
t ,Γt )≤β.

By (13), we get that vα(t , x) > vδ(t , x) for all t ≥ 0 and x ∈R
N : in particular, Γα

t ⊂Ωt for all t ≥ 0.

Let now R > 0 be large enough so that for all 0 ≤ t ≤ T the inclusion Ωt ⊂ BR holds, where BR

denotes the ball of radius R and centered at the origin. By the locally uniform convergence, it

is clear that for any small enough α and x ∈Ωt such that d (t , x)≤−β (recall that d (t , ·) denotes

the signed distance to Γt ), then vα(t , x)< 0. The convergence (12) easily follows.

Let us again fix T > 0 and now prove that, for small enough α, the zero level set Γα
t is a

smooth hypersurface on the time interval [0,T ]. Note that, for any 0 ≤ t0 ≤ T and x0 ∈ Γ
α
t0

,

one has that |∇vα(t0, x0)| 6= 0 provided α is small enough. Otherwise, it would follow from the

convexity of vα(t0, ·) that vα(t0, ·) ≥ 0 in R
N , a contradiction with the fact that it approaches

vδ(t0, ·) locally uniformly. Then, as |∇vα(t0, x0)| 6= 0, one can apply the implicit function theo-

rem and obtain the smoothness of Γα
t0

. ���
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5. Rapid emergence of the layers from below

In this section we prove that, as ε→ 0, the solution uε(t , x) of (Pε) is very close to 1 in Ω0

after a very short time. The proof relies on the spreading properties of solutions of (1) with

large enough compact support at initial time [32]. Precisely, the following holds.

Proposition 5.1 (Emergence of the layers from below). Let the nonlinearity f be of the spa-

tially periodic monostable type, i.e. f satisfies (2) and Assumption 1.1. Let the initial datum g

in Problem (Pε) satisfy Assumption 1.2.

Then, for any small η > 0 and small α > 0, there is a time tα > 0 such that the following

holds: there is ε0 > 0 such that, for all ε ∈ (0,ε0),

x ∈Ω0, di st (x,∂Ω0) >α =⇒ 1−η≤ uε(tαε, x) ≤ 1. (14)

Proof. Since 1 solves the reaction-diffusion equation in (Pε) and since uε(0, ·) = g (·) ≤ 1, the

comparison principle implies uε(t , x) ≤ 1, which proves the upper bound in (14). We next

prove the lower bound.

We begin by recalling the following result on the spreading of solutions with initial com-

pact support [32, Theorem 2.3]: for any σ ∈ (0,1), there is Rσ > 0 large enough so that the

solution v of (1) with initial datum v0 = σχBRσ
converges locally uniformly to 1 as t → +∞.

Here, χ denotes the characteristic function and BR the ball of radius R and centered at the

origin. Note that Weinberger’s result [32] also provides a positive spreading speed in any di-

rection; however, it is not required to prove Proposition 5.1.

Let us now fix some η > 0 and α > 0. From Assumption 1.2 on the initial data g , there is

σ1 ∈ (0,1) such that, for all ε> 0,

x ∈Ω0, di st (x,∂Ω0) >α =⇒ uε(0, x) = g (x) ≥σ1. (15)

We can now let tα > 0 be such that the solution v of (1) with initial datum v0 =σ1χBRσ1
satisfies

v(tα, x)≥ 1−η, ∀x ∈ B3Rσ1
. (16)

We assume without loss of generality that Rσ1
> 2

p
N maxi Li .

Let us now fix x∗ ∈Ω0 such that di st (x∗,∂Ω0)>α. We are going to prove

uε(tαε, x∗) ≥ 1−η, (17)

for ε ∈ (0,ε0), where ε0 > 0 has to be independent on the point x∗ chosen as above. We

let x0 ∈ ∂Ω0 such that di st (x∗,∂Ω0) = |x∗− x0|. Since Rσ1
> 2

p
N maxi Li , there exists k∗

ε =
(k∗

1,ε, . . . ,k∗
N ,ε) ∈Z

N such that

x∗−2Rσ1
ε

x0 −x∗

|x0 −x∗|
∈ εk∗

ε L+B Rσ1 ε

2

, (18)
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where we denote k∗
ε L := (k∗

