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FOLDING ON THE CHAOTIC CARTESIAN PRODUCT OF

MANIFOLDS AND THEIR FUNDAMENTAL GROUP

M. ABU-SALEEM

Abstract. In this paper we introduce the chaotic fundamental group of foldings of the chaotic Cartesian product

of manifolds into itself. Also the fundamental group of the limit of foldings of the chaotic Cartesian product of

manifolds into itself are deduced. The effect of folding on the wedge sum of chaotic manifolds and their chaotic

fundamental group will be achieved. Some types of conditional foldings restricted on the elements of a free chaotic

group and their chaotic fundamental groups are presented. Theorems governing these relations are obtained.

1. Introduction

Chaos theory is the branch of mathematics for the study of processes that seem so com-

plex that at first they do not appear to be governed by any known laws or principles, but which

actually have an underlying order that can be described by vector calculus and its associated

geometry. Examples of chaotic processes include a stream of rising smoke that breaks down

and becomes trubulent, water flowing in a stream or crashing at the bottom of a waterfall,

electroencephalographic activity of the brain, changes in animal populations, fluctuations on

the stock exchange, and the weather (either local or global). All of these phenomena involve

the interaction of several elements and the pattern of their changes over time.

The rate of change of each of the variables or elements involved depends on the other

variables, and the rules of the rate of change must be nonlinear for the chaotic temporal pat-

terns to occur. When basic processes of systems are connected interactively, they are called

“dynamical systems”, which is the parent branch of mathematics of which chaos theory is a

sub discipline.

Classical chaos theory deals with a calculus of infinite duration and resolution which, of

course, may or may not exist in the actual world, but is beyond the resolution of our knowl-

edge of the actual world. Thus, in the mathematical models of chaos one encounters “sensi-

tivity to initial conditions” where even the smallest difference in initial conditions can lead to

a large difference in position later on within a chaotic attractor. Therefore, since our knowl-

edge of initial conditions is never exact but bound to inexact observation, our prediction into

the future is limited, more so the further into the future we try to predict. Until recently, it was

presumed that chaotic systems, like classical linear systems, tended toward stable equilibrium
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(fixed point) or period attractors and that the erratic behavior found in actuality resulted from

unidetified variables not yet detected [12].

The folding of a manifold was, firstly introduced by Robertson 1977 [13]. More studies

on the folding of many types of manifolds were studied in [3, 4, 5, 6, 14]. The unfolding of

a manifold introduced in [2]. Some application of the folding of a manifold discussed in [1].

The fundamental groups of some types of a manifold are discussed in [8, 9, 11].

2. Definitions

1- The set of homotopy classes of loops based at the point x◦ with the product operation

[ f ][g ]= [ f · g ] is called the fundamental group and denoted by π1(X , x◦)[9].

2- Let M and N be two manifolds of dimension m and n respectively. A map f : M → N is

said to be an isometric folding of M into N if for every piecewise geodesic path γ : I → M the

induced path f ◦γ : I → N is piecewise geodesic and of the same length as γ [13]. If f does not

preserve length it is called topological folding [7].

3- Let M and N be two manifolds of the same dimension. A map g : M → N is said to be

unfolding of M into N if every piecewise geodesic path γ : I → M , the induced path g ◦γ : I →

N is piecewise geodesic with length greater than γ [2].

4- Given spaces X and Y with chosen points x0 ∈ X and y0 ∈ Y , then the wedge sum X ∨Y

is the quotient of the disjoint union X ∪Y obtained identifying x0 and y0 to a single point [9].

3. Main results

Aiming to our study we will introduce the following definitions.

Definition 1. The chaotic space is a space carries many physical characters each one of

them homeomorphic to the original one either with fixed point or without fixed point as in

Figure 1.

Figure 1.
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For types of chaotic space we have two cases.

Case 1: The chaotic space wih homogeneous properties to each homeomorphic space and we

denoted this type by
ch
X and

ch
X= (X0, X1, . . . , X∞).