1,εL1, . . . ,k∗
N ,εLN ). Also, provided α and ε0 > 0 are small enough de-

pending only on 0 < maxy∈Γ0
γ(y) <+∞ with γ(y) the mean curvature (positive by convexity)

of Γ0 at point y , we have, for all ε∈ (0,ε0),

εk∗
ε L ∈Ω0 and di st (εk∗

εL,∂Ω0) >α+Rσ1
ε. (19)

Observe that if x ∉ εk∗
ε L+BεRσ1

then v0

(
x−εk∗

ε L

ε

)
=σ1χBRσ1

(
x−εk∗

ε L

ε

)
= 0, and that if x ∈ εk∗

ε L+
BεRσ1

then (19) implies that x ∈Ω0 and di st (x,∂Ω0) >α. Hence, it follows from (15) that

g (x) ≥ v

(
0,

x −εk∗
ε L

ε

)
for all x ∈R

N .

Since v( t
ε ,

x−εk∗
ε L

ε ) solves the parabolic equation in (Pε), the comparison principle implies in

particular that

uε(tαε, x∗) ≥ v

(
tα,

x∗−εk∗
ε L

ε

)
.

In view of (16) and (18), the above estimate implies (17). The proposition is proved. ���

The above argument also shows that, roughly speaking, the solution of (Pε) may only

expand, which is rather natural from the dynamics of the monostable equation. Precisely the

following holds.

Lemma 5.2 (Expansion). Let η> 0 be given. Let (Ω̃t )0≤t≤T be a family of bounded and convex

domains with smooth boundaries Γ̃t := ∂Ω̃t . Then, for any σ ∈ (0,1) there is a time tσ > 0 such

that the following holds: there is ε0 > 0 — depending only on 0 < max0≤t≤T maxy∈Γ̃t
γt (y) <+∞

with γt (y) the mean curvature of Γ̃t at point y— such that, for any 0 ≤ t0 <T , any ε ∈ (0,ε0),

uε(t0, x)≥σ, ∀x ∈ Ω̃t0
=⇒ uε(t , x)≥ 1−η, ∀x ∈ Ω̃t0

,∀t ≥ t0 + tσε.

6. Propagation of the layers from below

We now begin the analysis of the motion of interface. In this section, we prove the lower

estimate on the motion of level sets of the solutions uε(t , x), namely statement (i ) of Theo-

rem 3.1.

To that purpose, we fix some times 0 < τ< T , and a small β> 0. We then let α> 0 be small

enough so that the hypersurfaces (Γα
t )0≤t≤T+1, as defined in subsection 4.2, are smooth and

such that

sup
0≤t≤T+1

dH (Γα
t ,Γt )≤

β

2
. (20)

We also denote, in this section, by Ω
α
t the region enclosed by Γ

α
t .
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6.1. Lower estimates in small canisters

We start by looking, for any fixed time t0, at the “local motion" of the interface. By “local

motion", we mean that we will investigate the motion of the solution on small neighborhoods

of any point of Γα
t0

. Precisely, the following holds.

Lemma 6.1 (Lower estimates in small canisters). Let η> 0 be given. Fix some time t0 ∈ (0,T ),

and assume that

x ∈Ω
α
t0
=⇒ uε(t0, x) ≥ 1−η. (21)

Then there are two positive constants A1 and A2, independent on t0 and ε > 0 (provided it is

small enough), such that

uε(t0 + A1

p
ε, x)≥ 1−η,

for all x ∈ D :=∪x0∈Γα
t0
C (x0), where C (x0) is the finite cylinder, or canister, made of the points x

such that

|(x −x0) ·n| ≤ A1

(
c∗(n)−

α

2

)p
ε and |(x −x0) ·n⊥| ≤ A2

p
ε

2
. (22)

Here n denotes the unit outer normal of Γα
t0

at point x0, and (x−x0) ·n⊥ denotes the orthogonal

projection of x −x0 on the hyperplane (Rn)⊥.