Case 2: The chaotic space with non homogeneous properties to each homeomorphic space

and we denoted this type by
ch
X= (

chi

X k , k = 0,1, . . . ,∞, i = 1,2, . . . ,n) where n is the number

of physical characters to each homeomorphic space
chi

X k and (
ch0

X k ,
ch1

X k , . . . ,
chn

X k ) represents all

physical characters to k-homeomorphic space
chi

X k .

Definition 2. The chaotic loop is a geometric loop carries many other loops which are

homotopic to each others, as in Figure 2 and the chaotic α
ch = (an0 , an1 , . . . ,αn∞

) can be rep-

resented as
ch
α and the chaotic loop

ch
x= (xn0 , xn1 , . . . , xn∞

) represented as
ch
x base point.

For types of chaotic loops we have two cases: Case 1: All loops are of the same physical char-

acter αn0 ,αn1 , . . . ,αn∞
. Case 2: All loops represents different physical characters for example

αn0 ,αn1 , . . . ,αn∞
. αn0 represent magnetic field, αn1 represent colors αn2 represent electricity.

Figure 2.

Definition 3. The chaotic group
ch
G is a group with chaotic elements i.e. the chaotic ele-

ments g ch can be represented as g ch = (gn0 , gn1 , . . . , gn∞
).

Definition 4. The chaotic fundamental group in chaotic space
ch
X at the chaotic base point

ch
x is the set of homotopy classes of chaotic loops with the product operation [ f ][g ] = [ f ·g ] and

denoted by
ch
π1 (

ch
X ,

ch
x ). Also, the chaotic fundamental group in the chaotic space

ch
X depends

on the base point to each physical character of
chi

X k and so we can represented as π1(
chi

X k ,
chi
x k ),

k = 0,1, . . . ,∞, i = 1,2, . . . ,n.

Example 1.
ch
π1 (

ch

S1,
ch
x ) ≈

ch
Z ,

ch
π1 (

ch

Sn ,
ch
x ) ≈

ch
0 (chaotic identity group) for n ≥ 2,

ch
π1 (

ch

Rn ,
ch
x )≈

ch
0 ,

n ≥ 1 for homogenous space. Now, for non homogenous space π1((
chi

S1
k

,
chi
x k ) is either identity
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group or isomorphic to Z and
chi
π 1 (

chi

Rn
k

,
chi
x k ) is a free group of rank n for some n or identity

group for k = 0,1, . . . ,∞, i = 1,2, . . . ,n) which depends on the number of the holes for each

physicals characters.

Theorem 1. If
ch
M 1,

ch
M 2, . . . ,

ch
M n are path connected chaotic manifolds and F is a folding from

n
∨

i=1

chi

M i into itself then there is an induced folding F of
n
∗

i=1
π1((

ch
M i ) into itself which reduce the

degree of
n
∗

i=1
π1((

ch
M i ).

Proof. Let F :
n
∨

i=1

ch
M i−→

n
∨

i=1

ch
M i be folding on

n
∨

i=1

ch
M into itself, then F :

n
∨

i=1

ch
M i−→

n
∨

i=1

ch
M i

has the following forms:

If F (
n
∨

i=1

ch
M i ) =

ch
M 1 ∨

ch
M 2 ∨·· ·∨F (

ch
M s)∨·· ·∨

ch
Mn for s = 1,2, . . . ,n, then

F (
n
∗

i=1
π1(

ch
M i )) =π1(F (

n
∨

i=1

ch
M i )) ≈π1(

ch
M1)∗π1(

ch
M 2)∗ ·· ·∗π1(F (

ch
M s))∗ ·· ·∗π1(

ch
M n).

Since degree (π1(F (
ch
M s )))≤ degree (π1(

ch
M s)) it follows that F reduce the degree of

n
∗

i=1
π1((

ch
M i ).

Also, if F (
n
∨

i=1

ch
M i ) =

ch
M 1 ∨

ch
M 2 ∨·· ·∨F (

ch
M s )∨·· ·∨F (

ch
Mk )∨·· ·∨

ch
M n

for k = 1,2, . . . ,n, s < k.