Proof. First, let γ> 0 be large enough so that, for all t ∈ [0,T ], all y ∈Γ
α
t with ny the associated

unit outer normal, we have the inclusion

B 1
γ

(
y −

1

γ
ny

)
⊂Ω

α
t , (23)

where Br (z) denotes the open ball of center z, radius r . By convexity, it suffices to take γ as

the maximal curvature (in absolute value) of Γα
t in the time interval [0,T ].

Let η > 0 and 0 < t0 < T be given. Let x0 ∈ Γ
α
t0

be given and n the associated unit outer

normal. For the lemma to be proved notice that constants A1 and A2, that we need to deter-

mine, have to be independent on t0, small ε> 0 but also on x0 and n. By assumption (21) and

inclusion (23), we have

∀x ∈ B 1
γ

(
x0 −

1

γ
n

)
, uε(t0, x)≥ 1−η.

We fix a constant C > 2
p

N maxi Li and, proceeding similarly as in Section 5, we can find

some point εkεL := ε(k1,εL1, . . . ,kN ,εLN ), where ki ,ε ∈Z for all 1≤ i ≤ N , and such that

x0 −
n

γ
∈ εkεL+BCε. (24)

Then

∀x ∈ B 1
γ
−Cε (εkεL) , uε(t0, x) ≥ 1−η. (25)
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This leads us to study the solution u(t , x) of (1) with initial datum

u0(x) := (1−η)×χB 1
γε −C

(x), (26)

where Br denotes the open ball centered at the origin and of radius r . Note that this initial

datum has compact support, so that Theorem 2.4 does not apply. In fact, the solution u(t , x)

does not spread with speed c∗(n) in the n-direction as t →+∞, but rather with some mini-

mum of the c∗(n′)
n·n′ over all n′ ∈S

N−1. However, as the radius of the initial support is very large,

we can exhibit some transient dynamics where the solution does spread, in any direction n,

with speed c∗(n) the minimal speed of pulsating traveling waves. Let us make this sketch

precise.

We first note that, provided that ε is small depending only on C and γ, the finite cylinder

D0 :=
{

x ∈R
N : |x ·n| ≤

1

γε
−2C and |x ·n⊥| ≤

√
C

γε

}

is a subset of B 1
γε
−C thanks to Pythagoras’ theorem. In order to apply Theorem 2.4, which is

concerned with planar-shaped initial data, it is more convenient to consider a box-shaped

initial support. With this in mind, we introduce (n1, . . . ,nN−1) an orthonormalized basis of

(Rn)⊥, and define the finite box

D1 :=
{

x ∈R
N : |x ·n| ≤

1

γε
−2C and ∀1 ≤ i ≤ N −1, |x ·ni | ≤

√
C

(N −1)γε

}
,

which is a subset of D0.

We can now begin our investigation of the spreading of u, the solution of (1) with initial

datum (26). By the parabolic comparison principle, we have

u ≥ u ,

where u is the solution of (1) with initial datum

u0(x) := (1−η)×χD1
(x).

We let ũ(t , x;n) denote the solution of (1) with initial datum

ũ0(x;n) := (1−η)×χ{x·n≤ 1
γε
−2C }(x),

which is planar-shaped so that ũ(t , x;n) spreads in the direction n with speed c∗(n). Precisely,

recalling C > 2
p

N maxi Li , we can find some point k̃εL := (k̃1,εL1, . . . , k̃N ,εLN ), where k̃i ,ε ∈ Z

for all 1 ≤ i ≤ N , and such that n
γε

∈ BC (k̃εL). Then observe that

ṽ0(x;n) := ũ0(x + k̃εL;n) ≥ (1−η)×χ{x·n≤−3C }(x).
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We can now apply Theorem 2.4 with the family of functions in the right-hand side member

above (which do not depend on ε) as the family of initial data. Then, applying the comparison

principle, we get that there exists τ> 0 (which does not depend on ε) such that

inf
t≥τ

inf
x·n≤(c∗(n)− 1

4
α)t

ṽ(t , x;n)≥ 1−
η

2
,

where ṽ(t , x;n) denotes the solution of (1) with initial datum ṽ0(x;n). Then, since ṽ(t , x;n)=
ũ(t , x + k̃εL;n) thanks to the spatial periodicity, the above estimate implies

inf
t≥τ

inf
x·n≤ 1

γε
−3C+(c∗(n)− 1

4
α)t

ũ(t , x;n)≥ 1−
η

2
. (27)

We emphasize that τ > 0 can also be chosen independently of n ∈ S
N−1: this is the exact

purpose of our improvement of Weinberger’s spreading result [32], namely Theorem 2.4.

We now estimate the difference w := ũ −u ≥ 0, which satisfies ∂t w −∆w − g (t , x)w = 0,

where

g (t , x) :=





f (x, ũ)− f (x,u)

ũ −u
if w (t , x) 6= 0,

∂u f (x, ũ) if w (t , x)= 0.

From Assumption 1.1, g (t , x) is uniformly bounded by some K which only depends on f .

Then w satisfies

∂t w −∆w −K w ≤ 0. (28)

As this parabolic equation is linear, we infer that w (t , x) ≤
∑2N−2

i=0 wi (t , x), where w0 is the

solution of (28) with initial datum

w0(0, x) =





1−η if x ·n ≤− 1
γε

+2C ,

0 otherwise,

and the w2i−1 and w2i ’s, 1 ≤ i ≤ N −1, are the solutions of (28) with initial data

w2i−1(0, x) =





1−η if x ·n ≤ 1
γε

−2C and x ·ni ≥
√

C
(N−1)γε

,

0 otherwise,

w2i (0, x) =





1−η if x ·n ≤ 1
γε −2C and x ·ni ≤−

√
C

(N−1)γε ,

0 otherwise.

Note that, for any e ∈S
N−1 and any positive constant M , (t , x) 7→ Me−

p
K (x·e−2

p
K t ) is a super-

solution of the linear equation (28). It therefore follows that

w0 (t , x)≤ e
−
p

K (x·n+ 1
γε
−2C−2

p
K t )

,
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and, for any integer 1 ≤ i ≤ N −1,

w2i−1 (t , x)≤ e

p
K (x·ni−

√
C

(N−1)γε
+2

p
K t )

,

w2i (t , x)≤ e
−
p

K (x·ni+
√

C
(N−1)γε

−2
p

K t )
.

Then, we conclude that

0 ≤ (ũ −u)

(
A1p
ε

, x

)
= w

(
A1p
ε

, x

)
≤

2N−2∑

i=0

wi

(
A1p
ε

, x

)
≤

η

2
, (29)

where

A1 :=
1

4

√
C

K (N −1)γ
,

for all x satisfying the two following inequalities:

x ·n ≥−
1

γε
+2C +2A1

√
K

ε
−

1
p

K
ln

( η

4N

)
=−

1

γε
+O

(
1
p
ε

)
, (30)

|x ·ni | ≤

√
C

(N −1)γε
−2A1

√
K

ε
+

1
p

K
ln

( η

4N

)
=

1

2

√
C

(N −1)γε
+O(1),

for 1≤ i ≤ N −1. The second inequality is in particular satisfied, for ε> 0 small enough, if

|x ·n⊥| ≤
1

3

√
C

(N −1)γε
=:

A2p
ε

. (31)

Combining the spreading property (27) of ũ and inequality (29), we conclude that

u(tε, x) ≥ 1−η, tε :=
A1p
ε

, (32)

for any x satisfying both inequalities (30) and (31), as well as

x ·n ≤
1

γε
−3C + (c∗(n)−

1

4
α)tε. (33)

We can now go back to our original problem (Pε). Notice that both u( t
ε , x

ε ) and uε(t0 +
t ,εkεL + x) solve the equation in (Pε). Using D1 ⊂ B 1

γε
−C and (25), we see that u(0, x

ε ) ≤
uε(t0,εkεL+x) so that

uε(t0 + t ,εkεL+x) ≥u

(
t

ε
,

x

ε

)
,

where εkεL satisfies (24). Thus, we get

uε(t0 +εtε, x) ≥u

(
tε,

x −εkεL

ε

)
≥ 1−η, (34)



ASYMPTOTIC ANALYSIS OF A MONOSTABLE EQUATION IN PERIODIC MEDIA 21

provided that
x−εkεL

ε satisfies (30), (31), (33) (so that (32) holds). Now, assume that x satisfies

(22). Combining the first part of (22) and (24), we see that x−εkεL
ε

satisfies both (30) and (33).