Then F (
n
∗

i=1
π1((

ch
M i )) =

π1(F (
n
∨

i=1

ch
M i )) ≈π1(

ch
M1)∗π1(

ch
M2)∗ ·· ·∗π1(F (

ch
M s))∗ ·· ·∗π1(F (

ch
Mk ))∗ ·· ·∗π1(

ch
M n) and so F re-

duce the degree of
n
∗

i=1
π1(

ch
M i ).

Moreover, by continuing this process if F (
n
∨

i=1

ch
M i ) =

n
∨

i=1
F (

ch
M i ).

Then F (
n
∗

i=1
π1(

ch
M i )) = π1(F (

n
∨

i=1

ch
M i )) = π1(

n
∨

i=1
F (

ch
M i )) ≈

n
∗

i=1
π1(F (

ch
M i )). Hence F reduce the de-

gree of
n
∗

i=1
π1((

ch
M i ).

Theorem 2. For every k ≤ n, there is a folding Fk of
n
∨

i=1

ch

S1
i

into itself which induces a folding

Fk of
n
∗

i=1
π1(

ch

S1
i

) into itself such that F k (
n
∗

i=1
π1(

ch

S1
i

)) is a free chaotic group of rank n−k.

Proof. Let F1 :
n
∨

i=1

ch

S1
i
−→

n
∨

i=1

ch

S1
i

be folding such that

F1(
n
∨

i=1

ch

S1
i

) =
ch

S1
1 ∨

ch

S1
2 ∨·· ·∨F1(

ch

S1
t )∨·· ·∨

ch

S1
n , for t = 1,2, . . . ,n and F1(

ch

S1
t ) 6=

ch

S1
t folding with singu-

larity as in Figure 1 then consider the induced folding
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F1 :
n
∗

i=1
π1(

ch

S1
i

) −→
n
∗

i=1
π1(

ch

S1
i

) such that F 1(
n
∗

i=1
π1(

ch

S1
i

))= π1(F1(
n
∨

i=1

ch

S1
i

)) and so

F 1(
n
∗

i=1
π1(

ch

S1
i

)) ≈ π1(
ch

S1
1)∗π1(

ch

S1
2)∗ ·· ·∗π1(F1(

ch

S1
t ))∗ ·· ·∗π1(

ch

S1
n). Since π1(F1(

ch

S1
n)) =

ch
0 and π1(

ch

S1
i

) ≈
ch
Z , it follows that F 1(

n
∗

i=1
π1(

ch

S1
i

)) is a free chaotic group of rank n −1. Also, let F2 :
n
∨

i=1

ch

S1
i
−→

n
∨

i=1

ch

S1
i

be folding such that

F2(
n
∨

i=1

ch

S1
i

) =
ch

S1
1 ∨

ch

S1
2 ∨·· ·∨F2(

ch

S1
s )∨·· ·∨F2(

ch

S1
t ) · · ·∨

ch

S1
n , for s, t = 1,2, . . . ,n, s < t , and F2(

ch

S1
s ) 6=

ch

S1
s ,

F2(
ch

S1
s ) 6=

ch

S1
t then we can get the induced folding

F2 :
n
∗

i=1
π1(

ch

S1
i

) −→
n
∗

i=1
π1(

ch

S1
i

) such that F 2(
n
∗

i=1
π1(

ch

S1
i

)) is a free chaotic group of rank n −2. By

continuing this process we obtain the folding Fn :
n
∨

i=1

ch

S1
i
−→

n
∨

i=1

ch

S1
i

such that Fn(
n
∨

i=1

ch

S1
i

) =

n
∨

i=1
Fn(

ch

S1
i

) and Fn(
ch

S1
i

) 6=
ch

S1
i

which induces

a folding Fn :
n
∗

i=1
π1(

ch

S1
i

) −→
n
∗

i=1
π1(

ch

S1
i

) such that F n (
n
∗

i=1
π1(

ch

S1
i

)) is a free chaotic group of rank 0.

Figure 1.