Combining the second part of (22), n ·n⊥ = 0 and (24), we see that
x−εkεL

ε satisfies (31). Hence,

(34) holds true and is the desired conclusion that uε(t0 + A1
p
ε, x)≥ 1−η.

Note that, as announced, the constants A1 and A2 defined above depend neither on t0 ∈
(0,T ), x0 ∈Γ

α
t0

and the associated unit outer normal n, nor on ε> 0. The lemma is proved. ���

Remark 6.2. Let us notice that Lemma 6.1 shares some ideas with the so-called consistency

assumption (H4) of Barles and Souganidis [8]. Roughly speaking, their method consists in

reducing the study of the sharp interface limit to compact and smooth shapes as well as to

small times, that is to consistency. In a heterogeneous and bistable context, they then proved

consistency under the additional assumption that the traveling wave (which in such case is

unique) depends regularly on its direction. However, such a property is far from trivial, espe-

cially in the monostable case. We therefore adopt a different approach, relying on the uniform

spreading properties proved in our earlier work [4], namely Theorem 2.4.

6.2. Lower estimates for propagation of the layers

We now complete our argument by combining an iteration method and Lemma 5.2.

Proof of statement (i) of Theorem 3.1. We need to show that, for ε> 0 small enough, we have

uε(t , x) ≥ 1−η, for all τ≤ t ≤ T and all x such that d (t , x) ≤−β (recall that d (t , ·) denotes the

signed distance function to Γt , negative in Ωt ).

Recalling that Γ
α
0 ⊂ Ω0 and α ≤ dH (Γα

0 ,Γ0) ≤ 2α (see Proposition 4.3), it follows from

Proposition 5.1 that, for ε> 0 small enough, assumption (21) of Lemma 6.1 is satisfied at time

t0 = tαε< τ. As a result

uε(t1, x) ≥ 1−η, t1 := t0 + A1

p
ε, (35)

for any x ∈ D defined as in Lemma 6.1. Moreover, (35) also holds true if x ∈ Ω
α
t0

in virtue of

Lemma 5.2 (notice that the needed time to reach 1−η in Lemma 5.2 is of order ε), with Γ
α
t , Ωα

t

playing the roles of Γ̃t , Ω̃t . Therefore, it follows from the claim

Ω
α
t1
⊂ D ∪Ω

α
t0

(36)

(whose proof is postponed), that

∀x ∈Ω
α
t1

, uε(t1, x) ≥ 1−η.

Proceeding by induction, we conclude that for all times

tk := t0 +k A1

p
ε,



22 MATTHIEU ALFARO AND THOMAS GILETTI

up to some k such that T < tk < T +1, we have

uε(tk , x) ≥ 1−η for all x ∈Ω
α
tk

.

In particular it follows from (20) that uε(tk , x) ≥ 1−η for any x such that d (tk , x)≤−β.

It now only remains to consider intermediate times. Notice that, even though we stated

in Lemma 5.2 that the solution uε may only expand, this is in fact only true when looking at

interval of times of order larger than ε. Therefore, the above inequality does not guarantee

that d (t , x) ≤ −β⇒ uε(t , x) ≥ 1−η in intervals of time [tk , tk +O (ε)]. To avoid this difficulty,

we can nevertheless note that for all t ∈ [tk , tk+1) with k ≥ 1,

uε(t , x)≥ 1−η for all x ∈Ω
α
tk−1

. (37)

Note that up to reducing ε, we can assume that t1 < τ. Let now any t ∈ [τ,T ], and k ≥ 1 be

such that t ∈ [tk , tk+1). Let also x ∈ Ωt be such that d (t , x) ≤ −β. Notice that it follows from