Theorem 3. Let Dn be the disjoint union of n discs on the chaotic sphere
ch

S2 and {Fm , m ∈

N } be a sequence of conditional folding from (S2 − Dch
n ) into itself then there is an induced

folding F m : π1((S2 −Dch
n )) −→ π1((S2 −Dch

n )) which depends on the conditional folding Fm

such that π1( lim
m→∞

Fm ((S2 −Dch
n )) is a free chaotic group of rank n−2.

Proof. Let Dn be the disjoint union of n discs on the chaotic sphere
ch

S2 then we can define a

sequence of foldings F m : (S2−Dch
n ) −→ (S2−Dch

n ), m = 1,2, . . . such that lim
m→∞

Fm((S2−Dch
n )) =

(S2 −Dch
n )∨ (S2 −Dch

k
) where k +h = n as in Figure 3

thus π1( lim
m→∞

Fm((S2 −Dch
n )) ≈π1((S2 −Dch

h
))∗π1((S2 −Dch

k
))

and so π1( lim
m→∞

Fm ((S2 −Dch
n ))) ≈

ch
Z ∗

ch
Z ∗·· ·∗

ch
Z

︸ ︷︷ ︸

h−1

∗
ch
Z ∗

ch
Z ∗·· ·∗

ch
Z

︸ ︷︷ ︸

k−1

.
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Hence, π1( lim
m→∞

Fm((S2 −Dch
n )))≈

ch
Z ∗

ch
Z ∗·· ·∗

ch
Z

︸ ︷︷ ︸

h+k−2

. Therefore,

π1( lim
m→∞

Fm((S2 −Dch
n ))) is a free chaotic group of rank n−2.

Figure 3.

Theorem 4. If
ch

M1,
ch

M2, . . . ,
ch

Mn are path connected chaotic manifolds and F is a folding from
n∏

i=1

ch
Mi into itself then there is an induced folding F of

π1(
n∏

i=1

ch
Mi ) into itself such that

F (πi (
n∏

i=1

ch
Mi )) ≈π1(

ch
M1)×π1(

ch
M2)×·· ·×π1(F (

ch
Ms))×·· ·×π1(

ch
Mn) for s = 1,2, . . . ,n

or ≈π1(
ch

M1)×π1(
ch

M2)×·· ·×π1(F (
ch

Ms))×·· ·×π1(F (
ch

Mk ))×·· ·×
ch

Mn

for s,k = 1,2, . . . ,n, s < k
...

or ≈π1(
n∏

i=1
F (

ch
Mi )).

Proof. Let F :
n∏

i=1

ch
Mi−→

n∏

i=1

ch
Mi be folding from

n∏

i=1

ch
Mi into itself, then F is continuous map.

So we have the coordinate system of
n∏

i=1

ch
Mi will be on the form {(

ch
Uα1 ×

ch
Uα2 ×·· ·×

ch
Uαn ), (

ch
X α1

×
ch
X α2 ×·· ·×

ch
X αn )}, where

ch
X αi

is an injective and bicontinous mapping from an open subset
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form
ch
Uαi

⊆
ch

Rni −→
ch

Mi for

i = 1,2, . . . ,n and {(
ch
Uαi

,
ch
X αi

)} is the atlas of
ch

Mi for i = 1,2, . . . ,n then

F :
n∏

i=1

ch
Mi−→

n∏

i=1

ch
Mi has the following forms:

If F (
n∏

i=1

ch
Mi ) = F (

ch
Uα1 ×

ch
Uα2 ×·· ·×

ch
Uαn ,

ch
X α1 ×

ch
X α2 ×·· ·×

ch
X αn )

= (
ch

Uα1 ×
ch
Uα2 ×·· ·×

ch
Uαn ,F (

ch
Uαs ,

ch
X αs ),

ch
X α1 ×

ch
X α2 ×·· ·×

ch
X αn )

=
ch

M1 ×
ch

M2 ×·· ·×F (
ch

Ms )×·· ·×
ch

Mn for s = 1,2, . . . ,n, then

F (π1(
n∏

i=1

ch
Mi ))=π1(F (

n∏

i=1

ch
Mi )) ≈π1(

ch
M1)×π1(

ch
M2)×·· ·×π1(F (

ch
Ms))×·· ·×π1(

ch
Mn)