Proposition 2.5 that there is C > 0 such that dH (Γt ,Γtk−1
) ≤C (t − tk−1) ≤ 2A1C

p
ε. Recall also

that α > 0 was chosen such that (20) holds, so that dH (Γt ,Γα
t ) ≤ β

2 , for all τ ≤ t ≤ T +1. As a

result

dH (Γt ,Γtα
k−1

) ≤ 2A1C
p
ε+

β

2
<β,

for ε > 0 small enough. Since d (t , x) ≤ −β, this enforces x ∈ Ω
α
tk−1

and, by (37), we get that

uε(t , x) ≥ 1−η. This concludes the proof of the lower estimates on the motion of the layers of

uε(t , x). ���

Proof of claim (36). Recall that (see Proposition 4.3) Γα
t is the zero level set of vα(t , ·), where

∂t vα+|∇vα|
(

c∗
( ∇vα

|∇vα|
)

)
−α

)
≥ 0. (38)

To prove the claim (36), consider any x ∈ Ω
α
t1

\Ωα
t0

, and let us prove that x ∈ D. First, there

exists some x0 ∈ Γ
α
t0

such that |x − x0| = di st (x,Γα
t0

) and, by convexity, such an x0 is unique.

Moreover,

n =
x −x0

|x −x0|
=

∇vα(t0, x0)

|∇vα(t0, x0)|
is, by construction, the unit outer normal of Γα

t0
at point x0 (the first equality follows from the

choice of x0, and the second from the definition of Γα
t as the zero level set of vα(t , ·)).

In order to prove that x ∈ D, it only remains to check the inequality

|(x −x0) ·n| = |x −x0| ≤ A1

(
c∗(n)−

α

2

)p
ε.

Note that, by convexity of vα,

vα(t0, x) ≥ vα(t0, x0)+∇vα(t0, x0) · (x −x0),



ASYMPTOTIC ANALYSIS OF A MONOSTABLE EQUATION IN PERIODIC MEDIA 23

and also that, thanks to the smoothness of vα,

vα(t1, x)−vα(t0, x) ≥ ∂t vα(t0, x)(t1 − t0)−K |t1 − t0|2,

where K is a positive constant (recall that α > 0 has been fixed). Since x ∈ Ω
α
t1

we have

vα(t1, x) < 0 and since x0 ∈ Γ
α
t0

we have vα(t0, x0) = 0. As a result, up to increasing K if neces-

sary,

0 ≥ vα(t1, x)−vα(t0, x0)

≥ ∇vα(t0, x0) · (x −x0)+∂t vα(t0, x)(t1 − t0)−K |t1 − t0|2

≥ ∇vα(t0, x0) · (x −x0)+ (∂t vα(t0, x0)−K |x −x0|)(t1 − t0)−K |t1 − t0|2.

Using (38), we deduce that

0 ≥ |∇vα(t0, x0)|× |x −x0|− |∇vα(t0, x0)|
(
c∗(n)−α

)
(t1 − t0)−K [|t1 − t0|× |x −x0|+ |t1 − t0|2].

Recalling that ∇vα does not cancel on Γ
α
t , we can infer by compactness that

ρ := inf
0≤t≤T

inf
x∈Γα

t

|∇vα(t , x)| > 0.

Recalling also that t1 − t0 = A1
p
ε, it follows from the above that

|x −x0| ≤
|∇vα(t0, x0)|

|∇vα(t0, x0)|−K A1
p
ε

(c∗(n)−α)A1

p
ε+

K A2
1ε

ρ−K A1
p
ε

≤
(
c∗(n)−

α

2

)
A1

p
ε,

provided ε> 0 is small enough. As announced, x ∈ D and the claim is proved. ���

7. Control of the layers from above

In this section, we prove the upper estimate on the motion of level sets of the solutions

uε(t , x), namely statement (i i ) of Theorem 3.1.