Also, if F (
n∏

i=1

ch
Mi ) = F (

ch
Uα1 ×

ch
Uα2 ×·· ·×

ch
Uαn ,

ch
X α1 ×

ch
X α2 ×·· ·×

ch
X αn )

= (
ch
Uα1 ×

ch
Uα2 ×·· ·×

ch
Uαn ,F (

ch
Uαs ,

ch
X αs ),F (

ch
Uαk

,
ch
X αk

),
ch
X α1 ,

ch
X α2 ×·· ·×

ch
X αn )

=
ch
M1 ×

ch
M2 ×·· ·×F (

ch
M s )×F (

ch
Mk ) · · ·×

ch
M n for s,k = 1,2, . . . ,n, s < k,

then, F (π1(
n∏

i=1

ch
M i ))=πi (F (

n∏

i=1

ch
M i ))

≈π1(
ch
M1)×π1(

ch
M2)×·· ·×π1(F (

ch
M s ))×π1(F (

ch
Mk ))×·· ·×π1(

ch
M n).

Moreover, by continuing this process if

F (
n∏

i=1

ch
M i )= F (

ch
Uα1 ×

ch
Uα2 ×·· ·×

ch
Uαn ,

ch
X α1 ,

ch
X α2 ×·· ·×

ch
X αn )

= F (
ch
Uα1 ,

ch
X α1 ),F (

ch
Uα2 ,

ch
X α2 ), . . . ,F (

ch
Uαn ,

ch
X αn ) = F (

ch
M1)×F (

ch
M2)×·· ·×F (

ch
Mn ),

then, F (π1(
n∏

i=1

ch
M i ))=π1(F (

n∏

i=1

ch
M i ))≈ π1(F (

ch
M1))×·· ·×π1(F (

ch
Mn)) =π1(

n∏

i=1
F (

ch
M i )).

Theorem 5. If
ch
M 1,

ch
M 2, . . . ,

ch
M n are path connected manifolds which are homeomorphic to

ch

S1 and F is a folding such that F (
n∏

i=1

ch
M i ) 6=

n∏

i=1
F (

ch
M i ) then

π1

(

lim
m→∞

Fm

( n∏

i=1

ch
M i

))

6≈

n∏

i=1

(

π1

(

lim
m→∞

(

Fm(
ch
M i )

)))

.

Proof. Take
ch
M1=

ch

S1,
ch
M 2=

ch

S2, then
ch

S1 ×

ch

S1=

ch

T 1 chaotic torus since

lim
m→∞

Fm(
ch

S1) = chaotic point as in Figure 4, then

lim
m→∞

Fm(
ch

S1)× lim
m→∞

Fm(
ch

S1) = chaotic point and so π1( lim
m→∞

Fm(
ch

S1)× lim
m→∞

Fm(
ch

S1)) = 0.

Also, it follows from F (
ch

S1 ×

ch

S1) 6= F (
ch

S1)×F (
ch

S1) that F (
ch

S1 ×

ch

S1) = F (
ch

S1)×
ch

S1 or

F (
ch

S1 ×

ch

S1) =
ch

S1 ×F (
ch

S1) thus lim
m→∞

Fm(
ch

S1 ×

ch

S1) =
ch

S1 so
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π1( lim
m→∞

Fm(
ch

S1 ×

ch

S1)) =π1(
ch

S1) ≈
ch
Z . Hence

π1( lim
m→∞

Fm(
ch

S1 ×

ch

S1)) 6≈π1( lim
m→∞

Fm(
ch

S1))×π1( lim
m→∞

Fm(
ch

S1)).

Figure 4.

Corollary 1. If
ch
M 1,

ch
M 2, . . . ,

ch
M n are path connected manifolds and F is a folding such that

F (
n∏

i=1

ch
M i )=

n∏

i=1
F (

ch
M i ) then

π1

(

lim
m→∞

Fm

( n∏

i=1

ch
M i

))

≈

n∏

i=1

(

lim
m→∞

π1

(

Fm(
ch
M i )

))

.
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