To do so, we are going to construct a family of planar supersolutions (indexed by y ∈ Γ0)

for (Pε), whose envelop is close to the zero level sets of v(t , ·), that is Γt in virtue of Proposition

2.5. Then, for the sake of clarity, rather than using the uniform upper spreading speed (7), we

instead use some kind of uniform asymptotics of the monostable minimal waves — which is

proved in [4] and actually implies (7).

Lemma 7.1 (Uniform asymptotics for critical waves, [4]). Let u∗(t , x;n)=U∗(x·n−c∗(n)t , x;n)

be a family of increasing in time pulsating traveling waves of (1), with minimal speed c∗(n) in

each direction n ∈S
N−1, shifted so that U∗(0,0;n) = 1

2
.

Then, the asymptotics U∗(−∞, x;n) = 1, U∗(∞, x;n) = 0 (which are uniform with respect

to x ∈R
N ) are uniform with respect to n ∈S

N−1.
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Proof of statement (ii) of Theorem 3.1. Let 0< T and a smallβ> 0 be given. For any n ∈S
N−1,

denote by U∗(z, x;n) a monostable pulsating front with minimal speed c∗(n) in the direction

n, shifted so that U∗(0,0;n) = 1
2 .

Thanks to ‖g‖∞ < 1 (see Assumption 1.2) and the above lemma, we can select some K > 0

large enough so that

U∗(z, x;n)≥ ‖g‖∞, ∀z ≤−K , ∀x ∈R
N , ∀n ∈S

N−1. (39)

Then, for any y ∈ Γ0 and denoting again by ny the outward unit normal of Γ0 at point y , we

define

u(t , x) :=U∗
(

(x − y) ·ny −c∗(ny )t

ε
−K ,

x

ε
,ny

)
.

From equation (5) for the traveling front, we deduce that u(t , x) solves the parabolic equation

in (Pε). We also have uε(0, x) = g (x) ≤ u(0, x): indeed, for x ∉Ω0 we have g (x) = 0, whereas for

x ∈Ω0 we have (x−y)·ny ≤ 0 by convexity and (39) gives the desired ordering. The comparison

principle then implies uε(t , x)≤ u(t , x). As a result

0 ≤ uε(t , x)≤ inf
y∈Γ0

U∗
(

(x − y) ·ny −c∗(ny )t

ε
−K ,

x

ε
;ny

)
. (40)

We recall that d (t , ·) denotes the signed distance to the set Γt , which is chosen to be neg-

ative in Ωt and positive in R
N \ (Γt ∪Ωt ). Let us now prove that there is some θ > 0 such that,

for any t ∈ [0,T ] and any x such that d (t , x)≥β, then

∃y ∈Γ0, (x − y) ·ny −c∗(ny )t ≥ θβ. (41)

Assume by contradiction that there are some sequences (tk)k≥1, (xk )k≥1 as above such that

∀y ∈Γ0, (xk − y) ·ny −c∗(ny )tk ≤
β

k
.

This enforces the sequence (xk )k≥1 to be bounded so that, after extraction of some subse-

quences, we are equipped with some t∞ ∈ [0,T ], some x∞ with d (t∞, x∞)≥β> 0, such that

∀y ∈Γ0, (x∞− y) ·ny −c∗(ny )t∞ ≤ 0.

Thus v(t∞, x∞) ≤ 0, which contradicts d (t∞, x∞) ≥β.

Let us now choose any t ∈ [0,T ], any x such that d (t , x)≥β. In view of (41), we can select

some y0 ∈Γ0 such that (x − y0) ·ny0
−c∗(ny0

)t ≥ θβ. Then, using (40) and the monotonicity of

the pulsating traveling wave U∗(z, x;n) with respect to its first variable, we get

0 ≤uε(t , x)≤U∗
(
θβ

ε
−K ,

x

ε
;ny0

)
≤ sup

n∈SN−1

sup
X∈RN

U∗
(
θβ

ε
−K , X ;n

)
.

Thanks to Lemma 7.1, this implies that sup0≤t≤T sup{x:d(t ,x)≥β} |uε(t , x)| → 0 as ε→ 0, which

concludes the proof of Theorem 3.1. ���
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